5. New number and Math features
Table of contents
Please support this book: buy it (PDF, EPUB, MOBI) or donate
(Ad, please don’t block.)

5. New number and Math features



5.1 Overview

5.1.1 New integer literals

You can now specify integers in binary and octal notation:

> 0xFF // ES5: hexadecimal
255
> 0b11 // ES6: binary
3
> 0o10 // ES6: octal
8

5.1.2 New Number properties

The global object Number gained a few new properties:

5.1.3 New Math methods

The global object Math has new methods for numerical, trigonometric and bitwise operations. Let’s look at four examples.

Math.sign() returns the sign of a number:

> Math.sign(-8)
-1
> Math.sign(0)
0
> Math.sign(3)
1

Math.trunc() removes the decimal fraction of a number:

> Math.trunc(3.1)
3
> Math.trunc(3.9)
3
> Math.trunc(-3.1)
-3
> Math.trunc(-3.9)
-3

Math.log10() computes the logarithm to base 10:

> Math.log10(100)
2

Math.hypot() Computes the square root of the sum of the squares of its arguments (Pythagoras’ theorem):

> Math.hypot(3, 4)
5    

5.2 New integer literals

ECMAScript 5 already has literals for hexadecimal integers:

> 0x9
9
> 0xA
10
> 0x10
16
> 0xFF
255

ECMAScript 6 brings two new kinds of integer literals:

Remember that the Number method toString(radix) can be used to see numbers in a base other than 10:

> 255..toString(16)
'ff'
> 4..toString(2)
'100'
> 8..toString(8)
'10'

(The double dots are necessary so that the dot for property access isn’t confused with a decimal dot.)

5.2.1 Use case for octal literals: Unix-style file permissions

In the Node.js file system module, several functions have the parameter mode. Its value is used to specify file permissions, via an encoding that is a holdover from Unix:

That means that permissions can be represented by 9 bits (3 categories with 3 permissions each):

  User Group All
Permissions r, w, x r, w, x r, w, x
Bit 8, 7, 6 5, 4, 3 2, 1, 0

The permissions of a single category of users are stored in 3 bits:

Bits Permissions Octal digit
000 ––– 0
001 ––x 1
010 –w– 2
011 –wx 3
100 r–– 4
101 r–x 5
110 rw– 6
111 rwx 7

That means that octal numbers are a compact representation of all permissions, you only need 3 digits, one digit per category of users. Two examples:

5.2.2 Number.parseInt() and the new integer literals

Number.parseInt() (which does the same as the global function parseInt()) has the following signature:

Number.parseInt(string, radix?)
5.2.2.1 Number.parseInt(): hexadecimal number literals

Number.parseInt() provides special support for the hexadecimal literal notation – the prefix 0x (or 0X) of string is removed if:

For example:

> Number.parseInt('0xFF')
255
> Number.parseInt('0xFF', 0)
255
> Number.parseInt('0xFF', 16)
255

In all other cases, digits are only parsed until the first non-digit:

> Number.parseInt('0xFF', 10)
0
> Number.parseInt('0xFF', 17)
0
5.2.2.2 Number.parseInt(): binary and octal number literals

However, Number.parseInt() does not have special support for binary or octal literals!

> Number.parseInt('0b111')
0
> Number.parseInt('0b111', 2)
0
> Number.parseInt('111', 2)
7

> Number.parseInt('0o10')
0
> Number.parseInt('0o10', 8)
0
> Number.parseInt('10', 8)
8

If you want to parse these kinds of literals, you need to use Number():

> Number('0b111')
7
> Number('0o10')
8

Number.parseInt() works fine with numbers that have a different base, as long as there is no special prefix and the parameter radix is provided:

> Number.parseInt('111', 2)
7
> Number.parseInt('10', 8)
8

5.3 New static Number properties

This section describes new properties that the constructor Number has picked up in ECMAScript 6.

5.3.1 Previously global functions

Four number-related functions are already available as global functions and have been added to Number, as methods: isFinite and isNaN, parseFloat and parseInt. All of them work almost the same as their global counterparts, but isFinite and isNaN don’t coerce their arguments to numbers, anymore, which is especially important for isNaN. The following subsections explain all the details.

5.3.1.1 Number.isFinite(number)

Number.isFinite(number) determines whether number is an actual number (neither Infinity nor -Infinity nor NaN):

> Number.isFinite(Infinity)
false
> Number.isFinite(-Infinity)
false
> Number.isFinite(NaN)
false
> Number.isFinite(123)
true

The advantage of this method is that it does not coerce its parameter to number (whereas the global function does):

> Number.isFinite('123')
false
> isFinite('123')
true
5.3.1.2 Number.isNaN(number)

Number.isNaN(number) checks whether number is the value NaN.

One ES5 way of making this check is via !==:

> const x = NaN;
> x !== x
true

A more descriptive way is via the global function isNaN():

> const x = NaN;
> isNaN(x)
true

However, this function coerces non-numbers to numbers and returns true if the result is NaN (which is usually not what you want):

> isNaN('???')
true

The new method Number.isNaN() does not exhibit this problem, because it does not coerce its arguments to numbers:

> Number.isNaN('???')
false
5.3.1.3 Number.parseFloat and Number.parseInt

The following two methods work exactly like the global functions with the same names. They were added to Number for completeness sake; now all number-related functions are available there.

5.3.2 Number.EPSILON

Especially with decimal fractions, rounding errors can become a problem in JavaScript3. For example, 0.1 and 0.2 can’t be represented precisely, which you notice if you add them and compare them to 0.3 (which can’t be represented precisely, either).

> 0.1 + 0.2 === 0.3
false

Number.EPSILON specifies a reasonable margin of error when comparing floating point numbers. It provides a better way to compare floating point values, as demonstrated by the following function.

function epsEqu(x, y) {
    return Math.abs(x - y) < Number.EPSILON;
}
console.log(epsEqu(0.1+0.2, 0.3)); // true

5.3.3 Number.isInteger(number)

JavaScript has only floating point numbers (doubles). Accordingly, integers are simply floating point numbers without a decimal fraction.

Number.isInteger(number) returns true if number is a number and does not have a decimal fraction.

> Number.isInteger(-17)
true
> Number.isInteger(33)
true
> Number.isInteger(33.1)
false
> Number.isInteger('33')
false
> Number.isInteger(NaN)
false
> Number.isInteger(Infinity)
false

5.3.4 Safe integers

JavaScript numbers have only enough storage space to represent 53 bit signed integers. That is, integers i in the range −253 < i < 253 are safe. What exactly that means is explained momentarily. The following properties help determine whether a JavaScript integer is safe:

The notion of safe integers centers on how mathematical integers are represented in JavaScript. In the range (−253, 253) (excluding the lower and upper bounds), JavaScript integers are safe: there is a one-to-one mapping between them and the mathematical integers they represent.

Beyond this range, JavaScript integers are unsafe: two or more mathematical integers are represented as the same JavaScript integer. For example, starting at 253, JavaScript can represent only every second mathematical integer:

> Math.pow(2, 53)
9007199254740992

> 9007199254740992
9007199254740992
> 9007199254740993
9007199254740992
> 9007199254740994
9007199254740994
> 9007199254740995
9007199254740996
> 9007199254740996
9007199254740996
> 9007199254740997
9007199254740996

Therefore, a safe JavaScript integer is one that unambiguously represents a single mathematical integer.

The two static Number properties specifying the lower and upper bound of safe integers could be defined as follows:

Number.MAX_SAFE_INTEGER = Math.pow(2, 53)-1;
Number.MIN_SAFE_INTEGER = -Number.MAX_SAFE_INTEGER;

Number.isSafeInteger() determines whether a JavaScript number is a safe integer and could be defined as follows:

Number.isSafeInteger = function (n) {
    return (typeof n === 'number' &&
        Math.round(n) === n &&
        Number.MIN_SAFE_INTEGER <= n &&
        n <= Number.MAX_SAFE_INTEGER);
}

For a given value n, this function first checks whether n is a number and an integer. If both checks succeed, n is safe if it is greater than or equal to MIN_SAFE_INTEGER and less than or equal to MAX_SAFE_INTEGER.

5.3.4.2 When are computations with integers correct?

How can we make sure that results of computations with integers are correct? For example, the following result is clearly not correct:

> 9007199254740990 + 3
9007199254740992

We have two safe operands, but an unsafe result:

> Number.isSafeInteger(9007199254740990)
true
> Number.isSafeInteger(3)
true
> Number.isSafeInteger(9007199254740992)
false

The following result is also incorrect:

> 9007199254740995 - 10
9007199254740986

This time, the result is safe, but one of the operands isn’t:

> Number.isSafeInteger(9007199254740995)
false
> Number.isSafeInteger(10)
true
> Number.isSafeInteger(9007199254740986)
true

Therefore, the result of applying an integer operator op is guaranteed to be correct only if all operands and the result are safe. More formally:

isSafeInteger(a) && isSafeInteger(b) && isSafeInteger(a op b)

implies that a op b is a correct result.

5.4 New Math functionality

The global object Math has several new methods in ECMAScript 6.

5.4.1 Various numerical functionality

5.4.1.1 Math.sign(x)

Math.sign(x) returns:

Examples:

> Math.sign(-8)
-1
> Math.sign(3)
1

> Math.sign(0)
0
> Math.sign(NaN)
NaN

> Math.sign(-Infinity)
-1
> Math.sign(Infinity)
1
5.4.1.2 Math.trunc(x)

Math.trunc(x) removes the decimal fraction of x. Complements the other rounding methods Math.floor(), Math.ceil() and Math.round().

> Math.trunc(3.1)
3
> Math.trunc(3.9)
3
> Math.trunc(-3.1)
-3
> Math.trunc(-3.9)
-3

You could implement Math.trunc() like this:

function trunc(x) {
    return Math.sign(x) * Math.floor(Math.abs(x));
}
5.4.1.3 Math.cbrt(x)

Math.cbrt(x) returns the cube root of x (∛x).

> Math.cbrt(8)
2

5.4.2 Using 0 instead of 1 with exponentiation and logarithm

A small fraction can be represented more precisely if it comes after zero. I’ll demonstrate this with decimal fractions (JavaScript’s numbers are internally stored with base 2, but the same reasoning applies).

Floating point numbers with base 10 are internally represented as mantissa × 10exponent. The mantissa has a single digit before the decimal dot and the exponent “moves” the dot as necessary. That means if you convert a small fraction to the internal representation, a zero before the dot leads to a smaller mantissa than a one before the dot. For example:

Precision-wise, the important quantity here is the capacity of the mantissa, as measured in significant digits. That’s why (A) gives you higher precision than (B).

Additionally, JavaScript represents numbers close to zero (e.g. small fractions) with higher precision.

5.4.2.1 Math.expm1(x)

Math.expm1(x) returns Math.exp(x)-1. The inverse of Math.log1p().

Therefore, this method provides higher precision whenever Math.exp() has results close to 1. You can see the difference between the two in the following interaction:

> Math.expm1(1e-10)
1.00000000005e-10
> Math.exp(1e-10)-1
1.000000082740371e-10

The former is the better result, which you can verify by using a library (such as decimal.js) for floating point numbers with arbitrary precision (“bigfloats”):

> var Decimal = require('decimal.js').config({precision:50});
> new Decimal(1e-10).exp().minus(1).toString()
'1.000000000050000000001666666666708333333e-10'
5.4.2.2 Math.log1p(x)

Math.log1p(x) returns Math.log(1 + x). The inverse of Math.expm1().

Therefore, this method lets you specify parameters that are close to 1 with a higher precision. The following examples demonstrate why that is.

The following two calls of log() produce the same result:

> Math.log(1 + 1e-16)
0
> Math.log(1 + 0)
0

In contrast, log1p() produces different results:

> Math.log1p(1e-16)
1e-16
> Math.log1p(0)
0

The reason for the higher precision of Math.log1p() is that the correct result for 1 + 1e-16 has more significant digits than 1e-16:

> 1 + 1e-16 === 1
true
> 1e-16 === 0
false

5.4.3 Logarithms to base 2 and 10

5.4.3.1 Math.log2(x)

Math.log2(x) computes the logarithm to base 2.

> Math.log2(8)
3
5.4.3.2 Math.log10(x)

Math.log10(x) computes the logarithm to base 10.

> Math.log10(100)
2

5.4.4 Support for compiling to JavaScript

Emscripten pioneered a coding style that was later picked up by asm.js: The operations of a virtual machine (think bytecode) are expressed in static subset of JavaScript. That subset can be executed efficiently by JavaScript engines: If it is the result of a compilation from C++, it runs at about 70% of native speed.

The following Math methods were mainly added to support asm.js and similar compilation strategies, they are not that useful for other applications.

5.4.4.1 Math.fround(x)

Math.fround(x) rounds x to a 32 bit floating point value (float). Used by asm.js to tell an engine to internally use a float value.

5.4.4.2 Math.imul(x, y)

Math.imul(x, y) multiplies the two 32 bit integers x and y and returns the lower 32 bits of the result. This is the only 32 bit basic math operation that can’t be simulated by using a JavaScript operator and coercing the result back to 32 bits. For example, idiv could be implemented as follows:

function idiv(x, y) {
    return (x / y) | 0;
}

In contrast, multiplying two large 32 bit integers may produce a double that is so large that lower bits are lost.

5.4.5 Bitwise operations

Why is this interesting? Quoting “Fast, Deterministic, and Portable Counting Leading Zeros” by Miro Samek:

Counting leading zeros in an integer number is a critical operation in many DSP algorithms, such as normalization of samples in sound or video processing, as well as in real-time schedulers to quickly find the highest-priority task ready-to-run.

5.4.6 Trigonometric methods

5.5 FAQ: numbers

5.5.1 How can I use integers beyond JavaScript’s 53 bit range?

JavaScript’s integers have a range of 53 bits. That is a problem whenever 64 bit integers are needed. For example: In its JSON API, Twitter had to switch from integers to strings when tweet IDs became too large.

At the moment, the only way around that limitation is to use a library for higher-precision numbers (bigints or bigfloats). One such library is decimal.js.

Plans to support larger integers in JavaScript exist, but may take a while to come to fruition.

Next: 6. New string features