This chapter explores static typing for functions in TypeScript.
in this chapter, “function” means “function or method or constructor”
In this chapter, most things that are said about functions (especially w.r.t. parameter handling), also apply to methods and constructors.
This is an example of a function declaration in TypeScript:
function repeat1(str: string, times: number): string { // (A)
return str.repeat(times);
}
assert.equal(
repeat1('*', 5), '*****'
);
Parameters: If the compiler option --noImplicitAny
is on (which it is if --strict
is on), then the type of each parameter must be either inferrable or explicitly specified. (We’ll take a closer look at inference later.) For parameters, no inference is possible, which is why str
and times
have type annotations.
Return type: By default, the return type of functions is inferred. That is usually good enough. We opted to explicitly specify that repeat1()
has the return type string
(last type annotation in line A).
The arrow function version of repeat1()
looks as follows:
const repeat2 = (str: string, times: number): string => {
return str.repeat(times);
};
Arrow functions can also have expression bodies:
const repeat3 = (str: string, times: number): string =>
str.repeat(times);
We can define types for functions via function type signatures:
type Repeat = (str: string, times: number) => string;
The name of this function type is Repeat
. It has:
string
and number
. We need to name parameters in function type signatures, but the names are ignored when checking if two function types are compatible.
string
. Note that this time, the type is separated by an arrow and can’t be omitted.
Which functions are assignable to this type? At least those that have the same parameter types and return type. But some others are assignable too. We’ll see which ones, when we explore the rules for assignability later in this chapter.
We can also use interfaces to define function types:
interface Repeat {
(str: string, times: number): string; // (A)
}
Note:
On one hand, interfaces are more verbose. On the other hand, they let us specify properties of functions (which is rare, but does happen):
interface Incrementor1 {
(x: number): number;
increment: number;
}
We can also specify properties via an intersection type (&
) of a function signature type and an object literal type:
type Incrementor2 =
& ((x: number) => number)
& { increment: number }
;
As an example, consider this scenario: A library exports the following function type.
type StringPredicate = (str: string) => boolean;
We want to define a function whose type is compatible with StringPredicate
. And we want to check immediately if that’s indeed the case (vs. finding out later when we use it for the first time).
If we declare a variable via const
, we can perform the check via a type annotation:
const pred1: StringPredicate = (str) => str.length > 0;
Note that we don’t need to specify the type of parameter str
because TypeScript can use StringPredicate
to infer it.
Checking function declarations is more complicated. Consider the following function declaration:
function pred2(str: string): boolean {
return str.length > 0;
}
These are two built-in ways in which we can check assignability:
const pred2ImplementsStringPredicate: StringPredicate = pred2;
pred2 satisfies StringPredicate;
satisfies
is explained in “The satisfies
operator” (§29).
The following two checks require the library asserttt
:
assertType<StringPredicate>(pred2);
type _ = Assert<Assignable<
StringPredicate,
typeof pred2
>>;
Note that all checks but the last one produce unnecessary JavaScript code.
The following solution is something you’d usually not do – so no worries if you don’t fully understand it. But it nicely demonstrates several advanced features:
function pred3(
...[str]: Parameters<StringPredicate>
): ReturnType<StringPredicate>
{
return str.length > 0;
}
Parameters: We use the utility type Parameters<>
to extract a tuple with the parameter types. The three dots declare a rest parameter, which collects all parameters in a tuple/Array. [str]
destructures that tuple. (More on rest parameters later in this chapter.)
Return value: We use the utility type ReturnType<>
to extract the return type.
The built-in utility types Parameters<>
and ReturnType<>
are explained in “Extracting parts of function types via infer
” (§35.3.1).
Recap: If --noImplicitAny
is switched on (--strict
switches it on), the type of each parameter must either be inferrable or explicitly specified.
In the following example, TypeScript can’t infer the type of str
and we must specify it:
function twice(str: string) {
return str + str;
}
In line A, TypeScript can use the type StringMapFunction
to infer the type of str
and we don’t need to add a type annotation:
type StringMapFunction = (str: string) => string;
const twice: StringMapFunction = (str) => str + str; // (A)
Here, TypeScript can use the type of .map()
to infer the type of str
:
assert.deepEqual(
['a', 'b', 'c'].map((str) => str + str),
['aa', 'bb', 'cc']
);
This is the type of .map()
:
interface Array<T> {
map<U>(
callbackfn: (value: T, index: number, array: T[]) => U,
thisArg?: any
): U[];
// ···
}
In this section, we look at several ways in which we can allow parameters to be omitted.
str?: string
If we put a question mark after the name of a parameter, that parameter becomes optional and can be omitted when calling the function:
function trim1(str?: string): string {
// Internal type of str:
assertType<string | undefined>(str);
if (str === undefined) {
return '';
}
return str.trim();
}
// External type of trim1:
type _ = Assert<Equal<
typeof trim1,
(str?: string | undefined) => string
>>;
This is how trim1()
can be invoked:
assert.equal(
trim1('\n abc \t'), 'abc'
);
assert.equal(
trim1(), ''
);
// `undefined` is equivalent to omitting the parameter
assert.equal(
trim1(undefined), ''
);
As an aside, the following two types are equal (Equal<>
is a strict check) because the optional modifier (?
) implies the type undefined
:
type _ = Assert<Equal<
(str?: string | undefined) => string,
(str?: string) => string
>>;
str: string | undefined
Externally, parameter str
of trim1()
has the type string | undefined
. Therefore, trim1()
is mostly equivalent to the following function.
function trim2(str: string | undefined): string {
// Internal type of str:
assertType<string | undefined>(str);
if (str === undefined) {
return '';
}
return str.trim();
}
// External type of trim2:
type _ = Assert<Equal<
typeof trim2,
(str: string | undefined) => string
>>;
The only way in which trim2()
is different from trim1()
is that the parameter can’t be omitted in function calls (line A). In other words: We must be explicit when omitting a parameter whose type is T|undefined
.
assert.equal(
trim2('\n abc \t'), 'abc'
);
// @ts-expect-error: Expected 1 arguments, but got 0.
trim2(); // (A)
assert.equal(
trim2(undefined), '' // OK!
);
str = ''
If we specify a parameter default value for str
, we don’t need to provide a type annotation because TypeScript can infer the type:
function trim3(str = ''): string {
// Internal type of str:
assertType<string>(str);
return str.trim();
}
// External type of trim3:
type _ = Assert<Equal<
typeof trim3,
(str?: string | undefined) => string
>>;
The internal type of str
is string
because the default value ensures that it is never undefined
.
Let’s invoke trim3()
:
assert.equal(
trim3('\n abc \t'), 'abc');
// Omitting the parameter triggers the parameter default value:
assert.equal(
trim3(), '');
// `undefined` is allowed and triggers the parameter default value:
assert.equal(
trim3(undefined), '');
We can also specify both a type and a default value:
function trim4(str: string = ''): string {
return str.trim();
}
A rest parameter collects all remaining parameters in an Array. Therefore, its static type is an Array or a tuple.
In the following example, the rest parameter parts
has an Array type:
function join(separator: string, ...parts: Array<string>) {
return parts.join(separator);
}
assert.equal(
join('-', 'state', 'of', 'the', 'art'),
'state-of-the-art');
The next example demonstrates two features:
[string, number]
for a rest parameter.
function repeat1(...[str, times]: [string, number]): string {
return str.repeat(times);
}
repeat1()
is equivalent to the following function:
function repeat2(str: string, times: number): string {
return str.repeat(times);
}
Named parameters are a popular pattern in JavaScript where an object literal is used to give each parameter a name. That looks as follows:
assert.equal(
padStart({str: '7', len: 3, fillStr: '0'}),
'007'
);
In plain JavaScript, functions can use destructuring to access named parameter values. Alas, in TypeScript, we additionally have to specify a type for the object literal and that leads to redundancies:
function padStart(
{ str, len, fillStr = ' ' } // (A)
: { str: string, len: number, fillStr: string } // (B)
): string {
return str.padStart(len, fillStr);
}
Note that the destructuring (incl. the default value for fillStr
) all happens in line A, while line B is exclusively about TypeScript.
We can also define a separate type instead of the inlined object literal type that we used in line B:
function padStart(
{ str, len, fillStr = ' ' }: PadStartArgs
): string {
return str.padStart(len, fillStr);
}
type PadStartArgs = {
str: string,
len: number,
fillStr: string,
};
An upside is that the function declaration is less cluttered. A downside that we have to look elsewhere to see the types.
this
as a parameter (advanced)Each ordinary function always has the implicit parameter this
– which enables it to be used as a method in objects. Sometimes we need to specify a type for this
. There is TypeScript-only syntax for this use case: One of the parameters of an ordinary function can have the name this
. Such a parameter only exists at compile time and disappears at runtime.
As an example, consider the following interface for DOM event sources (in a slightly simplified version):
interface EventSource {
addEventListener(
type: string,
listener: (this: EventSource, ev: Event) => any,
options?: boolean | AddEventListenerOptions
): void;
// ···
}
The this
of the callback listener
is always an instance of EventSource
.
The next example demonstrates that TypeScript uses the type information provided by the this
parameter to check the first argument of .call()
(line A and line B):
function toIsoString(this: Date): string {
return this.toISOString();
}
// @ts-expect-error: Argument of type 'string' is not assignable to
// parameter of type 'Date'.
assert.throws(() => toIsoString.call('abc')); // (A) error
toIsoString.call(new Date()); // (B) OK
Additionally, we can’t invoke toIsoString()
as a method of an object obj
because then its receiver isn’t an instance of Date
:
const obj = { toIsoString };
// @ts-expect-error: The 'this' context of type
// '{ toIsoString: (this: Date) => string; }' is not assignable to
// method's 'this' of type 'Date'.
assert.throws(() => obj.toIsoString()); // error
obj.toIsoString.call(new Date()); // OK
never
: functions that don’t returnnever
also serves as a marker for functions that never return – e.g.:
function throwError(message: string): never {
throw new Error(message);
}
function infiniteLoop(): never {
while (true) {}
}
TypeScript’s type inference takes such functions into consideration. For example, the inferred return type of returnStringIfTrue()
is string
because we invoke throwError()
in line A.
function returnStringIfTrue(flag: boolean) {
if (flag) {
return 'abc';
}
throwError('Flag must be true'); // (A)
}
type _ = Assert<Equal<
ReturnType<typeof returnStringIfTrue>,
string
>>;
If we omit line A then we get an error and the inferred return type is 'abc' | undefined
:
// @ts-expect-error: Not all code paths return a value.
function returnStringIfTrue(flag: boolean) {
if (flag) {
return 'abc';
}
}
type _ = Assert<Equal<
ReturnType<typeof returnStringIfTrue>,
'abc' | undefined
>>;
never | T
In principle we could use the type never | T
for a function that, in some cases, throws an exception and does not return normally. However there are two reasons against doing that:
never | T
is the same as T
(as we have seen previously in this chapter).
never
in @types/node
In Node.js, the following functions have the return type never
:
process.exit()
process.abort()
assert.fail()
Sometimes a single type signature does not adequately describe how a function works.
Consider function getFullName()
which we are calling in the following example (line A and line B):
interface Customer {
id: string;
fullName: string;
}
const jane = {id: '1234', fullName: 'Jane Bond'};
const lars = {id: '5678', fullName: 'Lars Croft'};
const idToCustomer = new Map<string, Customer>([
['1234', jane],
['5678', lars],
]);
assert.equal(
getFullName(idToCustomer, '1234'), 'Jane Bond' // (A)
);
assert.equal(
getFullName(lars), 'Lars Croft' // (B)
);
How would we implement getFullName()
? The following implementation works for the two function calls in the previous example:
function getFullName(
customerOrMap: Customer | Map<string, Customer>,
id?: string
): string {
if (customerOrMap instanceof Map) {
if (id === undefined) throw new Error();
const customer = customerOrMap.get(id);
if (customer === undefined) {
throw new Error('Unknown ID: ' + id);
}
customerOrMap = customer;
} else {
if (id !== undefined) throw new Error();
}
return customerOrMap.fullName;
}
However, with this type signature, function calls are legal at compile time that produce runtime errors:
assert.throws(() => getFullName(idToCustomer)); // missing ID
assert.throws(() => getFullName(lars, '5678')); // ID not allowed
The following code fixes these issues:
function getFullName(customer: Customer): string; // (A)
function getFullName( // (B)
map: Map<string, Customer>, id: string
): string;
function getFullName( // (C)
customerOrMap: Customer | Map<string, Customer>,
id?: string
): string {
// ···
}
// @ts-expect-error: Argument of type 'Map<string, Customer>' is not
// assignable to parameter of type 'Customer'.
getFullName(idToCustomer); // missing ID
// @ts-expect-error: Argument of type '{ id: string; fullName: string; }'
// is not assignable to parameter of type 'Map<string, Customer>'.
// [...]
getFullName(lars, '5678'); // ID not allowed
What is going on here? The type signature of getFullName()
is overloaded:
My advice is to only use overloading when it can’t be avoided. One alternative is to split an overloaded function into multiple functions with different names – for example:
getFullName()
getFullNameViaMap()
We can also overload a function via a union of tuple types (line A):
interface Customer {
id: string;
fullName: string;
}
function getFullName(
...args: // (A)
| [customer: Customer]
| [map: Map<string, Customer>, id: string]
): string {
if (args.length === 2) {
// Type is narrowed:
assertType<
[map: Map<string, Customer>, id: string]
>(args);
const [map, id] = args;
const customer = map.get(id);
if (customer === undefined) {
throw new Error('Unknown ID: ' + id);
}
return customer.fullName;
} else {
const [customer] = args;
return customer.fullName;
}
}
Keep in mind that this kind of overloading only works if the return type is the same for all cases.
Note the labels for the elements of the tuple types:
[ customer: Customer ]
[ map: Map<string, Customer>, id: string ]
These labels are optional and mostly ignored, but may show up in auto-completions and type hints. In other words: They work more like comments. The previous two types are equivalent to:
[ Customer ]
[ Map<string, Customer>, string ]
For more information, see “Labeled tuple elements” (§37.1.3).
In interfaces, we can have multiple, different call signatures. That enables us to use the interface GetFullName
for overloading in the following example:
interface Customer {
id: string;
fullName: string;
}
interface GetFullName {
(customerOrMap: Customer): string;
(customerOrMap: Map<string, Customer>, id: string): string;
}
const getFullName: GetFullName = (
customerOrMap: Customer | Map<string, Customer>,
id?: string
): string => {
if (customerOrMap instanceof Map) {
if (id === undefined) throw new Error();
const customer = customerOrMap.get(id);
if (customer === undefined) {
throw new Error('Unknown ID: ' + id);
}
customerOrMap = customer;
} else {
if (id !== undefined) throw new Error();
}
return customerOrMap.fullName;
}
In the next example, we overload and use string literal types (such as 'click'
). That allows us to change the type of parameter listener
depending on the value of parameter type
:
function addEventListener(
elem: HTMLElement, type: 'click',
listener: (event: MouseEvent) => void
): void;
function addEventListener(
elem: HTMLElement, type: 'keypress',
listener: (event: KeyboardEvent) => void
): void;
function addEventListener( // (A)
elem: HTMLElement, type: string,
listener: (event: any) => void
): void {
elem.addEventListener(type, listener); // (B)
}
In this case, it is relatively difficult to get the types of the implementation (starting in line A) right, so that the statement in the body (line B) works. As a last resort, we used the type any
for parameter event
of listener
.
The next example demonstrates overloading of methods: Method .add()
is overloaded.
class StringBuilder {
#data = '';
add(num: number): this;
add(bool: boolean): this;
add(str: string): this;
add(value: any): this {
this.#data += String(value);
return this;
}
toString() {
return this.#data;
}
}
const sb = new StringBuilder();
sb
.add('I can see ')
.add(3)
.add(' monkeys!')
;
assert.equal(
sb.toString(), 'I can see 3 monkeys!'
)
The type definition for Array.from()
is an example of an overloaded interface method:
interface ArrayConstructor {
from<T>(arrayLike: ArrayLike<T>): T[];
from<T, U>(
arrayLike: ArrayLike<T>,
mapfn: (v: T, k: number) => U,
thisArg?: any
): U[];
}
In the first signature, the returned Array has the same element type as the parameter.
In the second signature, the elements of the returned Array have the same type as the result of mapfn
. This version of Array.from()
is similar to Array.prototype.map()
.
In this section we look at the type compatibility rules for assignability: Can functions of type Src
be transferred to storage locations (variables, object properties, parameters, etc.) of type Trg
?
Understanding assignability helps us answer questions such as:
In this subsection, we examine general rules for assignability (including the rules for functions). In the next subsection, we explore what those rules mean for functions.
A type Src
is assignable to a type Trg
if one of the following conditions is true:
Src
and Trg
are identical types.
Src
or Trg
is the any
type.
Src
is a string literal type and Trg
is the primitive type String.
Src
is a union type and each constituent type of Src
is assignable to Trg
.
Src
and Trg
are function types and:
Trg
has a rest parameter or the number of required parameters of Src
is less than or equal to the total number of parameters of Trg
.
Trg
is assignable to the corresponding parameter type in Src
.
Trg
is void
or the return type of Src
is assignable to the return type of Trg
.
In this subsection, we look at what the assignment rules mean for the following two functions targetFunc
and sourceFunc
:
const targetFunc: Trg = sourceFunc;
Example:
const trg1: (x: RegExp) => Object = (x: Object) => /abc/;
The following example demonstrates that if the target return type is void
, then the source return type doesn’t matter. Why is that? void
results are always ignored in TypeScript.
const trg2: () => void = () => new Date();
The source must not have more parameters than the target:
// @ts-expect-error: Type '(x: string) => string' is not assignable to
// type '() => string'.
const trg3: () => string = (x: string) => 'abc';
The source can have fewer parameters than the target:
const trg4: (x: string) => string = () => 'abc';
Why is that? The target specifies the expectations for the source: It must accept the parameter x
. Which it does (but it ignores it). This permissiveness enables:
['a', 'b'].map(x => x + x)
The callback for .map()
only has one of the three parameters that are mentioned in the type signature of .map()
:
map<U>(
callback: (value: T, index: number, array: T[]) => U,
thisArg?: any
): U[];