
Dr. Axel Rauschmayer

Tackling
TypeScript

Upgrading from JavaScript

2

Tackling TypeScript
Dr. Axel Rauschmayer

2021

Copyright © 2021 by Dr. Axel Rauschmayer
All rights reserved. This book or any portion thereof may not be reproduced or used in
any manner whatsoever without the express written permission of the publisher except
for the use of brief quotations in a book review or scholarly journal.
exploringjs.com

Contents

I Preliminaries 5
1 About this book 7

1.1 Where is the homepage of this book? . 7
1.2 What is in this book? . 7
1.3 What do I get for my money? . 7
1.4 How can I preview the content? . 8
1.5 How do I report errors? . 8
1.6 What do the notes with icons mean? . 8
1.7 Acknowledgements . 9

2 Why TypeScript? 11
2.1 The benefits of using TypeScript . 11
2.2 The downsides of using TypeScript . 13
2.3 TypeScript myths . 13

3 Free resources on TypeScript 15

II Getting started with TypeScript 17
4 How does TypeScript work? The bird’s eye view 19

4.1 The structure of TypeScript projects . 19
4.2 Programming TypeScript via an integrated development environment (IDE) 20
4.3 Other files produced by the TypeScript compiler 21
4.4 Using the TypeScript compiler for plain JavaScript files 22

5 Trying out TypeScript 23
5.1 The TypeScript Playground . 23
5.2 TS Node . 23

6 Notation used in this book 25
6.1 Test assertions (dynamic) . 25
6.2 Type assertions (static) . 26

7 The essentials of TypeScript 27
7.1 What you’ll learn . 28
7.2 Specifying the comprehensiveness of type checking 28

3

4 CONTENTS

7.3 Types in TypeScript . 29
7.4 Type annotations . 29
7.5 Type inference . 30
7.6 Specifying types via type expressions . 30
7.7 The two language levels: dynamic vs. static 31
7.8 Type aliases . 31
7.9 Typing Arrays . 31
7.10 Function types . 32
7.11 Union types . 35
7.12 Optional vs. default value vs. undefined|T 36
7.13 Typing objects . 37
7.14 Type variables and generic types . 39
7.15 Example: a generic class . 40
7.16 Conclusion: understanding the initial example 42

8 Creating CommonJS-based npm packages via TypeScript 45
8.1 Required knowledge . 45
8.2 Limitations . 46
8.3 The repository ts-demo-npm-cjs . 46
8.4 .gitignore . 47
8.5 .npmignore . 47
8.6 package.json . 47
8.7 tsconfig.json . 49
8.8 TypeScript code . 50

9 Creating web apps via TypeScript and webpack 51
9.1 Required knowledge . 51
9.2 Limitations . 52
9.3 The repository ts-demo-webpack . 52
9.4 package.json . 53
9.5 webpack.config.js . 54
9.6 tsconfig.json . 55
9.7 index.html . 55
9.8 main.ts . 56
9.9 Installing, building and running the web app 56
9.10 Using webpack without a loader: webpack-no-loader.config.js 57

10 Strategies for migrating to TypeScript 59
10.1 Three strategies . 59
10.2 Strategy: mixed JavaScript/TypeScript code bases 60
10.3 Strategy: adding type information to plain JavaScript files 60
10.4 Strategy: migrating large projects by snapshot testing the TypeScript errors 61
10.5 Conclusion . 61

III Basic types 63
11 Where are the remaining chapters? 65

Part I

Preliminaries

5

Chapter 1

About this book

Contents
1.1 Where is the homepage of this book? 7
1.2 What is in this book? . 7
1.3 What do I get for my money? . 7
1.4 How can I preview the content? . 8
1.5 How do I report errors? . 8
1.6 What do the notes with icons mean? 8
1.7 Acknowledgements . 9

1.1 Where is the homepage of this book?
The homepage of “Tackling TypeScript” is exploringjs.com/tackling-ts/

1.2 What is in this book?
This book consists of two parts:

• Part 1 is a quick start for TypeScript that teaches you the essentials quickly.
• Part 2 digs deeper into the language and covers many important topics in detail.

This book is not a reference, it is meant to complement the official TypeScript handbook.
Required knowledge: You must know JavaScript. If you want to refresh your knowl-
edge: My book “JavaScript for impatient programmers” is free to read online.

1.3 What do I get for my money?
If you buy this book, you get:

• The current content in four DRM-free versions:

7

https://exploringjs.com/tackling-ts/
https://www.typescriptlang.org/docs/handbook/
https://exploringjs.com/impatient-js/

8 1 About this book

– PDF file
– ZIP archive with ad-free HTML
– EPUB file
– MOBI file

• Any future content that is added to this edition. Howmuch I can add depends on
the sales of this book.

1.4 How can I preview the content?
On the homepage of this book, there are extensive previews for all versions of this book.

1.5 How do I report errors?
• The HTML version of this book has a link to comments at the end of each chapter.
• They jump to GitHub issues, which you can also access directly.

1.6 What do the notes with icons mean?

Reading instructions
Explains how to best read the content (in which order, what to omit, etc.).

External content
Points to additional, external, content.

Git repository
Mentions a relevant Git repository.

Tip
Gives a tip.

Question
Asks and answers a question (think FAQ).

https://exploringjs.com/tackling-ts/#previews
https://github.com/rauschma/tackling-ts/issues

1.7 Acknowledgements 9

Warning
Warns about a pitfall, etc.

Details
Provides additional details, similar to a footnote.

1.7 Acknowledgements
People who contributed to this book are acknowledged in the chapters.

10 1 About this book

Chapter 2

Why TypeScript?

Contents
2.1 The benefits of using TypeScript . 11

2.1.1 More errors are detected statically (without running code) . . . 11
2.1.2 Documenting parameters is good practice anyway 12
2.1.3 TypeScript provides an additional layer of documentation . . 12
2.1.4 Type definitions for JavaScript improve auto-completion . . . 12
2.1.5 TypeScript makes refactorings safer 13
2.1.6 TypeScript can compile new features to older code 13

2.2 The downsides of using TypeScript 13
2.3 TypeScript myths . 13

2.3.1 TypeScript code is heavyweight 13
2.3.2 TypeScript is an attempt to replace JavaScript with C# or Java 14

You can skip this chapter if you are already sure that you will learn and use TypeScript.
If you are still unsure – this chapter is my sales pitch.

2.1 The benefits of using TypeScript
2.1.1 More errors are detected statically (without running code)
While you are editing TypeScript code in an integrated development environment, you
get warnings if you mistype names, call functions incorrectly, etc.
Consider the following two lines of code:

function func() {}
funcc();

For the second line, we get this warning:
Cannot find name 'funcc'. Did you mean 'func'?

11

12 2 Why TypeScript?

Another example:
const a = 0;
const b = true;
const result = a + b;

This time, the error message for the last line is:
Operator '+' cannot be applied to types 'number' and 'boolean'.

2.1.2 Documenting parameters is good practice anyway
Documenting parameters of functions and methods is something that many people do,
anyway:

/**
* @param {number} num - The number to convert to string
* @returns {string} `num`, converted to string
*/
function toString(num) {

return String(num);
}

Specifying the types via {number} and {string} is not required, but the descriptions in
English mention them, too.
If we use TypeScript’s notation to document types, we get the added benefit of this in-
formation being checked for consistency:

function toString(num: number): string {
return String(num);

}

2.1.3 TypeScript provides an additional layer of documentation
Whenever I migrate JavaScript code to TypeScript, I’m noticing an interesting phe-
nomenon: In order to find the appropriate types for parameters for a function or
method, I have to check where it is invoked. That means that static types give me
information locally that I otherwise have to look up elsewhere.
And I do indeed find it easier to understand TypeScript code bases than JavaScript code
bases: TypeScript provides an additional layer of documentation.
This additional documentation also helps when working in teams because it is clearer
how code is to be used and TypeScript often warns us if we are doing something wrong.

2.1.4 Type definitions for JavaScript improve auto-completion
If there are type definitions for JavaScript code, then editors can use them to improve
auto-completion.
An alternative to using TypeScript’s syntax, is to provide all type information via JSDoc
comments – like we did at the beginning of this chapter. In that case, TypeScript can

2.2 The downsides of using TypeScript 13

also check code for consistency and generate type definitions. For more information, see
chapter “Type Checking JavaScript Files” in the TypeScript handbook.

2.1.5 TypeScript makes refactorings safer
Refactorings are automated code transformations that many integrated development en-
vironments offer.
Renaming methods is an example of a refactoring. Doing so in plain JavaScript can be
tricky because the same name might refer to different methods. TypeScript has more
information on howmethods and types are connected, which makes renaming methods
safer there.

2.1.6 TypeScript can compile new features to older code
TypeScript tends to quickly support ECMAScript stage 4 features (such features are
scheduled to be included in the next ECMAScript version). When we compile to
JavaScript, the compiler option --target lets us specify the ECMAScript version that
the output is compatible with. Then any incompatible feature (that was introduced
later) will be compiled to equivalent, compatible code.
Note that this kind of support for older ECMAScript versions does not require TypeScript
or static typing: The JavaScript compiler Babel does it too, but it compiles JavaScript to
JavaScript.

2.2 The downsides of using TypeScript
• It is an added layer on top of JavaScript: more complexity, more things to learn,

etc.
• It introduces a compilation step when writing code.
• npm packages can only be used if they have static type definitions.

– These days, many packages either come with type definitions or there are
type definitions available for them on DefinitelyTyped. However, especially
the latter can occasionally be slightly wrong, which leads to issues that you
don’t have without static typing.

• Getting static types right is occasionally difficult. My recommendation here is to
keep things as simple as possible – for example: Don’t overdo generics and type
variables.

2.3 TypeScript myths
2.3.1 TypeScript code is heavyweight
TypeScript code can be very heavyweight. But it doesn’t have to be. For example, due to
type inference, we can often get away with few type annotations:

function selectionSort(arr: number[]) { // (A)
for (let i=0; i<arr.length; i++) {

const minIndex = findMinIndex(arr, i);

https://www.typescriptlang.org/docs/handbook/type-checking-javascript-files.html
https://babeljs.io
http://definitelytyped.org

14 2 Why TypeScript?

[arr[i], arr[minIndex]] = [arr[minIndex], arr[i]]; // swap
}

}

function findMinIndex(arr: number[], startIndex: number) { // (B)
let minValue = arr[startIndex];
let minIndex = startIndex;
for (let i=startIndex+1; i < arr.length; i++) {

const curValue = arr[i];
if (curValue < minValue) {
minValue = curValue;
minIndex = i;

}
}
return minIndex;

}

const arr = [4, 2, 6, 3, 1, 5];
selectionSort(arr);
assert.deepEqual(

arr, [1, 2, 3, 4, 5, 6]);

The only locations where this TypeScript code is different from JavaScript code, are line
A and line B.
There are a variety of styles in which TypeScript is written:

• In an object-oriented programming (OOP) style with classes and OOP patterns
• In a functional programming (FP) style with functional patterns
• In a mix of OOP and FP
• And so on

2.3.2 TypeScript is an attempt to replace JavaScript with C# or Java
Initially, TypeScript did invent a few language constructs of its own (e.g. enums). But
since ECMAScript 6, it mostly stuck with being a strict superset of JavaScript.
My impression is that the TypeScript team likes JavaScript and doesn’t want to replace
it with something “better” (which is the goal of, e.g., Dart). They do want to make it
possible to statically type as much JavaScript code as possible. Many new TypeScript
features are driven by that desire.

Chapter 3

Free resources on TypeScript

Book on JavaScript:
• If you see a JavaScript feature in this book that you don’t understand, you can

look it up in my book “JavaScript for impatient programmers” which is free to
read online. Some of the “Further reading” sections at the ends of chapters refer
to this book.

Books on TypeScript:
• The “TypeScript Handbook” is a good reference for the language. I see “Tackling

TypeScript” as complementary to that book.
• “TypeScript Deep Dive” by Basarat Ali Syed

More material:
• The “TypeScript Language Specification” explains the lower levels of the language.
• Marius Schulz publishes blog posts on TypeScript and the email newsletter “Type-

Script Weekly”.
• The TypeScript repository has type definitions for the complete ECMAScript stan-

dard library. Reading them is an easyway of practicing TypeScript’s type notation.

15

https://exploringjs.com/impatient-js/
http://www.typescriptlang.org/docs/handbook/
https://github.com/basarat/typescript-book
https://twitter.com/basarat
https://github.com/microsoft/TypeScript/blob/master/doc/spec-ARCHIVED.md
https://twitter.com/mariusschulz
https://mariusschulz.com
https://www.typescript-weekly.com
https://www.typescript-weekly.com
https://github.com/Microsoft/TypeScript/blob/master/lib/
https://github.com/Microsoft/TypeScript/blob/master/lib/

16 3 Free resources on TypeScript

Part II

Getting started with TypeScript

17

Chapter 4

How does TypeScript work? The
bird’s eye view

Contents
4.1 The structure of TypeScript projects 19

4.1.1 tsconfig.json . 20
4.2 Programming TypeScript via an integrated development environ-

ment (IDE) . 20
4.3 Other files produced by the TypeScript compiler 21

4.3.1 In order to use npm packages from TypeScript, we need type
information . 21

4.4 Using the TypeScript compiler for plain JavaScript files 22

This chapter gives the bird’s eye view of how TypeScript works: What is the structure of
a typical TypeScript project? What is compiled and how? How can we use IDEs to write
TypeScript?

4.1 The structure of TypeScript projects
This is one possible file structure for TypeScript projects:

typescript-project/
dist/
ts/

src/
main.ts
util.ts

test/
util_test.ts

tsconfig.json

Explanations:

19

20 4 How does TypeScript work? The bird’s eye view

• Directory ts/ contains the TypeScript files:
– Subdirectory ts/src/ contains the actual code.
– Subdirectory ts/test/ contains tests for the code.

• Directory dist/ is where the output of the compiler is stored.
• The TypeScript compiler compiles TypeScript files in ts/ to JavaScript files in

dist/. For example:
– ts/src/main.ts is compiled to dist/src/main.js (and possibly other files)

• tsconfig.json is used to configure the TypeScript compiler.

4.1.1 tsconfig.json

The contents of tsconfig.json look as follows:
{

"compilerOptions": {
"rootDir": "ts",
"outDir": "dist",
"module": "commonjs",
···

}
}

We have specified that:
• The root directory of the TypeScript code is ts/.
• The directory where the TypeScript compiler saves its output is dist/.
• The module format of the output files is CommonJS.

4.2 Programming TypeScript via an integrated develop-
ment environment (IDE)

Two popular IDEs for JavaScript are:
• Visual Studio Code (free)
• WebStorm (for purchase)

The observations in this section are about Visual Studio Code, but may apply to other
IDEs, too.
One important fact to be aware of is that Visual Studio Code processes TypeScript source
code in two independent ways:

• Checking open files for errors: This is done via a so-called language server.
Language servers exist independently of particular editors and provide Visual
Studio Code with language-related services: detecting errors, refactorings, auto-
completions, etc. Communication with servers happens via a protocol that is
based on JSON-RPC (RPC stands for remote procedure calls). The independence
provided by that protocol means that servers can be written in almost any
programming language.

– Important fact to remember: The language server only lists errors for cur-
rently open files and doesn’t compile TypeScript, it only analyzes it statically.

https://code.visualstudio.com/
https://www.jetbrains.com/webstorm/
https://langserver.org/

4.3 Other files produced by the TypeScript compiler 21

• Building (compiling TypeScript files to JavaScript files): Here, we have two choices.
– We can run a build tool via an external command line. For example, the Type-
Script compiler tschas a --watchmode thatwatches input files and compiles
them to output files whenever they change. As a consequence, whenever we
save a TypeScript file in the IDE, we immediately get the corresponding out-
put file(s).

– We can run tsc from within Visual Studio Code. In order to do so, it must
be installed either inside project that we are currently working on or globally
(via the Node.js package manager npm).

With building, we get a complete list of errors. For more information on compiling
TypeScript fromwithin Visual Studio Code, see the official documentation for that
IDE.

4.3 Other files produced by the TypeScript compiler
Given a TypeScript file main.ts, the TypeScript compiler can produce several kinds of
artifacts. The most common ones are:

• JavaScript file: main.js
• Declaration file: main.d.ts (contains type information; think .ts file minus the

JavaScript code)
• Source map file: main.js.map

TypeScript is often not delivered via .ts files, but via .js files and .d.ts files:
• The JavaScript code contains the actual functionality and can be consumed via

plain JavaScript.
• The declaration files help programming editors with auto-completion and similar

services. This information enables plain JavaScript to be consumed via TypeScript.
However, we even profit from it if we work with plain JavaScript because it gives
us better auto-completion and more.

A source map specifies for each part of the output code in main.js, which part of the
input code in main.ts produced it. Among other things, this information enables run-
time environments to execute JavaScript code, while showing the line numbers of the
TypeScript code in error messages.

4.3.1 In order to use npm packages from TypeScript, we need type in-
formation

The npm registry is a huge repository of JavaScript code. If we want to use a JavaScript
package from TypeScript, we need type information for it:

• The package itself may include .d.ts files or even the complete TypeScript code.
• If it doesn’t, we may still be able to use it: DefinitelyTyped is a repository of decla-

ration files that people have written for plain JavaScript packages.
The declaration files of DefinitelyTyped reside in the @types namespace. Therefore, if
we need a declaration file for a package such as lodash, we have to install the package
@types/lodash.

https://code.visualstudio.com/docs/typescript/typescript-compiling
https://code.visualstudio.com/docs/typescript/typescript-compiling
https://definitelytyped.org/

22 4 How does TypeScript work? The bird’s eye view

4.4 Using the TypeScript compiler for plain JavaScript
files

The TypeScript compiler can also process plain JavaScript files:
• With the option --allowJs, the TypeScript compiler copies JavaScript files in

the input directory over to the output directory. Benefit: When migrating from
JavaScript to TypeScript, we can start with a mix of JavaScript and TypeScript files
and slowly convert more JavaScript files to TypeScript.

• With the option --checkJs, the compiler additionally type-checks JavaScript files
(--allowJs must be on for this option to work). It does so as well as it can, given
the limited information that is available. Which files are checked can be configured
via comments inside them:

– Explicit excluding: If a JavaScript file contains the comment // @ts-nocheck,
it will not be type-checked.

– Explicit including: Without --checkJs, the comment // @ts-check can be
used to type-check individual JavaScript files.

• The TypeScript compiler uses static type information that is specified via JSDoc
comments (see below for an example). If we are thorough, we can fully statically
type plain JavaScript files and even derive declaration files from them.

• With the option --noEmit, the compiler does not produce any output, it only type-
checks files.

This is an example of a JSDoc comment that provides static type information for a func-
tion add():

/**
* @param {number} x - The first operand
* @param {number} y - The second operand
* @returns {number} The sum of both operands
*/
function add(x, y) {

return x + y;
}

More information: Type-Checking JavaScript Files in the TypeScript Handbook.

https://www.typescriptlang.org/docs/handbook/type-checking-javascript-files.html

Chapter 5

Trying out TypeScript

Contents
5.1 The TypeScript Playground . 23
5.2 TS Node . 23

This chapter gives tips for quickly trying out TypeScript.

5.1 The TypeScript Playground
The TypeScript Playground is an online editor for TypeScript code. Features include:

• Supports full IDE-style editing: auto-completion, etc.
• Displays static type errors.
• Shows the result of compiling TypeScript code to JavaScript. It can also execute

the result in the browser.
The Playground is very useful for quick experiments and demos. It can save both Type-
Script code snippets and compiler settings into URLs, which is great for sharing such
snippets with others. This is an example of such a URL:

https://www.typescriptlang.org/play/#code/MYewdgzgLgBFDuBLYBTGBeGA
KAHgLhmgCdEwBzASgwD4YcYBqOgbgChXRIQAbFAOm4gyWBMhRYA5AEMARsAkUKzIA

5.2 TS Node
TS Node is a TypeScript version of Node.js. Its use cases are:

• TS Node provides a REPL (command line) for TypeScript:
$ ts-node
> const twice = (x: string) => x + x;
> twice('abc')
'abcabc'

23

http://www.typescriptlang.org/play/
https://www.typescriptlang.org/play/#code/MYewdgzgLgBFDuBLYBTGBeGAKAHgLhmgCdEwBzASgwD4YcYBqOgbgChXRIQAbFAOm4gyWBMhRYA5AEMARsAkUKzIA
https://www.typescriptlang.org/play/#code/MYewdgzgLgBFDuBLYBTGBeGAKAHgLhmgCdEwBzASgwD4YcYBqOgbgChXRIQAbFAOm4gyWBMhRYA5AEMARsAkUKzIA
https://github.com/TypeStrong/ts-node

24 5 Trying out TypeScript

> twice(123)
Error TS2345: Argument of type '123' is not assignable
to parameter of type 'string'.

• TSNode enables some JavaScript tools to directly execute TypeScript code. It auto-
matically compiles TypeScript code to JavaScript code and passes it on to the tools,
without us having to do anything. The following shell command demonstrates
how that works with the JavaScript unit test framework Mocha:

mocha --require ts-node/register --ui qunit testfile.ts

Use npx ts-node to run the REPL without installing it.

https://mochajs.org

Chapter 6

Notation used in this book

Contents
6.1 Test assertions (dynamic) . 25
6.2 Type assertions (static) . 26

This chapter explains functionality that is used in the code examples, but not part of
TypeScript proper.

6.1 Test assertions (dynamic)
The code examples shown in this book are tested automatically via unit tests. Expected
results of operations are checked via the following assertion functions from the Node.js
module assert:

• assert.equal() tests equality via ===
• assert.deepEqual() tests equality by deeply comparing nested objects (incl. Ar-

rays).
• assert.throws() complains if the callback parameter does not throw an exception.

This is an example of using these assertions:

import {strict as assert} from 'assert';

assert.equal(3 + ' apples', '3 apples');

assert.deepEqual(
[...['a', 'b'], ...['c', 'd']],
['a', 'b', 'c', 'd']);

assert.throws(
() => eval('null.myProperty'),
TypeError);

25

https://nodejs.org/api/assert.html
https://nodejs.org/api/assert.html

26 6 Notation used in this book

The import statement in the first line makes use of strict assertion mode (which uses ===,
not ==). It is usually omitted in code examples.

6.2 Type assertions (static)
You’ll also see static type assertions.
%inferred-type is just a comment in normal TypeScript and describes the type that Type-
Script infers for the following line:

// %inferred-type: number
let num = 123;

@ts-expect-error suppresses static errors in TypeScript. In this book, the suppressed
error is always mentioned. That is neither required in plain TypeScript, nor does it do
anything there.

assert.throws(
// @ts-expect-error: Object is possibly 'null'. (2531)
() => null.myProperty,
TypeError);

Note that we previously needed eval() in order to not be warned by TypeScript.

https://nodejs.org/api/assert.html#assert_strict_assertion_mode

Chapter 7

The essentials of TypeScript

Contents
7.1 What you’ll learn . 28
7.2 Specifying the comprehensiveness of type checking 28
7.3 Types in TypeScript . 29
7.4 Type annotations . 29
7.5 Type inference . 30
7.6 Specifying types via type expressions 30
7.7 The two language levels: dynamic vs. static 31
7.8 Type aliases . 31
7.9 Typing Arrays . 31

7.9.1 Arrays as lists . 31
7.9.2 Arrays as tuples . 32

7.10 Function types . 32
7.10.1 A more complicated example 33
7.10.2 Return types of function declarations 33
7.10.3 Optional parameters . 34
7.10.4 Rest parameters . 34

7.11 Union types . 35
7.11.1 By default, undefined and null are not included in types . . . 35
7.11.2 Making omissions explicit . 35

7.12 Optional vs. default value vs. undefined|T 36
7.13 Typing objects . 37

7.13.1 Typing objects-as-records via interfaces 37
7.13.2 TypeScript’s structural typing vs. nominal typing 37
7.13.3 Object literal types . 38
7.13.4 Optional properties . 38
7.13.5 Methods . 38

7.14 Type variables and generic types . 39
7.14.1 Example: a container for values 40

27

28 7 The essentials of TypeScript

7.15 Example: a generic class . 40
7.15.1 Example: Maps . 41
7.15.2 Type variables for functions and methods 41
7.15.3 A more complicated function example 42

7.16 Conclusion: understanding the initial example 42

This chapter explains the essentials of TypeScript.

7.1 What you’ll learn
After reading this chapter, you should be able to understand the following TypeScript
code:

interface Array<T> {
concat(...items: Array<T[] | T>): T[];
reduce<U>(

callback: (state: U, element: T, index: number, array: T[]) => U,
firstState?: U

): U;
// ···

}

You may think that this is cryptic. And I agree with you! But (as I hope to prove) this
syntax is relatively easy to learn. And once you understand it, it gives you immediate,
precise and comprehensive summaries of how code behaves – without having to read
long descriptions in English.

7.2 Specifying the comprehensiveness of type checking
There are many ways in which the TypeScript compiler can be configured. One impor-
tant group of options controls how thoroughly the compiler checks TypeScript code. The
maximum setting is activated via --strict and I recommend to always use it. It makes
programs slightly harder to write, but we also gain the full benefits of static type check-
ing.

That’s everything about --strict you need to know for now
Read on if you want to know more details.

Setting --strict to true, sets all of the following options to true:

• --noImplicitAny: If TypeScript can’t infer a type, we must specify it. This mainly
applies to parameters of functions and methods: With this settings, we must an-
notate them.

• --noImplicitThis: Complain if the type of this isn’t clear.
• --alwaysStrict: Use JavaScript’s strict mode whenever possible.

7.3 Types in TypeScript 29

• --strictNullChecks: null is not part of any type (other than its own type, null)
and must be explicitly mentioned if it is a acceptable value.

• --strictFunctionTypes: enables stronger checks for function types.
• --strictPropertyInitialization: Properties in class definitions must be initial-

ized, unless they can have the value undefined.

We will see more compiler options later in this book, when we get to creating npm pack-
ages and web apps with TypeScript. The TypeScript handbook has comprehensive doc-
umentation on them.

7.3 Types in TypeScript
In this chapter, a type is simply a set of values. The JavaScript language (not TypeScript!)
has only eight types:

1. Undefined: the set with the only element undefined
2. Null: the set with the only element null
3. Boolean: the set with the two elements false and true
4. Number: the set of all numbers
5. BigInt: the set of all arbitrary-precision integers
6. String: the set of all strings
7. Symbol: the set of all symbols
8. Object: the set of all objects (which includes functions and arrays)

All of these types are dynamic: we can use them at runtime.

TypeScript brings an additional layer to JavaScript: static types. These only exist when
compiling or type-checking source code. Each storage location (variable, property, etc.)
has a static type that predicts its dynamic values. Type checking ensures that these pre-
dictions come true.

And there is a lot that can be checked statically (without running the code). If, for ex-
ample the parameter num of a function toString(num) has the static type number, then
the function call toString('abc') is illegal, because the argument 'abc' has the wrong
static type.

7.4 Type annotations
function toString(num: number): string {

return String(num);
}

There are two type annotations in the previous function declaration:

• Parameter num: colon followed by number
• Result of toString(): colon followed by string

Both number and string are type expressions that specify the types of storage locations.

https://www.typescriptlang.org/docs/handbook/compiler-options.html
https://www.typescriptlang.org/docs/handbook/compiler-options.html

30 7 The essentials of TypeScript

7.5 Type inference
Often, TypeScript can infer a static type if there is no type annotation. For example, if we
omit the return type of toString(), TypeScript infers that it is string:

// %inferred-type: (num: number) => string
function toString(num: number) {

return String(num);
}

Type inference is not guesswork: It follows clear rules (similar to arithmetic) for deriving
types where they haven’t been specified explicitly. In this case, the return statement
applies a function String() that maps arbitrary values to strings, to a value num of type
number and returns the result. That’s why the inferred return type is string.

If the type of a location is neither explicitly specified nor inferrable, TypeScript uses the
type any for it. This is the type of all values and a wildcard, in that we can do everything
if a value has that type.

With --strict, any is only allowed if we use it explicitly. In other words: Every location
must have an explicit or inferred static type. In the following example, parameter num
has neither and we get a compile-time error:

// @ts-expect-error: Parameter 'num' implicitly has an 'any' type. (7006)
function toString(num) {

return String(num);
}

7.6 Specifying types via type expressions
The type expressions after the colons of type annotations range from simple to complex
and are created as follows.

Basic types are valid type expressions:

• Static types for JavaScript’s dynamic types:
– undefined, null
– boolean, number, bigint, string
– symbol
– object.

• TypeScript-specific types:
– Array (not technically a type in JavaScript)
– any (the type of all values)
– Etc.

There are many ways of combining basic types to produce new, compound types. For
example, via type operators that combine types similarly to how the set operators union
(∪) and intersection (∩) combine sets. We’ll see how to do that soon.

7.7 The two language levels: dynamic vs. static 31

7.7 The two language levels: dynamic vs. static
TypeScript has two language levels:

• The dynamic level is managed by JavaScript and consists of code and values, at
runtime.

• The static level is managed by TypeScript (excluding JavaScript) and consists of
static types, at compile time.

We can see these two levels in the syntax:

const undef: undefined = undefined;

• At the dynamic level, we use JavaScript to declare a variable undef and initialize
it with the value undefined.

• At the static level, we use TypeScript to specify that variable undef has the static
type undefined.

Note that the same syntax, undefined, means different things depending on whether it
is used at the dynamic level or at the static level.

Try to develop an awareness of the two language levels
That helps considerably with making sense of TypeScript.

7.8 Type aliases
With type we can create a new name (an alias) for an existing type:

type Age = number;
const age: Age = 82;

7.9 Typing Arrays
Arrays play two roles in JavaScript (either one or both):

• List: All elements have the same type. The length of the Array varies.
• Tuple: The length of the Array is fixed. The elements generally don’t have the

same type.

7.9.1 Arrays as lists
There are two ways to express the fact that the Array arr is used as a list whose elements
are all numbers:

let arr1: number[] = [];
let arr2: Array<number> = [];

32 7 The essentials of TypeScript

Normally, TypeScript can infer the type of a variable if there is an assignment. In this
case, we actually have to help it, because with an empty Array, it can’t determine the
type of the elements.
We’ll get back to the angle brackets notation (Array<number>) later.

7.9.2 Arrays as tuples
If we store a two-dimensional point in an Array, then we are using that Array as a tuple.
That looks as follows:

let point: [number, number] = [7, 5];

The type annotation is needed forArrays-as-tuples because, for Array literals, TypeScript
infers list types, not tuple types:

// %inferred-type: number[]
let point = [7, 5];

Another example for tuples is the result of Object.entries(obj): an Array with one
[key, value] pair for each property of obj.

// %inferred-type: [string, number][]
const entries = Object.entries({ a: 1, b: 2 });

assert.deepEqual(
entries,
[['a', 1], ['b', 2]]);

The inferred type is an Array of tuples.

7.10 Function types
This is an example of a function type:

(num: number) => string

This type comprises every function that accepts a single parameter of type number and
return a string. Let’s use this type in a type annotation:

const toString: (num: number) => string = // (A)
(num: number) => String(num); // (B)

Normally, we must specify parameter types for functions. But in this case, the type of
num in line B can be inferred from the function type in line A and we can omit it:

const toString: (num: number) => string =
(num) => String(num);

If we omit the type annotation for toString, TypeScript infers a type from the arrow
function:

// %inferred-type: (num: number) => string
const toString = (num: number) => String(num);

7.10 Function types 33

This time, nummust have a type annotation.

7.10.1 A more complicated example
The following example is more complicated:

function stringify123(callback: (num: number) => string) {
return callback(123);

}

Weare using a function type to describe the parameter callback of stringify123(). Due
to this type annotation, TypeScript rejects the following function call.

// @ts-expect-error: Argument of type 'NumberConstructor' is not
// assignable to parameter of type '(num: number) => string'.
// Type 'number' is not assignable to type 'string'.(2345)
stringify123(Number);

But it accepts this function call:
assert.equal(

stringify123(String), '123');

7.10.2 Return types of function declarations
TypeScript can usually infer the return types of functions, but specifying them explicitly
is allowed and occasionally useful (at the very least, it doesn’t do any harm).
For stringify123(), specifying a return type is optional and looks like this:

function stringify123(callback: (num: number) => string): string {
return callback(123);

}

7.10.2.1 The special return type void
void is a special return type for a function: It tells TypeScript that the function always
returns undefined.
It may do so explicitly:

function f1(): void {
return undefined;

}

Or it may do so implicitly:
function f2(): void {}

However, such a function cannot explicitly return values other than undefined:
function f3(): void {

// @ts-expect-error: Type '"abc"' is not assignable to type 'void'. (2322)
return 'abc';

}

34 7 The essentials of TypeScript

7.10.3 Optional parameters
A question mark after an identifier means that the parameter is optional. For example:

function stringify123(callback?: (num: number) => string) {
if (callback === undefined) {

callback = String;
}
return callback(123); // (A)

}

TypeScript only lets us make the function call in line A if we make sure that callback
isn’t undefined (which it is if the parameter was omitted).

7.10.3.1 Parameter default values

TypeScript supports parameter default values:

function createPoint(x=0, y=0): [number, number] {
return [x, y];

}

assert.deepEqual(
createPoint(),
[0, 0]);

assert.deepEqual(
createPoint(1, 2),
[1, 2]);

Default values make parameters optional. We can usually omit type annotations, be-
cause TypeScript can infer the types. For example, it can infer that x and y both have the
type number.

If we wanted to add type annotations, that would look as follows.

function createPoint(x:number = 0, y:number = 0): [number, number] {
return [x, y];

}

7.10.4 Rest parameters
We can also use rest parameters in TypeScript parameter definitions. Their static types
must be Arrays (lists or tuples):

function joinNumbers(...nums: number[]): string {
return nums.join('-');

}
assert.equal(

joinNumbers(1, 2, 3),
'1-2-3');

https://exploringjs.com/impatient-js/ch_callables.html#parameter-default-values
https://exploringjs.com/impatient-js/ch_callables.html#rest-parameters

7.11 Union types 35

7.11 Union types
The values that are held by a variable (one value at a time) may be members of different
types. In that case, we need a union type. For example, in the following code, stringOr-
Number is either of type string or of type number:

function getScore(stringOrNumber: string|number): number {
if (typeof stringOrNumber === 'string'

&& /^*{1,5}$/.test(stringOrNumber)) {
return stringOrNumber.length;

} else if (typeof stringOrNumber === 'number'
&& stringOrNumber >= 1 && stringOrNumber <= 5) {
return stringOrNumber

} else {
throw new Error('Illegal value: ' + JSON.stringify(stringOrNumber));

}
}

assert.equal(getScore('*****'), 5);
assert.equal(getScore(3), 3);

stringOrNumber has the type string|number. The result of the type expression s|t is the
set-theoretic union of the types s and t (interpreted as sets).

7.11.1 By default, undefined and null are not included in types
Inmany programming languages, null is part of all object types. For example, whenever
the type of a variable is String in Java, we can set it to null and Java won’t complain.

Conversely, in TypeScript, undefined and null are handled by separate, disjoint types.
We need union types such as undefined|string and null|string, if we want to allow
them:

let maybeNumber: null|number = null;
maybeNumber = 123;

Otherwise, we get an error:

// @ts-expect-error: Type 'null' is not assignable to type 'number'. (2322)
let maybeNumber: number = null;
maybeNumber = 123;

Note that TypeScript does not force us to initialize immediately (as long as we don’t read
from the variable before initializing it):

let myNumber: number; // OK
myNumber = 123;

7.11.2 Making omissions explicit
Recall this function from earlier:

36 7 The essentials of TypeScript

function stringify123(callback?: (num: number) => string) {
if (callback === undefined) {

callback = String;
}
return callback(123); // (A)

}

Let’s rewrite stringify123() so that parameter callback isn’t optional anymore: If a
caller doesn’t want to provide a function, they must explicitly pass null. The result
looks as follows.

function stringify123(
callback: null | ((num: number) => string)) {
const num = 123;
if (callback === null) { // (A)

callback = String;
}
return callback(num); // (B)

}

assert.equal(
stringify123(null),
'123');

// @ts-expect-error: Expected 1 arguments, but got 0. (2554)
assert.throws(() => stringify123());

Once again, we have to handle the case of callback not being a function (line A) before
we can make the function call in line B. If we hadn’t done so, TypeScript would have
reported an error in that line.

7.12 Optional vs. default value vs. undefined|T
The following three parameter declarations are quite similar:

• Parameter is optional: x?: number
• Parameter has a default value: x = 456
• Parameter has a union type: x: undefined | number

If the parameter is optional, it can be omitted. In that case, it has the value undefined:

function f1(x?: number) { return x }

assert.equal(f1(123), 123); // OK
assert.equal(f1(undefined), undefined); // OK
assert.equal(f1(), undefined); // can omit

If the parameter has a default value, that value is used when the parameter is either
omitted or set to undefined:

function f2(x = 456) { return x }

7.13 Typing objects 37

assert.equal(f2(123), 123); // OK
assert.equal(f2(undefined), 456); // OK
assert.equal(f2(), 456); // can omit

If the parameter has a union type, it can’t be omitted, but we can set it to undefined:
function f3(x: undefined | number) { return x }

assert.equal(f3(123), 123); // OK
assert.equal(f3(undefined), undefined); // OK

// @ts-expect-error: Expected 1 arguments, but got 0. (2554)
f3(); // can’t omit

7.13 Typing objects
Similarly to Arrays, objects play two roles in JavaScript (that are occasionally mixed):

• Records: A fixed number of properties that are known at development time. Each
property can have a different type.

• Dictionaries: An arbitrary number of properties whose names are not known at
development time. All properties have the same type.

We are ignoring objects-as-dictionaries in this chapter – they are covered in [content not
included]. As an aside, Maps are usually a better choice for dictionaries, anyway.

7.13.1 Typing objects-as-records via interfaces
Interfaces describe objects-as-records. For example:

interface Point {
x: number;
y: number;

}

We can also separate members via commas:
interface Point {

x: number,
y: number,

}

7.13.2 TypeScript’s structural typing vs. nominal typing
One big advantage of TypeScript’s type system is that it works structurally, not nominally.
That is, interface Pointmatches all objects that have the appropriate structure:

interface Point {
x: number;
y: number;

38 7 The essentials of TypeScript

}
function pointToString(pt: Point) {

return `(${pt.x}, ${pt.y})`;
}

assert.equal(
pointToString({x: 5, y: 7}), // compatible structure
'(5, 7)');

Conversely, in Java’s nominal type system, we must explicitly declare with each class
which interfaces it implements. Therefore, a class can only implement interfaces that
exist at its creation time.

7.13.3 Object literal types
Object literal types are anonymous interfaces:

type Point = {
x: number;
y: number;

};

One benefit of object literal types is that they can be used inline:

function pointToString(pt: {x: number, y: number}) {
return `(${pt.x}, ${pt.y})`;

}

7.13.4 Optional properties
If a property can be omitted, we put a question mark after its name:

interface Person {
name: string;
company?: string;

}

In the following example, both john and janematch the interface Person:

const john: Person = {
name: 'John',

};
const jane: Person = {

name: 'Jane',
company: 'Massive Dynamic',

};

7.13.5 Methods
Interfaces can also contain methods:

7.14 Type variables and generic types 39

interface Point {
x: number;
y: number;
distance(other: Point): number;

}

As far as TypeScript’s type system is concerned, method definitions and properties
whose values are functions, are equivalent:

interface HasMethodDef {
simpleMethod(flag: boolean): void;

}
interface HasFuncProp {

simpleMethod: (flag: boolean) => void;
}

const objWithMethod: HasMethodDef = {
simpleMethod(flag: boolean): void {},

};
const objWithMethod2: HasFuncProp = objWithMethod;

const objWithOrdinaryFunction: HasMethodDef = {
simpleMethod: function (flag: boolean): void {},

};
const objWithOrdinaryFunction2: HasFuncProp = objWithOrdinaryFunction;

const objWithArrowFunction: HasMethodDef = {
simpleMethod: (flag: boolean): void => {},

};
const objWithArrowFunction2: HasFuncProp = objWithArrowFunction;

My recommendation is to use whichever syntax best expresses how a property should
be set up.

7.14 Type variables and generic types
Recall the two language levels of TypeScript:

• Values exist at the dynamic level.
• Types exist at the static level.

Similarly:

• Normal functions exist at the dynamic level, are factories for values and have pa-
rameters representing values. Parameters are declared between parentheses:

const valueFactory = (x: number) => x; // definition
const myValue = valueFactory(123); // use

• Generic types exist at the static level, are factories for types and have parameters
representing types. Parameters are declared between angle brackets:

40 7 The essentials of TypeScript

type TypeFactory<X> = X; // definition
type MyType = TypeFactory<string>; // use

Naming type parameters
In TypeScript, it is common to use a single uppercase character (such as T, I, and
O) for a type parameter. However, any legal JavaScript identifier is allowed and
longer names often make code easier to understand.

7.14.1 Example: a container for values
// Factory for types
interface ValueContainer<Value> {

value: Value;
}

// Creating one type
type StringContainer = ValueContainer<string>;

Value is a type variable. One or more type variables can be introduced between angle
brackets.

7.15 Example: a generic class
Classes can have type parameters, too:

class SimpleStack<Elem> {
#data: Array<Elem> = [];
push(x: Elem): void {

this.#data.push(x);
}
pop(): Elem {

const result = this.#data.pop();
if (result === undefined) {

throw new Error();
}
return result;

}
get length() {

return this.#data.length;
}

}

Class SimpleStack has the type parameter Elem. When we instantiate the class, we also
provide a value for the type parameter:

const stringStack = new SimpleStack<string>();
stringStack.push('first');
stringStack.push('second');

7.15 Example: a generic class 41

assert.equal(stringStack.length, 2);
assert.equal(stringStack.pop(), 'second');

7.15.1 Example: Maps
Maps are typed generically in TypeScript. For example:

const myMap: Map<boolean,string> = new Map([
[false, 'no'],
[true, 'yes'],

]);

Thanks to type inference (based on the argument of new Map()), we can omit the type
parameters:

// %inferred-type: Map<boolean, string>
const myMap = new Map([

[false, 'no'],
[true, 'yes'],

]);

7.15.2 Type variables for functions and methods
Function definitions can introduce type variables like this:

function identity<Arg>(arg: Arg): Arg {
return arg;

}

We use the function as follows.
// %inferred-type: number
const num1 = identity<number>(123);

Due to type inference, we can once again omit the type parameter:
// %inferred-type: 123
const num2 = identity(123);

Note that TypeScript inferred the type 123, which is a set with one number and more
specific than the type number.

7.15.2.1 Arrow functions and methods
Arrow functions can also have type parameters:

const identity = <Arg>(arg: Arg): Arg => arg;

This is the type parameter syntax for methods:
const obj = {

identity<Arg>(arg: Arg): Arg {
return arg;

},
};

42 7 The essentials of TypeScript

7.15.3 A more complicated function example
function fillArray<T>(len: number, elem: T): T[] {

return new Array<T>(len).fill(elem);
}

The type variable T appears four times in this code:

• It is introduced via fillArray<T>. Therefore, its scope is the function.
• It is used for the first time in the type annotation for the parameter elem.
• It is used for the second second time to specify the return type of fillArray().
• It is also used as a type argument for the constructor Array().

We can omit the type parameter when calling fillArray() (line A) because TypeScript
can infer T from the parameter elem:

// %inferred-type: string[]
const arr1 = fillArray<string>(3, '*');
assert.deepEqual(

arr1, ['*', '*', '*']);

// %inferred-type: string[]
const arr2 = fillArray(3, '*'); // (A)

7.16 Conclusion: understanding the initial example
Let’s use what we have learned to understand the piece of code we have seen earlier:

interface Array<T> {
concat(...items: Array<T[] | T>): T[];
reduce<U>(

callback: (state: U, element: T, index: number, array: T[]) => U,
firstState?: U

): U;
// ···

}

This is an interface for Arrays whose elements are of type T:

• method .concat() has zero or more parameters (defined via a rest parameter).
Each of those parameters has the type T[]|T. That is, it is either an Array of T
values or a single T value.

• method .reduce() introduces its own type variable U. U is used to express the fact
that the following entities all have the same type:

– Parameter state of callback()
– Result of callback()
– Optional parameter firstState of .reduce()
– Result of .reduce()

In addition to state, callback() has the following parameters:

7.16 Conclusion: understanding the initial example 43

– element, which has the same type T as the Array elements
– index; a number
– array with elements of type T

44 7 The essentials of TypeScript

Chapter 8

Creating CommonJS-based npm
packages via TypeScript

Contents
8.1 Required knowledge . 45
8.2 Limitations . 46
8.3 The repository ts-demo-npm-cjs . 46
8.4 .gitignore . 47
8.5 .npmignore . 47
8.6 package.json . 47

8.6.1 Scripts . 48
8.6.2 dependencies vs. devDependencies 48
8.6.3 More information on package.json 49

8.7 tsconfig.json . 49
8.8 TypeScript code . 50

8.8.1 index.ts . 50
8.8.2 index_test.ts . 50

This chapter describes how to use TypeScript to create packages for the packagemanager
npm that are based on the CommonJS module format.

GitHub repository: ts-demo-npm-cjs
In this chapter, we are exploring the repository ts-demo-npm-cjs which can be
downloaded on GitHub. (I deliberately have not published it as a package to npm.)

8.1 Required knowledge
You should be roughly familiar with:

45

https://github.com/rauschma/ts-demo-npm-cjs

46 8 Creating CommonJS-based npm packages via TypeScript

• CommonJS modules – a module format that originated in, and was designed for,
server-side JavaScript. It was popularized by the server-side JavaScript platform
Node.js. CommonJS modules preceded JavaScript’s built-in ECMAScript modules
and are still much used and very well supported by tooling (IDEs, built tools, etc.).

• TypeScript’smodules –whose syntax is based on ECMAScriptmodules. However,
they are often compiled to CommonJS modules.

• npm packages – directories with files that are installed via the npm package man-
ager. They can contain CommonJS modules, ECMAScript modules, and various
other files.

8.2 Limitations
In this chapter, we are using what TypeScript currently supports best:

• All our TypeScript code is compiled to CommonJS modules with the filename ex-
tension .js.

• All external imports are CommonJS modules, too.
Especially on Node.js, TypeScript currently doesn’t really support ECMAScript modules
and filename extensions other than .js.

8.3 The repository ts-demo-npm-cjs

This is how the repository ts-demo-npm-cjs is structured:
ts-demo-npm-cjs/

.gitignore

.npmignore
dist/ (created on demand)
package.json
ts/

src/
index.ts

test/
index_test.ts

tsconfig.json

Apart from the package.json for the package, the repository contains:
• ts/src/index.ts: the actual code of the package
• ts/test/index_test.ts: a test for index.ts
• tsconfig.json: configuration data for the TypeScript compiler

package.json contains scripts for compiling:
• Input: directory ts/ (TypeScript code)
• Output: directory dist/ (CommonJS modules; the directory doesn’t yet exist in

the repository)
This is where the compilation results for the two TypeScript files are put:

https://nodejs.org/api/modules.html
https://nodejs.org/
https://exploringjs.com/impatient-js/ch_modules.html
https://www.typescriptlang.org/docs/handbook/modules.html
https://docs.npmjs.com/packages-and-modules/

8.4 .gitignore 47

ts/src/index.ts --> dist/src/index.js
ts/test/index_test.ts --> dist/test/index_test.js

8.4 .gitignore

This file lists the directories that we don’t want to check into git:
node_modules/
dist/

Explanations:
• node_modules/ is set up via npm install.
• The files in dist/ are created by the TypeScript compiler (more on that later).

8.5 .npmignore

When it comes to which files should and should not be uploaded to the npm registry, we
have different needs than we did for git. Therefore, in addition to .gitignore, we also
need the file .npmignore:

ts/

The two differences are:
• We want to upload the results of compiling TypeScript to JavaScript (directory

dist/).
• We don’t want to upload the TypeScript source files (directory ts/).

Note that npm ignores the directory node_modules/ by default.

8.6 package.json

package.json looks like this:
{

···
"type": "commonjs",
"main": "./dist/src/index.js",
"types": "./dist/src/index.d.ts",
"scripts": {

"clean": "shx rm -rf dist/*",
"build": "tsc",
"watch": "tsc --watch",
"test": "mocha --ui qunit",
"testall": "mocha --ui qunit dist/test",
"prepack": "npm run clean && npm run build"

},
"// devDependencies": {

"@types/node": "Needed for unit test assertions (assert.equal() etc.)",

48 8 Creating CommonJS-based npm packages via TypeScript

"shx": "Needed for development-time package.json scripts"
},
"devDependencies": {

"@types/lodash": "···",
"@types/mocha": "···",
"@types/node": "···",
"mocha": "···",
"shx": "···"

},
"dependencies": {

"lodash": "···"
}

}

Let’s take a look at the properties:
• type: The value "commonjs" means that .js files are interpreted as CommonJS

modules.
• main: If there is a so-called bare import that only mentions the name of the current

package, then this is the module that will be imported.
• types points to a declaration file with all the type definitions for the current pack-

age.
The next two subsections cover the remaining properties.

8.6.1 Scripts
Property scripts defines various commands that can be invoked via npm run. For exam-
ple, the script clean is invoked via npm run clean. The previous package.json contains
the following scripts:

• clean uses the cross-platform package shx to delete the compilation results via
its implementation of the Unix shell command rm. shx supports a variety of shell
commands with the benefit of not needing a separate package for each command
we may want to use.

• build and watch use the TypeScript compiler tsc to compile the TypeScript files
according to tsconfig.json. tsc must be installed globally or locally (inside the
current package), usually via the npm package typescript.

• test and testall use the unit test framework Mocha to run one test or all tests.
• prepack: This script is run run before a tarball is packed (due to npm pack, npm

publish, or an installation from git).
Note that when we are using an IDE, we don’t need the scripts build and watch because
we can let the IDE build the artifacts. But they are needed for the script prepack.

8.6.2 dependencies vs. devDependencies
dependencies should only contain the packages that are needed when importing a pack-
age. That excludes packages that are used for running tests etc.

https://github.com/shelljs/shx
https://mochajs.org/

8.7 tsconfig.json 49

Packages whose names start with @types/ provide TypeScript type definitions for pack-
ages that don’t have any. Without the former, we can’t use the latter. Are these normal
dependencies or dev dependencies? It depends:

• If the type definitions of our package refer to type definitions in another package,
that package is a normal dependency.

• Otherwise, the package is only needed during development time and a dev depen-
dency.

8.6.3 More information on package.json

• “Awesome npm scripts” has tips for writing cross-platform scripts.
• The npm docs for package.json explain various properties of that file.
• The npm docs for scripts explain the package.json property scripts.

8.7 tsconfig.json

{
"compilerOptions": {

"rootDir": "ts",
"outDir": "dist",
"target": "es2019",
"lib": [

"es2019"
],
"module": "commonjs",
"esModuleInterop": true,
"strict": true,
"declaration": true,
"sourceMap": true

}
}

• rootDir: Where are our TypeScript files located?

• outDir: Where should the compilation results be put?

• target: What is the targeted ECMAScript version? If the TypeScript code uses a
feature that is not supported by the targeted version, then it is compiled to equiv-
alent code that only uses supported features.

• lib: What platform features should TypeScript be aware of? Possibilities include
the ECMAScript standard library and the DOM of browsers. The Node.js API is
supported differently, via the package @types/node.

• module: Specifies the format of the compilation output.

The remaining options are explained by the official documentation for tsconfig.json.

https://github.com/RyanZim/awesome-npm-scripts
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/misc/scripts
https://www.typescriptlang.org/docs/handbook/tsconfig-json.html

50 8 Creating CommonJS-based npm packages via TypeScript

8.8 TypeScript code
8.8.1 index.ts

This file provides the actual functionality of the package:
import endsWith from 'lodash/endsWith';

export function removeSuffix(str: string, suffix: string) {
if (!endsWith(str, suffix)) {

throw new Error(JSON.stringify(suffix)} + ' is not a suffix of ' +
JSON.stringify(str));

}
return str.slice(0, -suffix.length);

}

It uses function endsWith() of the library Lodash. That’s why Lodash is a normal depen-
dency – it is needed at runtime.

8.8.2 index_test.ts

This file contains a unit test for index.ts:
import { strict as assert } from 'assert';
import { removeSuffix } from '../src/index';

test('removeSuffix()', () => {
assert.equal(

removeSuffix('myfile.txt', '.txt'),
'myfile');

assert.throws(() => removeSuffix('myfile.txt', 'abc'));
});

We can run the test like this:
npm t dist/test/index_test.js

• The npm command t is an abbreviation for the npm command test.
• The npm command test is an abbreviation for run test (which runs the script

test from package.json).
As you can see, we are running the compiled version of the test (in directory dist/), not
the TypeScript code.
For more information on the unit test framework Mocha, see its homepage.

https://lodash.com/docs/4.17.15#endsWith
https://mochajs.org/

Chapter 9

Creating web apps via TypeScript
and webpack

Contents
9.1 Required knowledge . 51
9.2 Limitations . 52
9.3 The repository ts-demo-webpack . 52
9.4 package.json . 53
9.5 webpack.config.js . 54
9.6 tsconfig.json . 55
9.7 index.html . 55
9.8 main.ts . 56
9.9 Installing, building and running the web app 56

9.9.1 Building in Visual Studio Code 57
9.10 Using webpack without a loader: webpack-no-loader.config.js . . 57

This chapter describes how to create web apps via TypeScript andwebpack. Wewill only
be using the DOM API, not a particular frontend framework.

GitHub repository: ts-demo-webpack
The repository ts-demo-webpack that we are working with in this chapter, can be
downloaded from GitHub.

9.1 Required knowledge
You should be roughly familiar with:

• npm
• webpack

51

https://github.com/rauschma/ts-demo-webpack
https://docs.npmjs.com/about-npm/
https://webpack.js.org

52 9 Creating web apps via TypeScript and webpack

9.2 Limitations
In this chapter, we stick with what is best supported by TypeScript: CommonJSmodules,
bundled as script files.

9.3 The repository ts-demo-webpack

This is how the repository ts-demo-webpack is structured:

ts-demo-webpack/
build/ (created on demand)
html/

index.html
package.json
ts/

src/
main.ts

tsconfig.json
webpack.config.js

The web app is built as follows:

• Input:
– The TypeScript files in ts/
– All JavaScript code that is installed via npm and imported by the TypeScript
files

– The HTML files in html/
• Output – directory build/ with the complete web app:

– The TypeScript files are compiled to JavaScript code, combinedwith the npm-
installed JavaScript and written to the script file build/main-bundle.js.
This process is called bundling and main-bundle.js is a bundle file.

– Each HTML file is copied to build/.

Both output tasks are handled by webpack:

• Copying the files in html/ to build/ is done via thewebpack plugin copy-webpack-
plugin.

• This chapter explores two different workflows for bundling:

– Either webpack directly compiles TypeScript files into the bundle, with the
help of the loader ts-loader.

– Or we compile the TypeScript files ourselves, to Javascript files in the direc-
tory dist/ (like we did in the previous chpater). Then webpack doesn’t need
a loader and only bundles JavaScript files.

Most of this chapter is about usingwebpackwith ts-loader. At the end, we briefly
look at the other workflow.

9.4 package.json 53

9.4 package.json

package.json contains metadata for the project:

{
"private": true,
"scripts": {

"tsc": "tsc",
"tscw": "tsc --watch",
"wp": "webpack",
"wpw": "webpack --watch",
"serve": "http-server build"

},
"dependencies": {

"@types/lodash": "···",
"copy-webpack-plugin": "···",
"http-server": "···",
"lodash": "···",
"ts-loader": "···",
"typescript": "···",
"webpack": "···",
"webpack-cli": "···"

}
}

The properties work as follows:

• "private": truemeans that npm doesn’t complain if we don’t provide a package
name and a package version.

• Scripts:
– tsc, tscw: These scripts invoke the TypeScript compiler directly. We don’t
need them ifwe usewebpackwith ts-loader. However, they are useful if we
use webpack without ts-loader (as demonstrated at the end of this chapter).

– wp: runs webpack once, compile everything.
– wpw: runs webpack in watch mode, where it watches the input files and only
compiles files that change.

– serve: runs the server http-server and serves the directory build/with the
fully assembled web app.

• Dependencies:
– Four packages related to webpack:

* webpack: the core of webpack
* webpack-cli: a command line interface for the core
* ts-loader: a loader for .ts files that compiles them to JavaScript
* copy-webpack-plugin: a plugin that copies files from one location to an-
other one

– Needed by ts-loader: typescript
– Serves the web app: http-server
– Library plus type definitions that the TypeScript code uses: lodash,

@types/lodash

54 9 Creating web apps via TypeScript and webpack

9.5 webpack.config.js

This is how we configure webpack:

const path = require('path');
const CopyWebpackPlugin = require('copy-webpack-plugin');

module.exports = {
···
entry: {

main: "./ts/src/main.ts",
},
output: {

path: path.resolve(__dirname, 'build'),
filename: "[name]-bundle.js",

},
resolve: {

// Add ".ts" and ".tsx" as resolvable extensions.
extensions: [".ts", ".tsx", ".js"],

},
module: {

rules: [
// all files with a `.ts` or `.tsx` extension will be handled by `ts-loader`
{ test: /\.tsx?$/, loader: "ts-loader" },

],
},
plugins: [

new CopyWebpackPlugin([
{
from: './html',

}
]),

],
};

Properties:

• entry: An entry point is the file where webpack starts collecting the data for an
output bundle. First it adds the entry point file to the bundle, then the imports of
the entry point, then the imports of the imports, etc. The value of property entry is
an object whose property keys specify names of entry points and whose property
values specify paths of entry points.

• output specifies the path of the output bundle. [name] is mainly useful when there
are multiple entry points (and therefore multiple output bundles). It is replaced
with the name of the entry point when assembling the path.

• resolve configures how webpack converts specifiers (IDs) of modules to locations
of files.

• module configures loaders (plugins that process files) and more.

9.6 tsconfig.json 55

• plugins configures pluginswhich can change and augment webpack’s behavior in
a variety of ways.

For more information on configuring webpack, see the webpack website.

9.6 tsconfig.json

This file configures the TypeScript compiler:

{
"compilerOptions": {

"rootDir": "ts",
"outDir": "dist",
"target": "es2019",
"lib": [

"es2019",
"dom"

],
"module": "commonjs",
"esModuleInterop": true,
"strict": true,
"sourceMap": true

}
}

The option outDir is not needed if we use webpack with ts-loader. However, we’ll
need it if we use webpack without a loader (as explained later in this chapter).

9.7 index.html

This is the HTML page of the web app:

<!doctype html>
<html>
<head>

<meta charset="UTF-8">
<title>ts-demo-webpack</title>

</head>
<body>

<div id="output"></div>
<script src="main-bundle.js"></script>

</body>
</html>

The <div> with the ID "output" is where the web app displays its output. main-
bundle.js contains the bundled code.

https://webpack.js.org/concepts/

56 9 Creating web apps via TypeScript and webpack

9.8 main.ts

This is the TypeScript code of the web app:

import template from 'lodash/template';

const outputElement = document.getElementById('output');
if (outputElement) {

const compiled = template(`
<h1><%- heading %></h1>
Current date and time: <%- dateTimeString %>

`.trim());
outputElement.innerHTML = compiled({

heading: 'ts-demo-webpack',
dateTimeString: new Date().toISOString(),

});
}

• Step 1: We use Lodash’s function template() to turn a stringwith custom template
syntax into a function compiled() that maps data toHTML. The string defines two
blanks to be filled in via data:

– <%- heading %>
– <%- dateTimeString %>

• Step 2: Apply compiled() to the data (an object with two properties) to generate
HTML.

9.9 Installing, building and running the web app
First we need to install all npm packages that our web app depends on:

npm install

Thenwe need to runwebpack (which was installed during the previous step) via a script
in package.json:

npm run wpw

From now on, webpack watches the files in the repository for changes and rebuilds the
web app whenever it detects any.

In a different command line, we can now start a web server that serves the contents of
build/ on localhost:

npm run serve

If we go to the URL printed out by the web server, we can see the web app in action.

Note that simple reloading may not be enough to see the results after changes – due to
caching. You may have to force-reload by pressing shift when reloading.

https://lodash.com/docs/4.17.15#template

9.10 Using webpack without a loader: webpack-no-loader.config.js 57

9.9.1 Building in Visual Studio Code
Instead of building from a command line, we can also do that from within Visual Studio
Code, via a so-called build task:

• Execute “Configure Default Build Task…” from the “Terminal” menu.
• Choose “npm: wpw”.
• A problem matcher handles the conversion of tool output into lists of problems (infos,

warning, and errors). The default workswell in this case. If youwant to be explicit,
you can specify a value in .vscode/tasks.json:

"problemMatcher": ["$tsc-watch"],

We can now start webpack via “Run Build Task…” from the “Terminal” menu.

9.10 Using webpack without a loader: webpack-no-
loader.config.js

Instead of using on ts-loader, we can also first compile our TypeScript files to JavaScript
files and then bundle those via webpack. How the first of those two steps works, is
described in the previous chapter.
We nowdon’t have to configure ts-loader and ourwebpack configuration file is simpler:

const path = require('path');

module.exports = {
entry: {

main: "./dist/src/main.js",
},
output: {

path: path.join(__dirname, 'build'),
filename: '[name]-bundle.js',

},
plugins: [

new CopyWebpackPlugin([
{
from: './html',

}
]),

],
};

Note that entry.main is different. In the other config file, it is:
"./ts/src/main.ts"

Why would we want to produce intermediate files before bundling them? One benefit
is that we can use Node.js to run unit tests for some of the TypeScript code.

58 9 Creating web apps via TypeScript and webpack

Chapter 10

Strategies for migrating to
TypeScript

Contents
10.1 Three strategies . 59
10.2 Strategy: mixed JavaScript/TypeScript code bases 60
10.3 Strategy: adding type information to plain JavaScript files 60
10.4 Strategy: migrating large projects by snapshot testing theTypeScript

errors . 61
10.5 Conclusion . 61

This chapter gives an overview of strategies for migrating code bases from JavaScript to
TypeScript. It also mentions material for further reading.

10.1 Three strategies
These are three strategies for migrating to TypeScript:

• We can support a mix of JavaScript and TypeScript files for our code base. We start
with only JavaScript files and then switch more and more files to TypeScript.

• We can keep our current (non-TypeScript) build process and our JavaScript-only
code base. We add static type information via JSDoc comments and use TypeScript
as a type checker (not as a compiler). Once everything is correctly typed, we switch
to TypeScript for building.

• For large projects, there may be too many TypeScript errors during migration.
Then snapshot tests can help us find fixed errors and new errors.

More information:

• “Migrating from JavaScript” in the TypeScript Handbook

59

https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html

60 10 Strategies for migrating to TypeScript

10.2 Strategy: mixed JavaScript/TypeScript code bases
The TypeScript compiler supports a mix of JavaScript and TypeScript files if we use the
compiler option --allowJs:

• TypeScript files are compiled.
• JavaScript files are simply copied over to the output directory (after a few simple

type checks).

At first, there are only JavaScript files. Then, one by one, we switch files to TypeScript.
While we do so, our code base keeps being compiled.

This is what tsconfig.json looks like:

{
"compilerOptions": {

···
"allowJs": true

}
}

More information:

• “Incrementally Migrating JavaScript to TypeScript” by Clay Allsopp.

10.3 Strategy: adding type information to plain JavaScript
files

This approach works as follows:

• We continue to use our current build infrastructure.
• We run the TypeScript compiler, but only as a type checker (compiler option -

-noEmit). In addition to the compiler option --allowJs (for allowing and copy-
ing JavaScript files), we also have to use the compiler option --checkJs (for type-
checking JavaScript files).

• We add type information via JSDoc comments (see example below) and declara-
tion files.

• Once TypeScript’s type checker doesn’t complain anymore, we use the compiler to
build the code base. Switching from .js files to .ts files is not urgent now because
the whole code base is already fully statically typed. We can even produce type
files (filename extension .d.ts) now.

This is how we specify static types for plain JavaScript via JSDoc comments:

/**
* @param {number} x - The first operand
* @param {number} y - The second operand
* @returns {number} The sum of both operands
*/
function add(x, y) {

https://medium.com/@clayallsopp/incrementally-migrating-javascript-to-typescript-565020e49c88
https://twitter.com/clayallsopp

10.4 Strategy: migrating large projects by snapshot testing the TypeScript errors 61

return x + y;
}

/** @typedef {{ prop1: string, prop2: string, prop3?: number }} SpecialType */
/** @typedef {(data: string, index?: number) => boolean} Predicate */

More information:
• §4.4 “Using the TypeScript compiler for plain JavaScript files”
• “How we gradually migrated to TypeScript at Unsplash” by Oliver Joseph Ash

10.4 Strategy: migrating large projects by snapshot testing
the TypeScript errors

In large JavaScript projects, switching to TypeScript may produce too many errors – no
matter which approach we choose. Then snapshot-testing the TypeScript errors may be
an option:

• We run the TypeScript compiler on the whole code base for the first time.
• The errors produced by the compiler become our initial snapshot.
• As we work on the code base, we compare new error output with the previous

snapshot:
– Sometimes existing errors disappear. Then we can create a new snapshot.
– Sometimes new errors appear. Then we either have to fix these errors or
create a new snapshot.

More information:
• “How to Incrementally Migrate 100k Lines of Code to Typescript” by Dylan Vann

10.5 Conclusion
We have taken a quick look at strategies for migrating to TypeScript. Two more tips:

• Start your migration with experiments: Play with your code base and try out var-
ious strategies before committing to one of them.

• Then lay out a clear plan for going forward. Talk to your team w.r.t. prioritization:
– Sometimes finishing the migration quickly may take priority.
– Sometimes the code remaining fully functional during the migration may be
more important.

– And so on…

https://medium.com/unsplash/how-we-gradually-migrated-to-typescript-at-unsplash-7a34caa24ef1
https://twitter.com/OliverJAsh
https://dylanvann.com/incrementally-migrating-to-typescript/
https://twitter.com/atomarranger

62 10 Strategies for migrating to TypeScript

Part III

Basic types

63

Chapter 11

Where are the remaining
chapters?

You are reading a preview of this book:
• All essential chapters of this book are free to read online.

– Complete offline versions are available for purchase.
• You can take a look at the full table of contents (also linked to from the book’s

homepage).

65

https://exploringjs.com/tackling-ts/#previews
https://exploringjs.com/tackling-ts/#buy
https://exploringjs.com/tackling-ts/downloads/complete-toc.html

	I Preliminaries
	About this book
	Where is the homepage of this book?
	What is in this book?
	What do I get for my money?
	How can I preview the content?
	How do I report errors?
	What do the notes with icons mean?
	Acknowledgements

	Why TypeScript?
	The benefits of using TypeScript
	The downsides of using TypeScript
	TypeScript myths

	Free resources on TypeScript

	II Getting started with TypeScript
	How does TypeScript work? The bird's eye view
	The structure of TypeScript projects
	Programming TypeScript via an integrated development environment (IDE)
	Other files produced by the TypeScript compiler
	Using the TypeScript compiler for plain JavaScript files

	Trying out TypeScript
	The TypeScript Playground
	TS Node

	Notation used in this book
	Test assertions (dynamic)
	Type assertions (static)

	The essentials of TypeScript
	What you'll learn
	Specifying the comprehensiveness of type checking
	Types in TypeScript
	Type annotations
	Type inference
	Specifying types via type expressions
	The two language levels: dynamic vs. static
	Type aliases
	Typing Arrays
	Function types
	Union types
	Optional vs. default value vs. undefined|T
	Typing objects
	Type variables and generic types
	Example: a generic class
	Conclusion: understanding the initial example

	Creating CommonJS-based npm packages via TypeScript
	Required knowledge
	Limitations
	The repository ts-demo-npm-cjs
	.gitignore
	.npmignore
	package.json
	tsconfig.json
	TypeScript code

	Creating web apps via TypeScript and webpack
	Required knowledge
	Limitations
	The repository ts-demo-webpack
	package.json
	webpack.config.js
	tsconfig.json
	index.html
	main.ts
	Installing, building and running the web app
	Using webpack without a loader: webpack-no-loader.config.js

	Strategies for migrating to TypeScript
	Three strategies
	Strategy: mixed JavaScript/TypeScript code bases
	Strategy: adding type information to plain JavaScript files
	Strategy: migrating large projects by snapshot testing the TypeScript errors
	Conclusion

	III Basic types
	Where are the remaining chapters?

