
Shell scripting
with

Node.js
Dr. Axel Rauschmayer

2

Shell scripting with Node.js
Dr. Axel Rauschmayer

2022

Copyright © 2022 by Dr. Axel Rauschmayer
Cover: “Hex Hexagonal Abstract” by CreativeMagic
All rights reserved. This book or any portion thereof may not be reproduced or used in
any manner whatsoever without the express written permission of the publisher except
for the use of brief quotations in a book review or scholarly journal.
exploringjs.com

https://pixabay.com/illustrations/hex-hexagonal-abstract-modern-675576/

Contents

I About this book 7
1 About this book 9

1.1 Why should I read this book? . 9
1.2 What knowledge is required to read this book? 9
1.3 Buying and previewing this book . 10
1.4 About the author . 10
1.5 Acknowledgements . 10

2 Instructions 11
2.1 How to read this book . 11
2.2 How assertions are used in this book . 11

II Foundations 13
3 Getting started with Node.js 15

3.1 Getting help for Node.js . 15
3.2 Installing Node.js and npm . 15
3.3 Running Node.js code . 16

4 An overview of Node.js: architecture, APIs, event loop, concurrency 19
4.1 The Node.js platform . 20
4.2 The Node.js event loop . 24
4.3 libuv: the cross-platform library that handles asynchronous I/O (and

more) for Node.js . 32
4.4 Escaping the main thread with user code 33
4.5 Sources of this chapter . 34

5 Packages: JavaScript’s units for software distribution 37
5.1 What is a package? . 38
5.2 The file system layout of a package . 39
5.3 Archiving and installing packages . 43
5.4 Referring to modules via specifiers . 45
5.5 Module specifiers in Node.js . 46

6 An overview of npm (a package manager for JavaScript) 53
6.1 The npm package manager . 53

3

4 CONTENTS

6.2 Getting help for npm . 53
6.3 Common npm commands . 54
6.4 Abbreviations for npm commands . 55

III Core Node.js functionality 57
7 Working with file system paths and file URLs on Node.js 59

7.1 Path-related functionality on Node.js . 60
7.2 Foundational path concepts and their API support 61
7.3 Getting the paths of standard directories via module 'node:os' 65
7.4 Concatenating paths . 66
7.5 Ensuring paths are normalized, fully qualified, or relative 68
7.6 Parsing paths: extracting various parts of a path (filename extension etc.) 70
7.7 Categorizing paths . 72
7.8 path.format(): creating paths out of parts 73
7.9 Using the same paths on different platforms 74
7.10 Using a library to match paths via globs 76
7.11 Using file: URLs to refer to files . 80

8 Working with the file system on Node.js 89
8.1 Concepts, patterns and conventions of Node’s file system APIs 90
8.2 Reading and writing files . 92
8.3 Handling line terminators across platforms 97
8.4 Traversing and creating directories . 98
8.5 Copying, renaming, moving files or directories 101
8.6 Removing files or directories . 103
8.7 Reading and changing file system entries 105
8.8 Working with links . 107
8.9 Further reading . 108

9 Native Node.js streams 109
9.1 Recap: asynchronous iteration and asynchronous generators 110
9.2 Streams . 110
9.3 Readable streams . 112
9.4 Transforming readable streams via async generators 114
9.5 Writable streams . 116
9.6 Quick reference: stream-related functionality 118
9.7 Further reading and sources of this chapter 120

10 Using web streams on Node.js 121
10.1 What are web streams? . 122
10.2 Reading from ReadableStreams . 125
10.3 Turning data sources into ReadableStreams via wrapping 130
10.4 Writing to WritableStreams . 135
10.5 Turning data sinks into WritableStreams via wrapping 141
10.6 Using TransformStreams . 144
10.7 Implementing custom TransformStreams 146
10.8 A closer look at backpressure . 149

CONTENTS 5

10.9 Byte streams . 152
10.10Node.js-specific helpers . 154
10.11Further reading . 155

11 Stream recipes 157
11.1 Writing to standard output (stdout) . 157
11.2 Writing to standard error (stderr) . 158
11.3 Reading from standard input (stdin) . 159
11.4 Node.js stream recipes . 160
11.5 Web stream recipes . 160

12 Running shell commands in child processes 161
12.1 Overview of this chapter . 162
12.2 Spawning processes asynchronously: spawn() 163
12.3 Spawning processes synchronously: spawnSync() 175
12.4 Asynchronous helper functions based on spawn() 179
12.5 Synchronous helper functions based on spawnAsync() 181
12.6 Useful libraries . 181
12.7 Choosing between the functions of module 'node:child_process' . . . 182

13 Where are the remaining chapters? 185

6 CONTENTS

Part I

About this book

7

Chapter 1

About this book

Contents
1.1 Why should I read this book? . 9
1.2 What knowledge is required to read this book? 9
1.3 Buying and previewing this book 10

1.3.1 How can I buy this book? . 10
1.3.2 How can I preview the book? 10

1.4 About the author . 10
1.5 Acknowledgements . 10

This chapter helps you decide whether or not this book is of interest to you.

1.1 Why should I read this book?
This book is about shell scripting with Node.js. You will learn:

• How Node.js works:
– Its foundations: its architecture, its event loop, etc.
– Its API: How to use its global variables and modules.

• What npm packages (the de-facto standard for JavaScript packages) are.
• How to use npm (the package manager bundled with Node.js) to:

– Install and manage packages.
– Create and publish packages.

• How to write cross-platform package scripts for running development tasks such as
generating artifacts and running tests.

• How to use all of the aforementioned knowledge to create and deploy cross-
platform shell scripts.

1.2 What knowledge is required to read this book?
You should be familiar with JavaScript – especially:

9

10 1 About this book

• ECMAScript modules: importing and exporting values, etc.
• Asynchronous JavaScript: Promises, async functions, etc.

My book on JavaScript, “JavaScript for impatient programmers” is free to read online:
• It has a chapter on modules.
• It covers asynchronous JavaScript in a series of chapters, starting with “Asyn-

chronous programming in JavaScript”.

1.3 Buying and previewing this book
1.3.1 How can I buy this book?
You can buy a package with ebooks. They come in these formats (all without DRM):

• PDF
• HTML
• EPUB
• MOBI

1.3.2 How can I preview the book?
• The HTML version is free to read online.
• On the homepage of this book, there are extensive previews for all ebook versions

of this book.

1.4 About the author
Dr. Axel Rauschmayer specializes in JavaScript and web development. He has been de-
veloping web applications since 1995. In 1999, he was technical manager at a German
internet startup that later expanded internationally. In 2006, he held his first talk on Ajax.
In 2010, he received a PhD in Informatics from the University of Munich.
Since 2009, he has been blogging about web development at 2ality.com and has written
several books on JavaScript. He has held trainings and talks for companies such as eBay,
Bank of America, and O’Reilly Media.
He lives in Munich, Germany.

1.5 Acknowledgements
• Cover: Hex Hexagonal Abstract by CreativeMagic

https://exploringjs.com/impatient-js/
https://exploringjs.com/impatient-js/ch_modules.html
https://exploringjs.com/impatient-js/ch_async-js.html
https://exploringjs.com/impatient-js/ch_async-js.html
https://exploringjs.com/nodejs-shell-scripting/#buy
https://exploringjs.com/nodejs-shell-scripting/toc.html
https://exploringjs.com/nodejs-shell-scripting/#previews
https://exploringjs.com/nodejs-shell-scripting/#previews
https://pixabay.com/illustrations/hex-hexagonal-abstract-modern-675576/

Chapter 2

Instructions

Contents
2.1 How to read this book . 11
2.2 How assertions are used in this book 11

This chapter contains information that is useful when reading this book.

2.1 How to read this book
There are two ways in which you can read this book:

• Like a guide: Start at the beginning and keep reading.
• Like a reference: Only read chapters that interest you, skip the rest.

This book was written with both ways in mind, so skipping content should not be a
problem. If, at any point, there is relevant information elsewhere in the book, I point to
it.

2.2 How assertions are used in this book
The following import is always assumed to have been made (similarly to how non-strict
assert is available in the Node.js REPL):

import * as assert from 'node:assert/strict';

This module implements assertions – which are often used in examples in this book. This
is what they look like:

// Comparing primitive values:
assert.equal(3 + 4, 7);
assert.equal('abc'.toUpperCase(), 'ABC');

// Comparing objects:

11

https://exploringjs.com/impatient-js/ch_assertion-api.html

12 2 Instructions

assert.notEqual({prop: 1}, {prop: 1}); // shallow comparison
assert.deepEqual({prop: 1}, {prop: 1}); // deep comparison
assert.notDeepEqual({prop: 1}, {prop: 2}); // deep comparison

Part II

Foundations

13

Chapter 3

Getting started with Node.js

Contents
3.1 Getting help for Node.js . 15
3.2 Installing Node.js and npm . 15
3.3 Running Node.js code . 16

3.3.1 Evaluating code in the Node.js REPL 16
3.3.2 Quickly printing the result of a JavaScript expression 16
3.3.3 Running modules with Node.js code 16
3.3.4 Running Node.js code that’s in the clipboard 17

This chapter explains the first steps with Node.js.

3.1 Getting help for Node.js
• Online:

– Overview of online documentation
– API documentation
– Command line options

• Command line:
– Print online help: node -h
– Print version of Node.js: node -v
– Print versions of various Node.js components:

* npm version

* node -p process.versions

3.2 Installing Node.js and npm
The installer for Node.js also installs the package manager npm. It can be downloaded
from the Node.js homepage and is available for many operating systems.

15

https://nodejs.org/en/docs/
https://nodejs.org/api/
https://nodejs.org/api/cli.html
https://nodejs.org/

16 3 Getting started with Node.js

3.3 Running Node.js code
3.3.1 Evaluating code in the Node.js REPL
The Node.js REPL (read-eval-print loop) is a command line where we can interactively
evaluate Node.js code.

We can start the Node.js REPL in JavaScript strict mode (which is safer and switched on
by default for code in ESM modules):

node --use_strict

If we run node without any arguments, the Node.js REPL does not use strict mode:

node

This is what using the Node.js REPL looks like (% is a Unix shell prompt, > is the Node.js
REPL prompt):

% node
Welcome to Node.js v18.9.0.
Type ".help" for more information.
> path.join('dir', 'sub', 'file.txt')
'dir/sub/file.txt'
>

All of Node’s built-in modules are available via global variables in the REPL: assert,
path, fs, util, etc.

3.3.2 Quickly printing the result of a JavaScript expression
We can use the shell command node with the option --print (abbreviation: -p) to print
the result of evaluating a JavaScript expression. Similarly to the REPL, all built-in mod-
ules are available via global variables. For example, the following command prints the
path of the homedirectory and works on both Unixes and Windows:

node -p "os.homedir()"

For more information on this command line option, see [Content not included].

3.3.3 Running modules with Node.js code
Take, for example, the following module:

// my-module.mjs
import * as os from 'node:os';
console.log(os.userInfo());

We can run it from a shell via:

node my-module.mjs

https://exploringjs.com/impatient-js/ch_syntax.html#strict-mode

3.3 Running Node.js code 17

3.3.4 Running Node.js code that’s in the clipboard
We can also run Node.js code that we have copied to the clipboard. For example, we
could copy the code of my-module.mjs from the previous section and run it like this on
macOS:

pbpaste | node --input-type=module

Option --input-type=module tells Node.js to interpret the code it receives from standard
input as a module. Among other things, that enables us to use import.
The macOS shell command pbpaste sends the contents of the clipboard to standard out-
put. Other operating systems have similar shell commands:

• Windows Command shell: powershell get-clipboard
• Windows PowerShell: get-clipboard
• Linux: xclip

https://github.com/astrand/xclip

18 3 Getting started with Node.js

Chapter 4

An overview of Node.js:
architecture, APIs, event loop,
concurrency

Contents
4.1 The Node.js platform . 20

4.1.1 Global Node.js variables . 20
4.1.2 The built-in Node.js modules 21
4.1.3 The different styles of Node.js functions 22

4.2 The Node.js event loop . 24
4.2.1 Running to completion makes code simpler 25
4.2.2 Why does Node.js code run in a single thread? 26
4.2.3 The real event loop has multiple phases 26
4.2.4 Next-tick tasks and microtasks 28
4.2.5 Comparing different ways of directly scheduling tasks 28
4.2.6 When does a Node.js app exit? 31

4.3 libuv: the cross-platform library that handles asynchronous I/O (and
more) for Node.js . 32
4.3.1 How libuv handles asynchronous I/O 32
4.3.2 How libuv handles blocking I/O 32
4.3.3 libuv functionality beyond I/O 32

4.4 Escaping the main thread with user code 33
4.4.1 Worker threads . 33
4.4.2 Clusters . 34
4.4.3 Child processes . 34

4.5 Sources of this chapter . 34
4.5.1 Acknowledgement . 35

19

20 4 An overview of Node.js: architecture, APIs, event loop, concurrency

This chapter gives an overview of how Node.js works:
• What its architecture looks like.
• How its APIs are structured.

– A few highlights of its global variables and built-in modules.
• How it runs JavaScript in a single thread via an event loop.
• Options for concurrent JavaScript on this platform.

4.1 The Node.js platform
The following diagram provides an overview of how Node.js is structured:

Node.js app

ES standard library Node.js APIs

JavaScript

V8 JavaScript engine

Operating system

C++

The APIs available to a Node.js app consist of:
• The ECMAScript standard library (which is part of the language)
• Node.js APIs (which are not part of the language proper):

– Some of the APIs are provided via global variables:
* Especially cross-platform web APIs such as fetch and Compression-
Stream fall into this category.

* But a few Node.js-only APIs are global, too – for example, process.
– The remainingNode.js APIs are provided via built-in modules – for example,

'node:path' (functions and constants for handling file system paths) and
'node:fs' (functionality related to the file system).

The Node.js APIs are partially implemented in JavaScript, partially in C++. The latter is
needed to interface with the operating system.
Node.js runs JavaScript via an embedded V8 JavaScript engine (the same engine used by
Google’s Chrome browser).

4.1.1 Global Node.js variables
These are a few highlights of Node’s global variables:

• crypto gives us access to a web-compatible crypto API.
• consolehasmuch overlapwith the sameglobal variable in browsers (console.log()

etc.).

https://nodejs.org/api/globals.html
https://developer.mozilla.org/en-US/docs/Web/API/crypto_property

4.1 The Node.js platform 21

• fetch() lets us use the Fetch browser API.

• process contains an instance of class Process and gives us access to command line
arguments, standard input, standard out, and more.

• structuredClone() is a browser-compatible function for cloning objects.

• URL is a browser-compatible class for handling URLs.

More global variables are mentioned throughout this chapter.

4.1.1.1 Using modules instead of global variables

The following built-in modules provide alternatives to global variables:

• 'node:console' is an alternative to the global variable console:

console.log('Hello!');

import {log} from 'node:console';
log('Hello!');

• 'node:process' is an alternative to the global variable process:

console.log(process.argv);

import {argv} from 'node:process';
console.log(process.argv);

In principle, using modules is cleaner than using global variables. However, using the
global variables console and process are such established patterns that deviating from
them also has downsides.

4.1.2 The built-in Node.js modules
Most of Node’s APIs are provided via modules. These are a few frequently used ones
(in alphabetical order):

• 'node:assert/strict': Assertions are functions that check if a condition is met
and report an error if not. They can be used in application code and for unit testing.
This is an example of using this API:

import * as assert from 'node:assert/strict';
assert.equal(3 + 4, 7);
assert.equal('abc'.toUpperCase(), 'ABC');

assert.deepEqual({prop: true}, {prop: true}); // deep comparison
assert.notEqual({prop: true}, {prop: true}); // shallow comparison

• 'node:child_process' is for running native commands synchronously or in sepa-
rate processes. This module is described in §12 “Running shell commands in child
processes”.

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://nodejs.org/api/process.html
https://nodejs.org/api/assert.html
https://nodejs.org/api/child_process.html

22 4 An overview of Node.js: architecture, APIs, event loop, concurrency

• 'node:fs' provides file system operations such as reading, writing, copying and
deleting files and directories. For more information, see §8 “Working with the file
system on Node.js”.

• 'node:os' contains operating-system-specific constants and utility functions.
Some of them are explained in §7 “Working with file system paths and file URLs
on Node.js”.

• 'node:path' is a cross-platform API for working with file system paths. It is de-
scribed in §7 “Working with file system paths and file URLs on Node.js”.

• 'node:stream' contains a Node.js-specific streams API which are explained in §9
“Native Node.js streams”.

– Node.js also supports the cross-platform web streams API which is the sub-
ject of §10 “Using web streams on Node.js”.

• 'node:util' contains various utility functions.
– Function util.parseArgs() is described in [content not included].

Module 'node:module' contains function builtinModules() which returns an Array
with the specifiers of all built-in modules:

import * as assert from 'node:assert/strict';
import {builtinModules} from 'node:module';
// Remove internal modules (whose names start with underscores)
const modules = builtinModules.filter(m => !m.startsWith('_'));
modules.sort();
assert.deepEqual(

modules.slice(0, 5),
[

'assert',
'assert/strict',
'async_hooks',
'buffer',
'child_process',

]
);

4.1.3 The different styles of Node.js functions
In this section, we use the following import:

import * as fs from 'node:fs';

Node’s functions come in three different styles. Let’s look at the built-in module
'node:fs' as an example:

• A synchronous style with normal functions – for example:
– fs.readFileSync(path, options?): string|Buffer

• Two asynchronous styles:
– An asynchronous style with callback-based functions – for example:

* fs.readFile(path, options?, callback): void

https://nodejs.org/api/fs.html
https://nodejs.org/api/os.html
https://nodejs.org/api/path.html
https://nodejs.org/api/stream.html
https://nodejs.org/api/webstreams.html
https://nodejs.org/api/util.html
https://nodejs.org/api/util.html#utilparseargsconfig
https://nodejs.org/api/fs.html#fsreadfilesyncpath-options
https://nodejs.org/api/fs.html#fsreadfilepath-options-callback

4.1 The Node.js platform 23

– An asynchronous style with Promise-based functions – for example:
* fsPromises.readFile(path, options?): Promise<string|Buffer>

The three examples we have just seen, demonstrate the naming convention for functions
with similar functionality:

• A callback-based function has a base name: fs.readFile()
• Its Promise-based version has the same name, but in a different module:

fsPromises.readFile()
• The name of its synchronous version is the base name plus the suffix “Sync”:

fs.readFileSync()

Let’s take a closer look at how these three styles work.

4.1.3.1 Synchronous functions
Synchronous functions are simplest – they immediately return values and throw errors
as exceptions:

try {
const result = fs.readFileSync('/etc/passwd', {encoding: 'utf-8'});
console.log(result);

} catch (err) {
console.error(err);

}

4.1.3.2 Promise-based functions
Promise-based functions return Promises that are fulfilled with results and rejected with
errors:

import * as fsPromises from 'node:fs/promises'; // (A)

try {
const result = await fsPromises.readFile(

'/etc/passwd', {encoding: 'utf-8'});
console.log(result);

} catch (err) {
console.error(err);

}

Note the module specifier in line A: The Promise-based API is located in a different mod-
ule.
Promises are explained in more detail in “JavaScript for impatient programmers”.

4.1.3.3 Callback-based functions
Callback-based functions pass results and errors to callbacks which are their last param-
eters:

fs.readFile('/etc/passwd', {encoding: 'utf-8'},
(err, result) => {

https://nodejs.org/api/fs.html#fspromisesreadfilepath-options
https://exploringjs.com/impatient-js/ch_promises.html

24 4 An overview of Node.js: architecture, APIs, event loop, concurrency

if (err) {
console.error(err);
return;

}
console.log(result);

}
);

This style is explained in more detail in the Node.js documentation.

4.2 The Node.js event loop
By default, Node.js executes all JavaScript in a single thread, the main thread. The main
thread continuously runs the event loop – a loop that executes chunks of JavaScript. Each
chunk is a callback and can be considered a cooperatively scheduled task. The first task
contains the code (coming from a module or standard input) that we start Node.js with.
Other tasks are usually added later, due to:

• Code manually adding tasks
• I/O (input or output) with the file system, with network sockets, etc.
• Etc.

A first approximation of the event loop looks like this:

task_n···task_1 I/O etc.task()

Event loop
Task queue

Main thread

That is, the main thread runs code similar to:
while (true) { // event loop

const task = taskQueue.dequeue(); // blocks
task();

}

The event loop takes callbacks out of a task queue and executes them in the main thread.
Dequeuing blocks (pauses the main thread) if the task queue is empty.
We’ll explore two topics later:

• How to exit from the event loop.
• How to get around the limitation of JavaScript running in a single thread.

Why is this loop called event loop? Many tasks are added in response to events, e.g. ones
sent by the operating system when input data is ready to be processed.

https://nodejs.org/en/knowledge/getting-started/control-flow/what-are-callbacks/

4.2 The Node.js event loop 25

How are callbacks added to the task queue? These are common possibilities:
• JavaScript code can add tasks to the queue so that they are executed later.
• When an event emitter (a source of events) fires an event, the invocations of the

event listeners are added to the task queue.
• Callback-based asynchronous operations in the Node.js API follow this pattern:

– We ask for something and give Node.js a callback function with which it can
report the result to us.

– Eventually, the operation runs either in the main thread or in an external
thread (more on that later).

– When it is done, an invocation of the callback is added to the task queue.
The following code shows an asynchronous callback-based operation in action. It reads
a text file from the file system:

import * as fs from 'node:fs';

function handleResult(err, result) {
if (err) {

console.error(err);
return;

}
console.log(result); // (A)

}
fs.readFile('reminder.txt', 'utf-8',

handleResult
);
console.log('AFTER'); // (B)

This is the ouput:
AFTER
Don’t forget!

fs.readFile() executes the code that reads the file in another thread. In this case, the
code succeeds and adds this callback to the task queue:

() => handleResult(null, 'Don’t forget!')

4.2.1 Running to completion makes code simpler
An important rule for how Node.js runs JavaScript code is: Each task finishes (“runs to
completion”) before other tasks run. We can see that in the previous example: 'AFTER'
in line B is logged before the result is logged in line A because the initial task finishes
before the task with the invocation of handleResult() runs.
Running to completion means that task lifetimes don’t overlap and we don’t have to
worry about shared data being changed in the background. That simplifies Node.js code.
The next example demonstrates that. It implements a simple HTTP server:

// server.mjs
import * as http from 'node:http';

26 4 An overview of Node.js: architecture, APIs, event loop, concurrency

let requestCount = 1;
const server = http.createServer(

(_req, res) => { // (A)
res.writeHead(200);
res.end('This is request number ' + requestCount); // (B)
requestCount++; // (C)

}
);
server.listen(8080);

We run this code via node server.mjs. After that, the code starts and waits for HTTP
requests. We can send them by using a web browser to go to http://localhost:8080.
Each time we reload that HTTP resource, Node.js invokes the callback that starts in line
A. It serves a message with the current value of variable requestCount (line B) and incre-
ments it (line C).

Each invocation of the callback is a new task and variable requestCount is shared be-
tween tasks. Due to running to completion, it is easy to read and update. There is no
need to synchronize with other concurrently running tasks because there aren’t any.

4.2.2 Why does Node.js code run in a single thread?
Why does Node.js code run in a single thread (with an event loop) by default? That has
two benefits:

• As we have already seen, sharing data between tasks is simpler if there is only a
single thread.

• In traditional multi-threaded code, an operation that takes longer to complete
blocks the current thread until the operation is finished. Examples of such op-
erations are reading a file or processing HTTP requests. Performing many of these
operations is expensive because we have to create a new thread each time. With
an event loop, the per-operation cost is lower, especially if each operation doesn’t
do much. That’s why event-loop-based web servers can handle higher loads than
thread-based ones.

Given that some of Node’s asynchronous operations run in threads other than the main
thread (more on that soon) and report back to JavaScript via the task queue, Node.js is
not really single-threaded. Instead, we use a single thread to coordinate operations that
run concurrently and asynchronously (in the main thread).

This concludes our first look at the event loop. Feel free to skip the remainder of this
section if a superficial explanation is enough for you. Read on to learn more details.

4.2.3 The real event loop has multiple phases
The real event loop has multiple task queues fromwhich it reads in multiple phases (you
can check out some of the JavaScript code in the GitHub repository nodejs/node). The
following diagram shows the most important ones of those phases:

https://github.com/nodejs/node/blob/main/lib/internal/process/task_queues.js
https://github.com/nodejs/node/blob/main/lib/internal/process/task_queues.js

4.2 The Node.js event loop 27

Timers: setTimeout(),
setInterval(), …

Poll: I/O

Check: setImmediate()

User code:
callbacks

OS: connections,
data

User code:
callbacks

· · ·

· · ·

What do the event loop phases do that are shown in the diagram?

• Phase “timers” invokes timed tasks that were added to its queue by:

– setTimeout(task, delay=1) runs the callback task after delaymilliseconds.
– setInterval(task, delay=1) runs the callback task repeatedly, with pauses
lasting delaymilliseconds.

• Phase “poll” retrieves and processes I/O events and runs I/O-related tasks from
its queue.

• Phase “check” (the “immediate phase”) executes tasks scheduled via:

– setImmediate(task) runs the callback task as soon as possible (“immedi-
ately” after phase “poll”).

Each phase runs until its queue is empty or until a maximum number of tasks was pro-
cessed. Except for “poll”, each phase waits until its next turn before it processes tasks
that were added during its run.

4.2.3.1 Phase “poll”

• If the poll queue is not empty, the poll phase will go through it and run its tasks.
• Once the poll queue is empty:

– If there are setImmediate() tasks, processing advances to the “check” phase.
– If there are timer tasks that are ready, processing advances to the “timers”
phase.

– Otherwise, this phase blocks thewholemain thread andwaits until new tasks
are added to the poll queue (or until this phase ends, see below). These are
processed immediately.

If this phase takes longer than a system-dependent time limit, it ends and the next phase
runs.

https://nodejs.org/api/timers.html#settimeoutcallback-delay-args
https://nodejs.org/api/timers.html#setintervalcallback-delay-args
https://nodejs.org/api/timers.html#setimmediatecallback-args

28 4 An overview of Node.js: architecture, APIs, event loop, concurrency

4.2.4 Next-tick tasks and microtasks
After each invoked task, a “sub-loop” runs that consists of two phases:

process.nextTick()

Microtasks

The sub-phases handle:
• Next-tick tasks, as enqueued via process.nextTick().
• Microtasks, as enqueued via queueMicrotask(), Promise reactions, etc.

Next-tick tasks are Node.js-specific, Microtasks are a cross-platform web standard (see
MDN’s support table).
This sub-loop runs until both queues are empty. Tasks added during its run, are pro-
cessed immediately – the sub-loop does not wait until its next turn.

4.2.5 Comparing different ways of directly scheduling tasks
We can use the following functions and methods to add callbacks to one of the task
queues:

• Timed tasks (phase “timers”)
– setTimeout() (web standard)
– setInterval() (web standard)

• Untimed tasks (phase “check”)
– setImmediate() (Node.js-specific)

• Tasks that run immediately after the current task:
– process.nextTick() (Node.js-specific)
– queueMicrotask(): (web standard)

It’s important to note that when timing a task via a delay, we are specifying the earliest
possible time that the task will run. Node.js cannot always run them at exactly the sched-
uled time because it can only check between tasks if any timed tasks are due. Therefore,
a long-running task can cause timed tasks to be late.

4.2.5.1 Next-tick tasks and microtasks vs. normal tasks
Consider the following code:

function enqueueTasks() {
Promise.resolve().then(() => console.log('Promise reaction 1'));
queueMicrotask(() => console.log('queueMicrotask 1'));
process.nextTick(() => console.log('nextTick 1'));
setImmediate(() => console.log('setImmediate 1')); // (A)
setTimeout(() => console.log('setTimeout 1'), 0);

https://developer.mozilla.org/en-US/docs/Web/API/queueMicrotask#browser_compatibility

4.2 The Node.js event loop 29

Promise.resolve().then(() => console.log('Promise reaction 2'));
queueMicrotask(() => console.log('queueMicrotask 2'));
process.nextTick(() => console.log('nextTick 2'));
setImmediate(() => console.log('setImmediate 2')); // (B)
setTimeout(() => console.log('setTimeout 2'), 0);

}

setImmediate(enqueueTasks);

We use setImmediate() to avoid a pecularity of ESMmodules: They are executed in mi-
crotasks, which means that if we enqueue microtasks at the top level of an ESMmodule,
they run before next-tick tasks. As we’ll see next, that’s different in most other contexts.
This is the output of the previous code:

nextTick 1
nextTick 2
Promise reaction 1
queueMicrotask 1
Promise reaction 2
queueMicrotask 2
setTimeout 1
setTimeout 2
setImmediate 1
setImmediate 2

Observations:
• All next-tick tasks are executed immediately after enqueueTasks().
• They are followed by all microtasks, including Promise reactions.
• Phase “timers” comes after the immediate phase. That’s when the timed tasks are

executed.
• We have added immediate tasks during the immediate (“check”) phase (lineA and

line B). They show up last in the output, which means that they were not executed
during the current phase, but during the next immediate phase.

4.2.5.2 Enqueuing next-tick tasks and microtasks during their phases
The next code examineswhat happens if we enqueue a next-tick task during the next-tick
phase and a microtask during the microtask phase:

setImmediate(() => {
setImmediate(() => console.log('setImmediate 1'));
setTimeout(() => console.log('setTimeout 1'), 0);

process.nextTick(() => {
console.log('nextTick 1');
process.nextTick(() => console.log('nextTick 2'));

});

30 4 An overview of Node.js: architecture, APIs, event loop, concurrency

queueMicrotask(() => {
console.log('queueMicrotask 1');
queueMicrotask(() => console.log('queueMicrotask 2'));
process.nextTick(() => console.log('nextTick 3'));

});
});

This is the output:
nextTick 1
nextTick 2
queueMicrotask 1
queueMicrotask 2
nextTick 3
setTimeout 1
setImmediate 1

Observations:
• Next-tick tasks are executed first.
• “nextTick 2” in enqueued during the next-tick phase and immediately executed.

Execution only continues once the next-tick queue is empty.
• The same is true for microtasks.
• We enqueue “nextTick 3” during the microtask phase and execution loops back

to the next-tick phase. These subphases are repeated until both their queues are
empty. Only then does execution move on to the next global phases: First the
“timers” phase (“setTimeout 1”). Then the immediate phase (“setImmediate 1”).

4.2.5.3 Starving out event loop phases
The following code explores which kinds of tasks can starve out event loop phases (pre-
vent them from running via infinite recursion):

import * as fs from 'node:fs/promises';

function timers() { // OK
setTimeout(() => timers(), 0);

}
function immediate() { // OK

setImmediate(() => immediate());
}

function nextTick() { // starves I/O
process.nextTick(() => nextTick());

}

function microtasks() { // starves I/O
queueMicrotask(() => microtasks());

4.2 The Node.js event loop 31

}

timers();
console.log('AFTER'); // always logged
console.log(await fs.readFile('./file.txt', 'utf-8'));

The “timers” phase and the immediate phase don’t execute tasks that are enqueued dur-
ing their phases. That’s why timers() and immediate() don’t starve out fs.readFile()
which reports back during the “poll” phase (there is also a Promise reaction, but let’s ig-
nore that here).
Due to how next-tick tasks and microtasks are scheduled, both nextTick() and micro-
tasks() prevent the output in the last line.

4.2.6 When does a Node.js app exit?
At the end of each iteration of the event loop, Node.js checks if it’s time to exit. It keeps
a reference count of pending timeouts (for timed tasks):

• Scheduling a timed task via setImmediate(), setInterval(), or setTimeout()
increases the reference count.

• Running a timed task decreases the reference count.
If the reference count is zero at the end of an event loop iteration, Node.js exits.
We can see that in the following example:

function timeout(ms) {
return new Promise(

(resolve, _reject) => {
setTimeout(resolve, ms); // (A)

}
);

}
await timeout(3_000);

Node.js waits until the Promise returned by timeout() is fulfilled. Why? Because the
task we schedule in line A keeps the event loop alive.
In contrast, creating Promises does not increase the reference count:

function foreverPending() {
return new Promise(

(_resolve, _reject) => {}
);

}
await foreverPending(); // (A)

In this case, execution temporarily leaves this (main) task during await in line A. At the
end of the event loop, the reference count is zero and Node.js exits. However, the exit is
not successful. That is, the exit code is not 0, it is 13 (“Unfinished Top-Level Await”).
We can manually control whether a timeout keeps the event loop alive: By default, tasks
scheduled via setImmediate(), setInterval(), and setTimeout() keep the event loop

https://nodejs.org/api/process.html#exit-codes

32 4 An overview of Node.js: architecture, APIs, event loop, concurrency

alive as long as they are pending. These functions return instances of class Timeout
whose method .unref() changes that default so that the timeout being active won’t pre-
vent Node.js from exiting. Method .ref() restores the default.

Tim Perry mentions a use case for .unref(): His library used setInterval() to repeat-
edly run a background task. That task prevented applications from exiting. He fixed the
issue via .unref().

4.3 libuv: the cross-platform library that handles asyn-
chronous I/O (and more) for Node.js

libuv is a library written in C that supports many platforms (Windows, macOS, Linux,
etc.). Node.js uses it to handle I/O and more.

4.3.1 How libuv handles asynchronous I/O
Network I/O is asynchronous and doesn’t block the current thread. Such I/O includes:

• TCP
• UDP
• Terminal I/O
• Pipes (Unix domain sockets, Windows named pipes, etc.)

To handle asynchronous I/O, libuv uses native kernel APIs and subscribes to I/O events
(epoll on Linux; kqueue on BSD Unix incl. macOS; event ports on SunOS; IOCP on Win-
dows). It then gets notifications when they occur. All of these activities, including the
I/O itself, happen on the main thread.

4.3.2 How libuv handles blocking I/O
Some native I/O APIs are blocking (not asynchronous) – for example, file I/O and some
DNS services. libuv invokes these APIs from threads in a thread pool (the so-called
“worker pool”). That enables the main thread to use these APIs asynchronously.

4.3.3 libuv functionality beyond I/O
libuv helps Node.js with more than just with I/O. Other functionality includes:

• Running tasks in the thread pool
• Signal handling
• High resolution clock
• Threading and synchronization primitives

As an aside, libuv has its own event loop whose source code you can check out in the
GitHub repository libuv/libuv (function uv_run()).

https://nodejs.org/api/timers.html#class-timeout
https://httptoolkit.tech/blog/unblocking-node-with-unref/
https://github.com/libuv/libuv/blob/v1.x/src/unix/core.c

4.4 Escaping the main thread with user code 33

4.4 Escaping the main thread with user code
If wewant to keepNode.js responsive to I/O, we should avoid performing long-running
computations in main-thread tasks. There are two options for doing so:

• Partitioning: We can split up the computation into smaller pieces and run each
piece via setImmediate(). That enables the event loop to perform I/O between
the pieces.

– An upside is that we can perform I/O in each piece.
– A downside is that we still slow down the event loop.

• Offloading: We can perform our computation in a different thread or process.
– Downsides are that we can’t perform I/O from threads other than the main
thread and that communicating with outside code becomes more compli-
cated.

– Upsides are that we don’t slow down the event loop, that we canmake better
use of multiple processor cores, and that errors in other threads don’t affect
the main thread.

The next subsections cover a few options for offloading.

4.4.1 Worker threads
Worker Threads implement the cross-platform Web Workers API with a few differences
– e.g.:

• Worker Threads have to be imported from a module, Web Workers are accessed
via a global variable.

• Inside a worker, listening to messages and posting messages is done via methods
of the global object in browsers. On Node.js, we import parentPort instead.

• We can use most Node.js APIs from workers. In browsers, our choice is more
limited (we can’t use the DOM, etc.).

• On Node.js, more objects are transferable (all objects whose classes extend the in-
ternal class JSTransferable) than in browsers.

On one hand, Worker Threads really are threads: They are more lightweight than pro-
cesses and run in the same process as the main thread.

On the other hand:

• Each worker runs its own event loop.
• Each worker has its own JavaScript engine instance and its own Node.js instance
– including separate global variables.

– (Specifically, each worker is an V8 isolate that has its own JavaScript heap but
shares its operating system heap with other threads.)

• Sharing data between threads is limited:
– We can share binary data/numbers via SharedArrayBuffers.
– Atomics offers atomic operations and synchronization primitives that help
when using SharedArrayBuffers.

https://nodejs.org/api/worker_threads.html
https://developer.mozilla.org/en-US/docs/Web/API/Worker#browser_compatibility
https://github.com/nodejs/node/issues/37080
https://github.com/nodejs/node/issues/37080
https://chromium.googlesource.com/chromium/src/+/master/third_party/blink/renderer/bindings/core/v8/V8BindingDesign.md
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Atomics

34 4 An overview of Node.js: architecture, APIs, event loop, concurrency

– The Channel Messaging API lets us send data (“messages”) over two-way
channels. The data is either cloned (copied) or transferred (moved). The latter
is more efficient and only supported by a few data structures.

For more information, see the Node.js documentation on worker threads.

4.4.2 Clusters
Cluster is a Node.js-specific API. It lets us run clusters of Node.js processes that we can
use to distribute workloads. The processes are fully isolated but share server ports. They
can communicate by passing JSON data over channels.

If we don’t need process isolation, we can use Worker Threads which are more
lightweight.

4.4.3 Child processes
Child process is another Node.js-specific API. It lets us spawn new processes that run
native commands (often via native shells). This API is covered in §12 “Running shell
commands in child processes”.

4.5 Sources of this chapter
Node.js event loop:

• Node.js documentation: “TheNode.js Event Loop, Timers, and process.nextTick()”
• “What you should know to really understand the Node.js Event Loop” by Daniel

Khan
• “How does Node.js decide whether to exit the event loop or go around again?” by

Mark Meyer

Videos on the event loop (which refresh some of the background knowledge needed for
this chapter):

• “Node’s Event Loop From the Inside Out” (by Sam Roberts) explains why oper-
ating systems added support for asynchronous I/O; which operations are asyn-
chronous and which aren’t (and have to run in the thread pool); etc.

• “The Node.js Event Loop: Not So Single Threaded” (by Bryan Hughes) contains a
brief history of multitasking (cooperative multitasking, preemptive multitasking,
symmteric multi-threading, asynchronous multitasking); processes vs. threads;
running I/O synchronously vs. in the thread pool; etc.

libuv:

• libuv documentation:
– “Design overview”
– “Basics of libuv”

• “A deep dive into libuv” by Saúl Ibarra Corretgé
• “I/O multiplexing (select vs. poll vs. epoll/kqueue) - problems and algorithms”

by Nima Aghdaii

https://developer.mozilla.org/en-US/docs/Web/API/Channel_Messaging_API
https://developer.mozilla.org/en-US/docs/Glossary/Transferable_objects#supported_objects
https://nodejs.org/api/worker_threads.html
https://nodejs.org/api/cluster.html
https://nodejs.org/api/child_process.html
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/
https://medium.com/the-node-js-collection/what-you-should-know-to-really-understand-the-node-js-event-loop-and-its-metrics-c4907b19da4c
https://stackoverflow.com/questions/46914025/node-exits-without-error-and-doesnt-await-promise-event-callback/46916601#46916601
https://www.youtube.com/watch?v=P9csgxBgaZ8
https://www.youtube.com/watch?v=zphcsoSJMvM
http://docs.libuv.org/en/latest/design.html
http://docs.libuv.org/en/latest/guide/basics.html
https://www.youtube.com/watch?v=sGTRmPiXD4Y
https://nima101.github.io/io_multiplexing

4.5 Sources of this chapter 35

• “Developer Initiates I/O Operation. You Won’t Believe What Happens Next.” by
Colin J. Ihrig

– Traces a JavaScript function call as it goes from JavaScript to Node’s core to
libuv and back.

JavaScript concurrency:
• Section “Complex calculations without blocking the Event Loop” in “Don’t Block

the Event Loop (or the Worker Pool)” in the Node.js documentation
• “Understanding Worker Threads in Node.js” by Liz Parody
• “The State Of Web Workers In 2021” by Surma
• Video “Node.js: The Road to Workers” by Anna Henningsen

4.5.1 Acknowledgement
• I’m much obliged to Dominic Elm for reviewing this chapter and providing im-

portant feedback.

https://cjihrig.com/node_libuv_io
https://nodejs.org/en/docs/guides/dont-block-the-event-loop/#complex-calculations-without-blocking-the-event-loop
https://nodesource.com/blog/worker-threads-nodejs/
https://www.smashingmagazine.com/2021/06/web-workers-2021/
https://www.youtube.com/watch?v=-ssCzHoUI7M
https://twitter.com/elmd_

36 4 An overview of Node.js: architecture, APIs, event loop, concurrency

Chapter 5

Packages: JavaScript’s units for
software distribution

Contents
5.1 What is a package? . 38

5.1.1 Publishing packages: package registries, package managers,
package names . 38

5.2 The file system layout of a package 39
5.2.1 package.json . 39
5.2.2 Property "dependencies" of package.json 41
5.2.3 Property "bin" of package.json 42
5.2.4 Property "license" of package.json 42

5.3 Archiving and installing packages 43
5.3.1 Installing a package from git 43
5.3.2 Creating a new package and installing dependencies 44

5.4 Referring to modules via specifiers 45
5.4.1 Filename extensions in module specifiers 46

5.5 Module specifiers in Node.js . 46
5.5.1 Resolving module specifiers in Node.js 46
5.5.2 Package exports: controlling what other packages see 47
5.5.3 Package imports . 51
5.5.4 node: protocol imports . 51

This chapter explains what npm packages are and how they interact with ESMmodules.

Required knowledge: I’m assuming that you are loosely familiar with the syntax of
ECMAScript modules. If you are not, you can read chapter “modules” in “JavaScript for
impatient programmers”.

37

https://exploringjs.com/impatient-js/ch_modules.html

38 5 Packages: JavaScript’s units for software distribution

5.1 What is a package?
In the JavaScripte ecosystem, a package is a way of organizing software projects: It is
a directory with a standardized layout. A package can contain all kinds of files - for
example:

• A web application written in JavaScript, to be deployed on a server
• JavaScript libraries (for Node.js, for browsers, for all JavaScript platforms, etc.)
• Libraries for programming languages other than JavaScript: TypeScript, Rust, etc.
• Unit tests (e.g. for the libraries in the package)
• Bin scripts –Node.js-based shell scripts – e.g., development tools such as compilers,

test runners, and documentation generators
• Many other kinds of artifacts

A package can depend on other packages (which are called its dependencies) which contain:
• Libraries needed by the package’s JavaScript code
• Shell scripts used during development
• Etc.

The dependencies of a package are installed inside that package (we’ll see how soon).
One common distinction between packages is:

• Published packages can be installed by us:
– Global installation: We can install them globally so that their bin scripts be-
come available at the command line.

– Local installation: We can install them as dependencies into our own pack-
ages. Their bin scripts can be used locally (we’ll see how soon).

• Unpublished packages never become dependencies of other packages, but do have
dependencies themselves. Examples include web applications that are deployed
to servers.

The next subsection explains how packages can be published.

5.1.1 Publishing packages: package registries, package managers,
package names

The main way of publishing a package is to upload it to a package registry – an online
software repository. The de facto standard is the npm registry but it is not the only option.
For example, companies can host their own internal registries.
A package manager is a command line tool that downloads packages from a registry (or
other sources) and installs them locally or globally. If a package contains bin scripts, it
also makes those available locally or globally.
The most popular package manager is called npm and comes bundled with Node.js. Its
name originally stood for “Node Package Manager”. Later, when npm and the npm
registry were used not only for Node.js packages, the definition was changed to “npm is
not a package manager” (source).
There are other popular package managers such as yarn and pnpm. All of these package
managers use the npm registry by default.

https://www.npmjs.com
https://en.wikipedia.org/wiki/Npm_(software)#Acronym

5.2 The file system layout of a package 39

Each package in the npm registry has a name. There are two kinds of names:
• Global names are unique across the whole registry. These are two examples:

minimatch
mocha

• Scoped names consist of two parts: A scope and a name. Scopes are globally unique,
names are unique per scope. These are two examples:

@babel/core
@rauschma/iterable

The scope starts with an @ symbol and is separated from the name with a slash.

5.2 The file system layout of a package
Once a package my-package is fully installed, it almost always looks like this:

my-package/
package.json
node_modules/
[More files]

What are the purposes of these file system entries?
• package.json is a file every package must have:

– It contains metadata describing the package (its name, its version, its author,
etc.).

– It lists the dependencies of the package: other packages that it needs, such as
libraries and tools. Per dependency, we record:
* A range of version numbers. Not specifying a specific version allows for
upgrades and for code sharing between dependencies.

* By default, dependencies come from the npm registry. But we can also
specify other sources: a local directory, a GZIP file, a URL pointing to a
GZIP file, a registry other than npm’s, a git repository, etc.

• node_modules/ is a directory into which the dependencies of the package are in-
stalled. Each dependency also has a node_modules folder with its dependencies,
etc. The result is a tree of dependencies.

Some packages also have the file package-lock.json that sits next to package.json: It
records the exact versions of the dependencies that were installed and is kept up to date
if we add more dependencies via npm.

5.2.1 package.json

This is a starter package.json that can be created via npm:
{

"name": "my-package",
"version": "1.0.0",
"description": "",

40 5 Packages: JavaScript’s units for software distribution

"main": "index.js",
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"
},
"keywords": [],
"author": "",
"license": "ISC"

}

What are the purposes of these properties?
• Some properties are required for public packages (published on the npm registry):

– name specifies the name of this package.
– version is used for version management and follows semantic versioning
with three dot-separated numbers:
* The major version is incremented when incompatible API changes are
made.

* The minor version is incremented when functionality is added in a back-
ward compatible manner.

* The patch version is incrementedwhen small changes aremade that don’t
really change the functionality.

• Other properties for public packages are optional:
– description, keywords, author are optional and make it easier to find pack-
ages.

– license clarifies how this package can be used. Itmakes sense to provide this
value if the package is public in any way. “Choose an open source license”
can help with making this choice.

• main is a property for packages with library code. It specifies the module that “is”
the package (explained later in this chapter).

• scripts is a property for setting up package scripts – abbreviations for development-
time shell commands. These can be executed via npm run. For example, the script
test can be executed via npm run test. For more on this topic, see [content not
included].

Other useful properties:
• dependencies lists the dependencies of a package. Its format is explained soon.
• devDependencies are dependencies that are only needed during development.
• The following setting means that all files with the name extension .js are inter-

preted as ECMAScript modules. Unless we are dealing with legacy code, it makes
sense to add it:

"type": "module"

• bin lists bin scripts, Node.js modules within the package that npm installs as shell
scripts. Its format is explained soon.

• license specifies a license for the package. Its format is explained soon.

https://semver.org
https://choosealicense.com

5.2 The file system layout of a package 41

• Normally, the properties name and version are required and npmwarns us if they
are missing. However, we can change that via the following setting:

"private": true

That prevents the package from accidentally being published and allows us to omit
name and version.

For more information on package.json, see the npm documentation.

5.2.2 Property "dependencies" of package.json
This is what the dependencies in a package.json file look like:

"dependencies": {
"minimatch": "^5.1.0",
"mocha": "^10.0.0"

}

The properties record both the names of packages and constraints for their versions.
Versions themselves follow the semantic versioning standard. They are up to three num-
bers (the second and third number are optional and zero by default) separated by dots:

1. Major version: This number changes when a packages changes in incompatible
ways.

2. Minor version: This number changes when functionality is added in a backward
compatible manner.

3. Patch version: This number changes when backward compatible bug fixes are
made.

Node’s version ranges are explained in the semver repository. Examples include:
• A specific version without any extra characters means that the installed version

must match the version exactly:
"pkg1": "2.0.1",

• major.minor.x or major.x means that the components that are numbers must
match, the components that are x or omitted can have any values:

"pkg2": "2.x",
"pkg3": "3.3.x",

• *matches any version:
"pkg4": "*",

• >=versionmeans that the installed version must be version or higher:
"pkg5": ">=1.0.2",

• <=versionmeans that the installed version must be version or lower:
"pkg6": "<=2.3.4",

• version1-version2 is the same as >=version1 <=version2:

https://docs.npmjs.com/files/package.json
https://semver.org
https://github.com/npm/node-semver#versions

42 5 Packages: JavaScript’s units for software distribution

"pkg7": "1.0.0 - 2.9999.9999",

• ^version (as used in the previous example) is a caret range and means that the in-
stalled version can be version or higher but must not introduce breaking changes.
That is, the major version must be the same:

"pkg8": "^4.17.21",

5.2.3 Property "bin" of package.json
This is how we can tell npm to install modules as shell scripts:

"bin": {
"my-shell-script": "./src/shell/my-shell-script.mjs",
"another-script": "./src/shell/another-script.mjs"

}

If we install a packagewith this "bin" value globally, Node.js ensures that the commands
my-shell-script and another-script become available at the command line.
If we install the package locally, we can use the two commands in package scripts or via
the npx command.
A string is also allowed as the value of "bin":

{
"name": "my-package",
"bin": "./src/main.mjs"

}

This is an abbreviation for:
{

"name": "my-package",
"bin": {

"my-package": "./src/main.mjs"
}

}

5.2.4 Property "license" of package.json
The value of property "license" is always a string with a SPDX license ID. For example,
the following value denies others the right to use a package under any terms (which is
useful if a package is unpublished):

"license": "UNLICENSED"

The SPDX website lists all available license IDs. If you find it difficult to pick one, the
website “Choose an open source license” can help – for example, this is the advice if you
“want it simple and permissive”:

The MIT License is short and to the point. It lets people do almost anything
they want with your project, like making and distributing closed source ver-
sions.

https://docs.npmjs.com/cli/v8/commands/npx
https://spdx.org/licenses/
https://choosealicense.com
https://choosealicense.com

5.3 Archiving and installing packages 43

Babel, .NET, and Rails use the MIT License.

You can use that license like this:

"license": "MIT"

5.3 Archiving and installing packages
Packages in the npm registry are often archived in two different ways:

• For development, they are stored in a git repository.
• To make them installable via npm, they are uploaded to the npm registry.

Either way, the package is archived without its dependencies – which we have to install
before we can use it.

If a package is stored in a git repository:

• We normally want the same dependency tree to be used every time we install the
package.

– That’s why package-lock.json is usually included.
• We can regenerate artifacts from other artifacts – for example, compile TypeScript

files to JavaScript files.

If a package is published to the npm registry:

• It should be flexible with its dependencies so that upgrading dependencies and
sharing packages in a dependency tree becomes possible.

– That’s why package-lock.json is never uploaded to the npm registry.
• It often contains generated artifacts - for example, JavaScript files compiled from

TypeScript files are included so that people who only use JavaScript don’t have to
install a TypeScript compiler.

Dev dependencies (property devDependencies in package.json) are only installed dur-
ing development but not when we install the package from the npm registry.

Note that unpublished packages in git repositories are handled similarly to published
packages during development.

5.3.1 Installing a package from git
To install a package pkg from git, we clone its repository and:

cd pkg/
npm install

Then the following steps are performed:

• node_modules is created and the dependencies are installed. Installing a depen-
dency also means downloading that dependency and installing its dependencies
(etc.).

• Sometimes additional setup steps are performed. Which ones those are can be
configured via package.json.

44 5 Packages: JavaScript’s units for software distribution

If the root package doesn’t have a package-lock.jsonfile, it is created during installation
(as mentioned, dependencies don’t have this file).
In a dependency tree, the same dependency may exist multiple times, possibly in differ-
ent versions. There a ways to minimize duplication, but that is beyond the scope of this
chapter.

5.3.1.1 Reinstalling a package
This is a (slightly crude) way of fixing issues in a dependency tree:

cd pkg/
rm -rf node_modules/
rm package-lock.json
npm install

Note that that may result in different, newer, packages being installed. We can avoid that
by not deleting package-lock.json.

5.3.2 Creating a new package and installing dependencies
There are many tools and technique for setting up new packages. This is one simple way:

mkdir my-package
cd my-package/
npm init --yes

Afterward, the directory looks like this:
my-package/

package.json

This package.json has the starter content that we have already seen.

5.3.2.1 Installing dependencies
Right now, my-package doesn’t have any dependencies. Let’s say we want to use the
library lodash-es. This is how we install it into our package:

npm install lodash-es

This command performs the following steps:
• The package is downloaded into my-package/node_modules/lodash-es.
• Its dependencies are also installed. Then the dependencies of its dependencies.

Etc.
• A new property is added to package.json:

"dependencies": {
"lodash-es": "^4.17.21"

}

• package-lock.json is updated with the exact version that was installed.

5.4 Referring to modules via specifiers 45

5.4 Referring to modules via specifiers
Code in other ECMAScript modules is accessed via import statements (line A and line
B):

// Static import
import {namedExport} from 'https://example.com/some-module.js'; // (A)
console.log(namedExport);

// Dynamic import
import('https://example.com/some-module.js') // (B)
.then((moduleNamespace) => {

console.log(moduleNamespace.namedExport);
});

Both static imports and dynamic imports use module specifiers to refer to modules:
• The string after from in line A.
• The string argument in line B.

There are three kinds of module specifiers:
• Absolute specifiers are full URLs – for example:

'https://www.unpkg.com/browse/yargs@17.3.1/browser.mjs'
'file:///opt/nodejs/config.mjs'

Absolute specifiers are mostly used to access libraries that are directly hosted on
the web.

• Relative specifiers are relative URLs (starting with '/', './' or '../') – for example:
'./sibling-module.js'
'../module-in-parent-dir.mjs'
'../../dir/other-module.js'

Every module has a URL whose protocol depends on its location (file:, https:,
etc.). If it uses a relative specifier, JavaScript turns that specifier into a full URL by
resolving it against the module’s URL.
Relative specifiers are mostly used to access other modules within the same code
base.

• Bare specifiers are paths (without protocol and domain) that start with neither
slashes nor dots. They begin with the names of packages. Those names can
optionally be followed by subpaths:

'some-package'
'some-package/sync'
'some-package/util/files/path-tools.js'

Bare specifiers can also refer to packages with scoped names:
'@some-scope/scoped-name'
'@some-scope/scoped-name/async'
'@some-scope/scoped-name/dir/some-module.mjs'

46 5 Packages: JavaScript’s units for software distribution

Each bare specifier refers to exactly one module inside a package; if it has no sub-
path, it refers to the designated “main” module of its package. A bare specifier is
never used directly but always resolved – translated to an absolute specifier. How
resolution works depends on the platform. We’ll learn more soon.

5.4.1 Filename extensions in module specifiers
• Absolute specifiers and relative specifiers always have filename extensions – usu-

ally .js or .mjs.
• There are three styles of bare specifiers:

– Style 1: no subpath
– Style 2: a subpath without a filename extension. In this case, the subpath
works like a modifier for the package name:

'my-parser/sync'
'my-parser/async'

'assertions'
'assertions/strict'

– Style 3: a subpath with a filename extension. In this case, the package is seen
as a collection of modules and the subpath points to one of them:

'large-package/misc/util.js'
'large-package/main/parsing.js'
'large-package/main/printing.js'

Caveat of style 3 bare specifiers: How the filename extension is interpreted depends on
the dependency andmay differ from the importing package. For example, the importing
packagemay use .mjs for ESMmodules and .js for CommonJSmodules, while the ESM
modules exported by the dependency may have bare paths with the filename extension
.js.

5.5 Module specifiers in Node.js
Let’s see how module specifiers work in Node.js.

5.5.1 Resolving module specifiers in Node.js
The Node.js resolution algorithm works as follows:

• Parameters:
– URL of importing module
– Module specifier

• Result: Resolved URL for module specifier
This is the algorithm:

• If a specifier is absolute, resolution is already finished. Three protocols are most
common:

– file: for local files
– https: for remote files

https://nodejs.org/api/esm.html#resolution-algorithm

5.5 Module specifiers in Node.js 47

– node: for built-in modules (discussed later)

• If a specifier is relative, it is resolved against the URL of the importing module.

• If a specifier is bare:

– If it starts with '#', it is resolved by looking it up among the package imports
(which are explained later) and resolving the result.

– Otherwise, it is a bare specifier that has one of these formats (the subpath is
optional):

* «package»/sub/path

* @«scope»/«scoped-package»/sub/path

The resolution algorithm traverses the current directory and its ancestors un-
til it finds a directory node_modules that has a subdirectory matching the
beginning of the bare specifier, i.e. either:

* node_modules/«package»/

* node_modules/@«scope»/«scoped-package»/

That directory is the directory of the package. By default, the (potentially
empty) subpath after the package ID is interpreted as relative to the pack-
age directory. The default can be overridden via package exports which are
explained next.

The result of the resolution algorithm must point to a file. That explains why absolute
specifiers and relative specifiers always have filename extensions. Bare specifiers mostly
don’t because they are abbreviations that are looked up in package exports.

Module files usually have these filename extensions:

• If a file has the name extension .mjs, it is always an ES module.
• A file that has the name extension .js is an ES module if the closest package.json

has this entry:
– "type": "module"

If Node.js executes code provided via stdin, --eval or --print, we use the following
command-line option so that it is interpreted as an ES module:

--input-type=module

5.5.2 Package exports: controlling what other packages see
In this subsection, we are working with a package that has the following file layout:

my-lib/
dist/

src/
main.js
util/

errors.js
internal/

https://nodejs.org/api/cli.html#--input-typetype
https://nodejs.org/api/cli.html#--input-typetype

48 5 Packages: JavaScript’s units for software distribution

internal-module.js
test/

Package exports are specified via property "exports" in package.json and support two
important features:

• Hiding the internals of a package:
– Without property "exports", every module in package my-lib can be ac-
cessed via a relative path after the package name – e.g.:

'my-lib/dist/src/internal/internal-module.js'
– Once the property exists, only specifiers listed in it can be used. Everything
else is hidden from the outside.

• Nicer module specifiers: Package export let us define bare specifier subpaths for
modules that are shorter and/or have better names.

Recall the three styles of bare specifiers:
• Style 1: bare specifiers without subpaths
• Style 2: bare specifiers with extension-less subpaths
• Style 3: bare specifiers with subpaths with extensions

Package exports help us with all three styles

5.5.2.1 Style 1: configuring which file represents (the bare specifier for) the package
package.json:

{
"main": "./dist/src/main.js",
"exports": {

".": "./dist/src/main.js"
}

}

We only provide "main" for backward-compatibility (with older bundlers and Node.js
12 and older). Otherwise, the entry for "." is enough.
With these package exports, we can now import from my-lib as follows.

import {someFunction} from 'my-lib';

This imports someFunction() from this file:
my-lib/dist/src/main.js

5.5.2.2 Style 2: mapping extension-less subpaths to module files
package.json:

{
"exports": {

"./util/errors": "./dist/src/util/errors.js"
}

}

https://nodejs.org/api/packages.html#packages_package_entry_points

5.5 Module specifiers in Node.js 49

We are mapping the specifier subpath 'util/errors' to a module file. That enables the
following import:

import {UserError} from 'my-lib/util/errors';

5.5.2.3 Style 2: better subpaths without extensions for a subtree
The previous subsection explained how to create a single mapping for an extension-less
subpath. There is also a way to create multiple such mappings via a single entry:
package.json:

{
"exports": {

"./lib/*": "./dist/src/*.js"
}

}

Any file that is a descendant of ./dist/src/ can now be imported without a filename
extension:

import {someFunction} from 'my-lib/lib/main';
import {UserError} from 'my-lib/lib/util/errors';

Note the asterisks in this "exports" entry:
"./lib/*": "./dist/src/*.js"

These are more instructions for how to map subpaths to actual paths than wildcards that
match fragments of file paths.

5.5.2.4 Style 3: mapping subpaths with extensions to module files
package.json:

{
"exports": {

"./util/errors.js": "./dist/src/util/errors.js"
}

}

We are mapping the specifier subpath 'util/errors.js' to a module file. That enables
the following import:

import {UserError} from 'my-lib/util/errors.js';

5.5.2.5 Style 3: better subpaths with extensions for a subtree
package.json:

{
"exports": {

"./*": "./dist/src/*"
}

}

50 5 Packages: JavaScript’s units for software distribution

Here, we shorten themodule specifiers of thewhole subtree under my-package/dist/src:

import {InternalError} from 'my-package/util/errors.js';

Without the exports, the import statement would be:

import {InternalError} from 'my-package/dist/src/util/errors.js';

Note the asterisks in this "exports" entry:

"./*": "./dist/src/*"

These are not filesystem globs but instructions for how tomap externalmodule specifiers
to internal ones.

5.5.2.6 Exposing a subtree while hiding parts of it

With the following trick, we expose everything in directory my-package/dist/src/with
the exception of my-package/dist/src/internal/

"exports": {
"./*": "./dist/src/*",
"./internal/*": null

}

Note that this trick also works when exporting subtrees without filename extensions.

5.5.2.7 Conditional package exports

We can alsomake exports conditional: Then a given pathmaps to different values depend-
ing on the context in which a package is used.

Node.js vs. browsers. For example, we could provide different implementations for
Node.js and for browsers:

"exports": {
".": {

"node": "./main-node.js",
"browser": "./main-browser.js",
"default": "./main-browser.js"

}
}

The "default" condition matches when no other key matches and must come last. Hav-
ing one is recommended whenever we are distinguishing between platforms because it
takes care of new and/or unknown platforms.

Development vs. production. Another use case for conditional package exports is
switching between “development” and “production” environments:

"exports": {
".": {

"development": "./main-development.js",
"production": "./main-production.js",

https://nodejs.org/api/packages.html#packages_conditional_exports

5.5 Module specifiers in Node.js 51

}
}

In Node.js we can specify an environment like this:

node --conditions development app.mjs

5.5.3 Package imports
Package imports let a package define abbreviations for module specifiers that it can use
itself, internally (where package exports define abbreviations for other packages). This
is an example:

package.json:

{
"imports": {

"#some-pkg": {
"node": "some-pkg-node-native",
"default": "./polyfills/some-pkg-polyfill.js"

}
},
"dependencies": {

"some-pkg-node-native": "^1.2.3"
}

}

The package import # is conditional (with the same features as conditional package ex-
ports):

• If the current package is used on Node.js, the module specifier '#some-pkg' refers
to package some-pkg-node-native.

• Elsewhere, '#some-pkg' refers to the file ./polyfills/some-pkg-polyfill.js in-
side the current package.

(Only package imports can refer to external packages, package exports can’t do that.)

What are the use cases for package imports?

• Referring to different platform-specific implementations modules via the same
module specifier (as demonstrated above).

• Aliases to modules inside the current package – to avoid relative specifiers (which
can get complicated with deeply nested directories).

Be careful when using package imports with a bundler: This feature is relatively new
and your bundler may not support it.

5.5.4 node: protocol imports
Node.js has many built-in modules such as 'path' and 'fs'. All of them are available
as both ES modules and CommonJS modules. One issue with them is that they can be

https://nodejs.org/api/packages.html#imports

52 5 Packages: JavaScript’s units for software distribution

overridden by modules installed in node_moduleswhich is both a security risk (if it hap-
pens accidentally) and a problem if Node.js wants to introduce new built-in modules in
the future and their names are already taken by npm packages.
We can use the node: protocol to make it clear that we want to import a built-in mod-
ule. For example, the following two import statements are mostly equivalent (if no npm
module is installed that has the name 'fs'):

import * as fs from 'node:fs/promises';
import * as fs from 'fs/promises';

An additional benefit of using the node: protocol is that we immediately see that an
imported module is built-in. Given how many built-in modules there are, that helps
when reading code.
Due to node: specifiers having a protocol, they are considered absolute. That’s why they
are not looked up in node_modules.

https://nodejs.org/api/esm.html#node-imports

Chapter 6

An overview of npm (a package
manager for JavaScript)

Contents
6.1 The npm package manager . 53
6.2 Getting help for npm . 53

6.2.1 Getting help on the command line 54
6.2.2 Getting help online . 54

6.3 Common npm commands . 54
6.4 Abbreviations for npm commands 55

6.1 The npm package manager
The npm registry is the de-facto standard for hosting JavaScript packages. Those packages
have a particular format and are called npm packages.
Therefore, in the JavaScript ecosystem, a package manager is a command line tool for in-
stalling npm packages – from the npm registry or other sources.
The most popular package manager is called npm and comes bundled with Node.js. Its
name originally stood for “Node Package Manager”. Later, when npm and the npm
registry were used not just for Node.js packages, the definition was changed to “npm is
not a package manager” (source).
There are other popular package managers such as yarn and pnpm. All of these package
managers use the npm registry by default.
We use npm via the shell command npm which provides several subcommands such as
npm install.

6.2 Getting help for npm

53

https://en.wikipedia.org/wiki/Npm_(software)#Acronym

54 6 An overview of npm (a package manager for JavaScript)

6.2.1 Getting help on the command line
We can use the npm command to explain itself: On one hand, there is the option -hwhich
can be used after npm and after npm commands. It provides brief explanations:

npm -h # brief explanation of `npm`
npm <cmd> -h # brief explanation of `npm <cmd>`

On the other hand, there is the command npm helpwhich provides longer explanations:
npm help # brief explanation of `npm` (same as `npm -h`)
npm help npm # longer explanation of `npm`
npm help <cmd> # longer explanation of `npm <cmd>`
npm help <topic> # longer explanation of <topic>

Help topics include:
• folders
• npmrc
• package.json

6.2.2 Getting help online
The official npm documentation is also available online.

6.3 Common npm commands
These are a few common commands:

• npm init “initializes” the current directory to be a package. That is, it creates the
file package.json in it. This command is explained in [content not included].

• npm install installs npm packages globally or locally. It is explained in [content
not included].

• npm publish publishes packages to registries: It either creates a new package or
updates an existing package. It is explained in [content not included].

• npm run (which is short for npm run-script) executes package scripts. Package
scripts are explained in [content not included].

• npm uninstall removes a package that was installed globally or locally.
• npm version prints the object process.versions which records the versions of
various components of Node.js and npm:

{
'my-package': '1.0.0', // current package
npm: '8.15.0',
node: '18.7.0',
v8: '10.2.154.13-node.9',
uv: '1.43.0', // libuv
···
tz: '2022a', // version of tz database

https://docs.npmjs.com

6.4 Abbreviations for npm commands 55

unicode: '14.0', // version of Unicode standard
···

}

• npx lets us run bin scripts in packages without installing them. It is described in
[content not included].

The npm documentation has a list of all npm commands.

6.4 Abbreviations for npm commands
Many npm commands have abbreviations – for example:

Short Long
npm i npm install
npm rm npm uninstall
npm run npm run-script

For each npm command it describes, the npm documentation also lists all of its aliases
(including abbreviations).

https://docs.npmjs.com/cli/v8/commands
https://docs.npmjs.com/cli/v8/commands

56 6 An overview of npm (a package manager for JavaScript)

Part III

Core Node.js functionality

57

Chapter 7

Working with file system paths
and file URLs on Node.js

Contents
7.1 Path-related functionality on Node.js 60

7.1.1 The three ways of accessing the 'node:path' API 60
7.2 Foundational path concepts and their API support 61

7.2.1 Path segments, path separators, path delimiters 61
7.2.2 The current working directory 62
7.2.3 Fully vs. partially qualified paths, resolving paths 63

7.3 Getting the paths of standard directories via module 'node:os' . . . 65
7.4 Concatenating paths . 66

7.4.1 path.resolve(): concatenating paths to create fully qualified
paths . 66

7.4.2 path.join(): concatenating paths while preserving relative
paths . 67

7.5 Ensuring paths are normalized, fully qualified, or relative 68
7.5.1 path.normalize(): ensuring paths are normalized 68
7.5.2 path.resolve() (one argument): ensuring paths are normal-

ized and fully qualified . 69
7.5.3 path.relative(): creating relative paths 69

7.6 Parsing paths: extracting various parts of a path (filename extension
etc.) . 70
7.6.1 path.parse(): creating an object with path parts 70
7.6.2 path.basename(): extracting the base of a path 71
7.6.3 path.dirname(): extracting the parent directory of a path . . . 71
7.6.4 path.extname(): extracting the extension of a path 72

7.7 Categorizing paths . 72
7.7.1 path.isAbsolute(): Is a given path absolute? 72

7.8 path.format(): creating paths out of parts 73

59

60 7 Working with file system paths and file URLs on Node.js

7.8.1 Example: changing the filename extension 73
7.9 Using the same paths on different platforms 74

7.9.1 Relative platform-independent paths 74
7.10 Using a library to match paths via globs 76

7.10.1 The minimatch API . 76
7.10.2 Syntax of glob expressions . 77

7.11 Using file: URLs to refer to files 80
7.11.1 Class URL . 81
7.11.2 Converting between URLs and file paths 85
7.11.3 Use case for URLs: accessing files relative to the current module 86
7.11.4 Use case for URLs: detecting if the current module is “main”

(the app entry point) . 86
7.11.5 Paths vs. file: URLs . 87

In this chapter, we learn how to work with file system paths and file URLs on Node.js.

7.1 Path-related functionality on Node.js
In this chapter, we explore path-related functionality on Node.js:

• Most path-related functionality is in module 'node:path'.
• The global variable process has methods for changing the current working directory

(what that is, is explained soon).
• Module 'node:os' has functions that return the paths of important directories.

7.1.1 The three ways of accessing the 'node:path' API
Module 'node:path' is often imported as follows:

import * as path from 'node:path';

In this chapter, this import statement is occasionally omitted. We also omit the following
import:

import * as assert from 'node:assert/strict';

We can access Node’s path API in three ways:
• We can access platform-specific versions of the API:

– path.posix supports Unixes including macOS.
– path.win32 supports Windows.

• path itself always supports the current platform. For example, this is a REPL in-
teraction on macOS:

> path.parse === path.posix.parse
true

Let’s see how function path.parse(), which parses file system paths, differs for the two
platforms:

7.2 Foundational path concepts and their API support 61

> path.win32.parse(String.raw`C:\Users\jane\file.txt`)
{

dir: 'C:\\Users\\jane',
root: 'C:\\',
base: 'file.txt',
name: 'file',
ext: '.txt',

}
> path.posix.parse(String.raw`C:\Users\jane\file.txt`)
{

dir: '',
root: '',
base: 'C:\\Users\\jane\\file.txt',
name: 'C:\\Users\\jane\\file',
ext: '.txt',

}

We parse a Windows path – first correctly via the path.win32 API, then via the
path.posix API. We can see that in the latter case, the path isn’t correctly split into its
parts – for example, the basename of the file should be file.txt (more on what the
other properties mean later).

7.2 Foundational path concepts and their API support
7.2.1 Path segments, path separators, path delimiters
Terminology:

• A non-empty path consists of one or more path segments – most often names of
directories or files.

• A path separator is used to separate two adjacent path segments in a path. path.sep
contains the path separator of the current platform:

assert.equal(
path.posix.sep, '/' // Path separator on Unix

);
assert.equal(

path.win32.sep, '\\' // Path separator on Windows
);

• A path delimiter separates elements in lists of paths. path.delimiter contains the
path delimiter of the current platform:

assert.equal(
path.posix.delimiter, ':' // Path delimiter on Unix

);
assert.equal(

path.win32.delimiter, ';' // Path delimiter on Windows
);

62 7 Working with file system paths and file URLs on Node.js

We can see path separators and path delimitors if we examine the PATH shell variable
– which contains the paths where the operating system looks for executables when a
command is entered in a shell.
This is an example of a macOS PATH (shell variable $PATH):

> process.env.PATH.split(/(?<=:)/)
[

'/opt/homebrew/bin:',
'/opt/homebrew/sbin:',
'/usr/local/bin:',
'/usr/bin:',
'/bin:',
'/usr/sbin:',
'/sbin',

]

The split separator has a length of zero because the lookbehind assertion (?<=:) matches
if a given location is preceded by a colon but it does not capture anything. Therefore, the
path delimiter ':' is included in the preceding path.
This is an example of a Windows PATH (shell variable %Path%):

> process.env.Path.split(/(?<=;)/)
[

'C:\\Windows\\system32;',
'C:\\Windows;',
'C:\\Windows\\System32\\Wbem;',
'C:\\Windows\\System32\\WindowsPowerShell\\v1.0\\;',
'C:\\Windows\\System32\\OpenSSH\\;',
'C:\\ProgramData\\chocolatey\\bin;',
'C:\\Program Files\\nodejs\\',

]

7.2.2 The current working directory
Many shells have the concept of the current working directory (CWD) – “the directory I’m
currently in”:

• If we use a command with a partially qualified path, that path is resolved against
the CWD.

• If we omit a path when a command expects a path, the CWD is used.
• On both Unixes and Windows, the command to change the CWD is cd.

process is a global Node.js variable. It provides us with methods for getting and setting
the CWD:

• process.cwd() returns the CWD.
• process.chdir(dirPath) changes the CWD to dirPath.

– There must be a directory at dirPath.
– That change does not affect the shell, only the currently running Node.js pro-
cess.

https://exploringjs.com/impatient-js/ch_regexps.html#regexp-lookbehind-assertions
https://nodejs.org/api/process.html#processcwd
https://nodejs.org/api/process.html#processchdirdirectory

7.2 Foundational path concepts and their API support 63

Node.js uses the CWD to fill in missing pieces whenever a path isn’t fully qualified
(complete). That enables us to use partially qualified paths with various functions –
e.g. fs.readFileSync().

7.2.2.1 The current working directory on Unix
The following code demonstrates process.chdir() and process.cwd() on Unix:

process.chdir('/home/jane');
assert.equal(

process.cwd(), '/home/jane'
);

7.2.2.2 The current working directory on Windows
So far, we have used the current working directory on Unix. Windows works differently:

• Each drive has a current directory.
• There is a current drive.

We can use path.chdir() to set both at the same time:
process.chdir('C:\\Windows');
process.chdir('Z:\\tmp');

When we revisit a drive, Node.js remembers the previous current directory of that drive:
assert.equal(

process.cwd(), 'Z:\\tmp'
);
process.chdir('C:');
assert.equal(

process.cwd(), 'C:\\Windows'
);

7.2.3 Fully vs. partially qualified paths, resolving paths
• A fully qualified path does not rely on any other information and can be used as is.
• A partially qualified path is missing information: We need to turn it into a fully qual-

ified path before we can use it. That is done by resolving it against a fully qualified
path.

7.2.3.1 Fully and partially qualified paths on Unix
Unix only knows two kinds of paths:

• Absolute paths are fully qualified and start with a slash:
/home/john/proj

• Relative paths are partially qualified and start with a filename or a dot:
. (current directory)
.. (parent directory)

64 7 Working with file system paths and file URLs on Node.js

dir
./dir
../dir
../../dir/subdir

Let’s use path.resolve() (which is explained in more detail later) to resolve relative
paths against absolute paths. The results are absolute paths:

> const abs = '/home/john/proj';

> path.resolve(abs, '.')
'/home/john/proj'
> path.resolve(abs, '..')
'/home/john'
> path.resolve(abs, 'dir')
'/home/john/proj/dir'
> path.resolve(abs, './dir')
'/home/john/proj/dir'
> path.resolve(abs, '../dir')
'/home/john/dir'
> path.resolve(abs, '../../dir/subdir')
'/home/dir/subdir'

7.2.3.2 Fully and partially qualified paths on Windows
Windows distinguishes four kinds of paths (for more information, see Microsoft’s docu-
mentation):

• There are absolute paths and relative paths.
• Each of those two kinds of paths can have a drive letter (“volume designator”) or

not.
Absolute paths with drive letters are fully qualified. All other paths are partially quali-
fied.
Resolving an absolute path without a drive letter against a fully qualified path full,
picks up the drive letter of full:

> const full = 'C:\\Users\\jane\\proj';

> path.resolve(full, '\\Windows')
'C:\\Windows'

Resolving a relative path without a drive letter against a fully qualified path, can be
viewed as updating the latter:

> const full = 'C:\\Users\\jane\\proj';

> path.resolve(full, '.')
'C:\\Users\\jane\\proj'
> path.resolve(full, '..')
'C:\\Users\\jane'

https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file#fully-qualified-vs-relative-paths
https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file#fully-qualified-vs-relative-paths

7.3 Getting the paths of standard directories via module 'node:os' 65

> path.resolve(full, 'dir')
'C:\\Users\\jane\\proj\\dir'
> path.resolve(full, '.\\dir')
'C:\\Users\\jane\\proj\\dir'
> path.resolve(full, '..\\dir')
'C:\\Users\\jane\\dir'
> path.resolve(full, '..\\..\\dir')
'C:\\Users\\dir'

Resolving a relative path rel with a drive letter against a fully qualified path full
depends on the drive letter of rel:

• Same drive letter as full? Resolve rel against full.
• Different drive letter than full? Resolve rel against the current directory of rel’s

drive.

That looks as follows:

// Configure current directories for C: and Z:
process.chdir('C:\\Windows\\System');
process.chdir('Z:\\tmp');

const full = 'C:\\Users\\jane\\proj';

// Same drive letter
assert.equal(

path.resolve(full, 'C:dir'),
'C:\\Users\\jane\\proj\\dir'

);
assert.equal(

path.resolve(full, 'C:'),
'C:\\Users\\jane\\proj'

);

// Different drive letter
assert.equal(

path.resolve(full, 'Z:dir'),
'Z:\\tmp\\dir'

);
assert.equal(

path.resolve(full, 'Z:'),
'Z:\\tmp'

);

7.3 Getting the paths of standard directories via module
'node:os'

The module 'node:os' provides us with the paths of two important directories:

66 7 Working with file system paths and file URLs on Node.js

• os.homedir() returns the path to the home directory of the current user – for ex-
ample:

> os.homedir() // macOS
'/Users/rauschma'
> os.homedir() // Windows
'C:\\Users\\axel'

• os.tmpdir() returns the path of the operating system’s directory for temporary
files – for example:

> os.tmpdir() // macOS
'/var/folders/ph/sz0384m11vxf5byk12fzjms40000gn/T'
> os.tmpdir() // Windows
'C:\\Users\\axel\\AppData\\Local\\Temp'

7.4 Concatenating paths
There are two functions for concatenating paths:

• path.resolve() always returns fully qualified paths
• path.join() preserves relative paths

7.4.1 path.resolve(): concatenating paths to create fully qualified
paths

path.resolve(...paths: Array<string>): string

Concatenates the paths and return a fully qualified path. It uses the following algorithm:
• Start with the current working directory.
• Resolve path[0] against the previous result.
• Resolve path[1] against the previous result.
• Do the same for all remaining paths.
• Return the final result.

Without arguments, path.resolve() returns the path of the current working directory:
> process.cwd()
'/usr/local'
> path.resolve()
'/usr/local'

One or more relative paths are used for resolution, starting with the current working
directory:

> path.resolve('.')
'/usr/local'
> path.resolve('..')
'/usr'
> path.resolve('bin')
'/usr/local/bin'

https://nodejs.org/api/os.html#oshomedir
https://nodejs.org/api/os.html#ostmpdir

7.4 Concatenating paths 67

> path.resolve('./bin', 'sub')
'/usr/local/bin/sub'
> path.resolve('../lib', 'log')
'/usr/lib/log'

Any fully qualified path replaces the previous result:
> path.resolve('bin', '/home')
'/home'

That enables us to resolve partially qualified paths against fully qualified paths:
> path.resolve('/home/john', 'proj', 'src')
'/home/john/proj/src'

7.4.2 path.join(): concatenating paths while preserving relative
paths

path.join(...paths: Array<string>): string

Starts with paths[0] and interprets the remaining paths as instructions for ascending
or descending. In contrast to path.resolve(), this function preserves partially quali-
fied paths: If paths[0] is partially qualified, the result is partially qualified. If it is fully
qualified, the result is fully qualified.
Examples of descending:

> path.posix.join('/usr/local', 'sub', 'subsub')
'/usr/local/sub/subsub'
> path.posix.join('relative/dir', 'sub', 'subsub')
'relative/dir/sub/subsub'

Double dots ascend:
> path.posix.join('/usr/local', '..')
'/usr'
> path.posix.join('relative/dir', '..')
'relative'

Single dots do nothing:
> path.posix.join('/usr/local', '.')
'/usr/local'
> path.posix.join('relative/dir', '.')
'relative/dir'

If arguments after the first one are fully qualified paths, they are interpreted as relative
paths:

> path.posix.join('dir', '/tmp')
'dir/tmp'
> path.win32.join('dir', 'C:\\Users')
'dir\\C:\\Users'

Using more than two arguments:

68 7 Working with file system paths and file URLs on Node.js

> path.posix.join('/usr/local', '../lib', '.', 'log')
'/usr/lib/log'

7.5 Ensuring paths are normalized, fully qualified, or rel-
ative

7.5.1 path.normalize(): ensuring paths are normalized
path.normalize(path: string): string

On Unix, path.normalize():
• Removes path segments that are single dots (.).
• Resolves path segments that are double dots (..).
• Turns multiple path separators into a single path separator.

For example:
// Fully qualified path
assert.equal(

path.posix.normalize('/home/./john/lib/../photos///pet'),
'/home/john/photos/pet'

);

// Partially qualified path
assert.equal(

path.posix.normalize('./john/lib/../photos///pet'),
'john/photos/pet'

);

On Windows, path.normalize():
• Removes path segments that are single dots (.).
• Resolves path segments that are double dots (..).
• Converts each path separator slash (/) – which is legal – into a the preferred path

separator (\).
• Converts sequences of more than one path separator to single backslashes.

For example:
// Fully qualified path
assert.equal(

path.win32.normalize('C:\\Users/jane\\doc\\..\\proj\\\\src'),
'C:\\Users\\jane\\proj\\src'

);

// Partially qualified path
assert.equal(

path.win32.normalize('.\\jane\\doc\\..\\proj\\\\src'),
'jane\\proj\\src'

);

7.5 Ensuring paths are normalized, fully qualified, or relative 69

Note that path.join() with a single argument also normalizes and works the same as
path.normalize():

> path.posix.normalize('/home/./john/lib/../photos///pet')
'/home/john/photos/pet'
> path.posix.join('/home/./john/lib/../photos///pet')
'/home/john/photos/pet'

> path.posix.normalize('./john/lib/../photos///pet')
'john/photos/pet'
> path.posix.join('./john/lib/../photos///pet')
'john/photos/pet'

7.5.2 path.resolve() (one argument): ensuring paths are normalized
and fully qualified

We have already encountered path.resolve(). Called with a single argument, it both
normalizes paths and ensures that they are fully qualified.
Using path.resolve() on Unix:

> process.cwd()
'/usr/local'

> path.resolve('/home/./john/lib/../photos///pet')
'/home/john/photos/pet'
> path.resolve('./john/lib/../photos///pet')
'/usr/local/john/photos/pet'

Using path.resolve() on Windows:
> process.cwd()
'C:\\Windows\\System'

> path.resolve('C:\\Users/jane\\doc\\..\\proj\\\\src')
'C:\\Users\\jane\\proj\\src'
> path.resolve('.\\jane\\doc\\..\\proj\\\\src')
'C:\\Windows\\System\\jane\\proj\\src'

7.5.3 path.relative(): creating relative paths
path.relative(sourcePath: string, destinationPath: string): string

Returns a relative path that gets us from sourcePath to destinationPath:
> path.posix.relative('/home/john/', '/home/john/proj/my-lib/README.md')
'proj/my-lib/README.md'
> path.posix.relative('/tmp/proj/my-lib/', '/tmp/doc/zsh.txt')
'../../doc/zsh.txt'

On Windows, we get a fully qualified path if sourcePath and destinationPath are on
different drives:

70 7 Working with file system paths and file URLs on Node.js

> path.win32.relative('Z:\\tmp\\', 'C:\\Users\\Jane\\')
'C:\\Users\\Jane'

This function also works with relative paths:
> path.posix.relative('proj/my-lib/', 'doc/zsh.txt')
'../../doc/zsh.txt'

7.6 Parsing paths: extracting various parts of a path (file-
name extension etc.)

7.6.1 path.parse(): creating an object with path parts
type PathObject = {

dir: string,
root: string,

base: string,
name: string,
ext: string,

};
path.parse(path: string): PathObject

Extracts various parts of path and returns them in an objectwith the following properties:
• .base: last segment of a path

– .ext: the filename extension of the base
– .name: the base without the extension. This part is also called the stem of a
path.

• .root: the beginning of a path (before the first segment)
• .dir: the directory in which the base is located – the path without the base

Later, we’ll see function path.format()which is the inverse of path.parse(): It converts
an object with path parts into a path.

7.6.1.1 Example: path.parse() on Unix
This is what using path.parse() on Unix looks like:

> path.posix.parse('/home/jane/file.txt')
{

dir: '/home/jane',
root: '/',
base: 'file.txt',
name: 'file',
ext: '.txt',

}

The following diagram visualizes the extent of the parts:
/ home/jane / file .txt

| root | | name | ext |

7.6 Parsing paths: extracting various parts of a path (filename extension etc.) 71

| dir | base |

For example, we can see that .dir is the path without the base. And that .base is .name
plus .ext.

7.6.1.2 Example: path.parse() on Windows
This is how path.parse() works on Windows:

> path.win32.parse(String.raw`C:\Users\john\file.txt`)
{

dir: 'C:\\Users\\john',
root: 'C:\\',
base: 'file.txt',
name: 'file',
ext: '.txt',

}

This is a diagram for the result:
C:\ Users\john \ file .txt

| root | | name | ext |
| dir | base |

7.6.2 path.basename(): extracting the base of a path
path.basename(path, ext?)

Returns the base of path:
> path.basename('/home/jane/file.txt')
'file.txt'

Optionally, this function can also remove a suffix:
> path.basename('/home/jane/file.txt', '.txt')
'file'
> path.basename('/home/jane/file.txt', 'txt')
'file.'
> path.basename('/home/jane/file.txt', 'xt')
'file.t'

Removing the extension is case sensitive – even on Windows!
> path.win32.basename(String.raw`C:\Users\john\file.txt`, '.txt')
'file'
> path.win32.basename(String.raw`C:\Users\john\file.txt`, '.TXT')
'file.txt'

7.6.3 path.dirname(): extracting the parent directory of a path
path.dirname(path)

Returns the parent directory of the file or directory at path:

72 7 Working with file system paths and file URLs on Node.js

> path.win32.dirname(String.raw`C:\Users\john\file.txt`)
'C:\\Users\\john'
> path.win32.dirname('C:\\Users\\john\\dir\\')
'C:\\Users\\john'

> path.posix.dirname('/home/jane/file.txt')
'/home/jane'
> path.posix.dirname('/home/jane/dir/')
'/home/jane'

7.6.4 path.extname(): extracting the extension of a path
path.extname(path)

Returns the extension of path:
> path.extname('/home/jane/file.txt')
'.txt'
> path.extname('/home/jane/file.')
'.'
> path.extname('/home/jane/file')
''
> path.extname('/home/jane/')
''
> path.extname('/home/jane')
''

7.7 Categorizing paths
7.7.1 path.isAbsolute(): Is a given path absolute?

path.isAbsolute(path: string): boolean

Returns true if path is absolute and false otherwise.
The results on Unix are straightforward:

> path.posix.isAbsolute('/home/john')
true
> path.posix.isAbsolute('john')
false

OnWindows, “absolute” does not necessarily mean “fully qualified” (only the first path
is fully qualified):

> path.win32.isAbsolute('C:\\Users\\jane')
true
> path.win32.isAbsolute('\\Users\\jane')
true
> path.win32.isAbsolute('C:jane')
false

7.8 path.format(): creating paths out of parts 73

> path.win32.isAbsolute('jane')
false

7.8 path.format(): creating paths out of parts
type PathObject = {

dir: string,
root: string,

base: string,
name: string,
ext: string,

};
path.format(pathObject: PathObject): string

Creates a path out of a path object:

> path.format({dir: '/home/jane', base: 'file.txt'})
'/home/jane/file.txt'

7.8.1 Example: changing the filename extension
We can use path.format() to change the extension of a path:

function changeFilenameExtension(pathStr, newExtension) {
if (!newExtension.startsWith('.')) {

throw new Error(
'Extension must start with a dot: '
+ JSON.stringify(newExtension)

);
}
const parts = path.parse(pathStr);
return path.format({

...parts,
base: undefined, // prevent .base from overriding .name and .ext
ext: newExtension,

});
}

assert.equal(
changeFilenameExtension('/tmp/file.md', '.html'),
'/tmp/file.html'

);
assert.equal(

changeFilenameExtension('/tmp/file', '.html'),
'/tmp/file.html'

);
assert.equal(

changeFilenameExtension('/tmp/file/', '.html'),

74 7 Working with file system paths and file URLs on Node.js

'/tmp/file.html'
);

If we know the original filename extension, we can also use a regular expression to
change the filename extension:

> '/tmp/file.md'.replace(/\.md$/i, '.html')
'/tmp/file.html'
> '/tmp/file.MD'.replace(/\.md$/i, '.html')
'/tmp/file.html'

7.9 Using the same paths on different platforms
Sometimes we’d like to use the same paths on different platforms. Then there are two
issues that we are facing:

• The path separator may be different.
• The file structure may be different: home directories and directories for temporary

files may be in different locations, etc.
As an example, consider a Node.js app that operates on a directory with data. Let’s
assume that the app can be configured with two kinds of paths:

• Fully qualified paths anywhere on the system
• Paths inside the data directory

Due to the aforementioned issues:
• We can’t reuse fully qualified paths between platforms.

– Sometimes we need absolute paths. These have to be configured per “in-
stance” of the data directory and stored externally (or inside it and ignored
by version control). These paths stay put and are not moved with the data
directory.

• We can reuse paths that point into the data directory. Such paths may be stored in
configuration files (inside the data directory or not) and in constants in the app’s
code. To do that:

– We have to store them as relative paths.
– We have to ensure that the path separator is correct on each platform.

The next subsection explains how both can be achieved.

7.9.1 Relative platform-independent paths
Relative platform-independent paths can be stored as Arrays of path segments and
turned into fully qualified platform-specific paths as follows:

const universalRelativePath = ['static', 'img', 'logo.jpg'];

const dataDirUnix = '/home/john/data-dir';
assert.equal(

7.9 Using the same paths on different platforms 75

path.posix.resolve(dataDirUnix, ...universalRelativePath),
'/home/john/data-dir/static/img/logo.jpg'

);

const dataDirWindows = 'C:\\Users\\jane\\data-dir';
assert.equal(

path.win32.resolve(dataDirWindows, ...universalRelativePath),
'C:\\Users\\jane\\data-dir\\static\\img\\logo.jpg'

);

To create relative platform-specific paths, we can use:
const dataDir = '/home/john/data-dir';
const pathInDataDir = '/home/john/data-dir/static/img/logo.jpg';
assert.equal(

path.relative(dataDir, pathInDataDir),
'static/img/logo.jpg'

);

The following function converts relative platform-specific paths into platform-
independent paths:

import * as path from 'node:path';

function splitRelativePathIntoSegments(relPath) {
if (path.isAbsolute(relPath)) {

throw new Error('Path isn’t relative: ' + relPath);
}
relPath = path.normalize(relPath);
const result = [];
while (true) {

const base = path.basename(relPath);
if (base.length === 0) break;
result.unshift(base);
const dir = path.dirname(relPath);
if (dir === '.') break;
relPath = dir;

}
return result;

}

Using splitRelativePathIntoSegments() on Unix:
> splitRelativePathIntoSegments('static/img/logo.jpg')
['static', 'img', 'logo.jpg']
> splitRelativePathIntoSegments('file.txt')
['file.txt']

Using splitRelativePathIntoSegments() on Windows:
> splitRelativePathIntoSegments('static/img/logo.jpg')
['static', 'img', 'logo.jpg']

76 7 Working with file system paths and file URLs on Node.js

> splitRelativePathIntoSegments('C:static/img/logo.jpg')
['static', 'img', 'logo.jpg']

> splitRelativePathIntoSegments('file.txt')
['file.txt']
> splitRelativePathIntoSegments('C:file.txt')
['file.txt']

7.10 Using a library to match paths via globs
The npm module 'minimatch' lets us match paths against patterns that are called glob
expressions, glob patterns, or globs:

import minimatch from 'minimatch';
assert.equal(

minimatch('/dir/sub/file.txt', '/dir/sub/*.txt'), true
);
assert.equal(

minimatch('/dir/sub/file.txt', '/**/file.txt'), true
);

Use cases for globs:
• Specifying which files in a directory should be processed by a script.
• Specifying which files to ignore.

More glob libraries:
• multimatch extends minimatch with support for multiple patterns.
• micromatch is an alternative to minimatch and multimatch that has a similar API.
• globby is a library based on fast-glob that adds convenience features.

7.10.1 The minimatch API
The whole API of minimatch is documented in the project’s readme file. In this subsec-
tion, we look at the most important functionality.
Minimatch compiles globs to JavaScript RegExp objects and uses those to match.

7.10.1.1 minimatch(): compiling and matching once
minimatch(path: string, glob: string, options?: MinimatchOptions): boolean

Returns true if globmatches path and false otherwise.
Two interesting options:

• .dot: boolean (default: false)
If true, wildcard symbols such as * and ** match “invisible” path segments
(whose names begin with dots):

> minimatch('/usr/local/.tmp/data.json', '/usr/**/data.json')
false

https://github.com/isaacs/minimatch
https://github.com/sindresorhus/multimatch
https://github.com/micromatch/micromatch
https://github.com/sindresorhus/globby
https://github.com/mrmlnc/fast-glob
https://github.com/isaacs/minimatch

7.10 Using a library to match paths via globs 77

> minimatch('/usr/local/.tmp/data.json', '/usr/**/data.json', {dot: true})
true

> minimatch('/tmp/.log/events.txt', '/tmp/*/events.txt')
false
> minimatch('/tmp/.log/events.txt', '/tmp/*/events.txt', {dot: true})
true

• .matchBase: boolean (default: false)
If true, a pattern without slashes is matched against the basename of a path:

> minimatch('/dir/file.txt', 'file.txt')
false
> minimatch('/dir/file.txt', 'file.txt', {matchBase: true})
true

7.10.1.2 new minimatch.Minimatch(): compiling once, matching multiple times

Class minimatch.Minimatch enables us to only compile the glob to a regular expression
once and match multiple times:

new Minimatch(pattern: string, options?: MinimatchOptions)

This is how this class is used:

import minimatch from 'minimatch';
const {Minimatch} = minimatch;
const glob = new Minimatch('/dir/sub/*.txt');
assert.equal(

glob.match('/dir/sub/file.txt'), true
);
assert.equal(

glob.match('/dir/sub/notes.txt'), true
);

7.10.2 Syntax of glob expressions
This subsection covers the essentials of the syntax. But there are more features. These
are documented here:

• Minimatch’s unit tests have many examples of globs.
• The Bash Reference manual has a section on filename expansion.

7.10.2.1 Matching Windows paths

Even on Windows, glob segments are separated by slashes – but they match both back-
slashes and slashes (which are legal path separators on Windows):

> minimatch('dir\\sub/file.txt', 'dir/sub/file.txt')
true

https://github.com/isaacs/minimatch/tree/main/test
https://www.gnu.org/software/bash/manual/bash.html#Filename-Expansion

78 7 Working with file system paths and file URLs on Node.js

7.10.2.2 Minimatch does not normalize paths

Minimatch does not normalize paths for us:

> minimatch('./file.txt', './file.txt')
true
> minimatch('./file.txt', 'file.txt')
false
> minimatch('file.txt', './file.txt')
false

Therefore, we have to normalize paths if we don’t create them ourselves:

> path.normalize('./file.txt')
'file.txt'

7.10.2.3 Patterns without wildcard symbols: path separators must line up

Patterns without wildcard symbols (that match more flexibly) must match exactly. Espe-
cially the path separators must line up:

> minimatch('/dir/file.txt', '/dir/file.txt')
true
> minimatch('dir/file.txt', 'dir/file.txt')
true
> minimatch('/dir/file.txt', 'dir/file.txt')
false

> minimatch('/dir/file.txt', 'file.txt')
false

That is, we must decide on either absolute or relative paths.

With option .matchBase, we can match patterns without slashes against the basenames
of paths:

> minimatch('/dir/file.txt', 'file.txt', {matchBase: true})
true

7.10.2.4 The asterisk (*) matches any (part of a) single segment

The wildcard symbol asterisk (*) matches any path segment or any part of a segment:

> minimatch('/dir/file.txt', '/*/file.txt')
true
> minimatch('/tmp/file.txt', '/*/file.txt')
true

> minimatch('/dir/file.txt', '/dir/*.txt')
true
> minimatch('/dir/data.txt', '/dir/*.txt')
true

7.10 Using a library to match paths via globs 79

The asterisk does not match “invisible files“ whose names start with dots. If we want to
match those, we have to prefix the asterisk with a dot:

> minimatch('file.txt', '*')
true
> minimatch('.gitignore', '*')
false
> minimatch('.gitignore', '.*')
true
> minimatch('/tmp/.log/events.txt', '/tmp/*/events.txt')
false

Option .dot lets us switch off this behavior:

> minimatch('.gitignore', '*', {dot: true})
true
> minimatch('/tmp/.log/events.txt', '/tmp/*/events.txt', {dot: true})
true

7.10.2.5 The double asterisk (**) matches zero or more segments

´**/matches zero or more segments:

> minimatch('/file.txt', '/**/file.txt')
true
> minimatch('/dir/file.txt', '/**/file.txt')
true
> minimatch('/dir/sub/file.txt', '/**/file.txt')
true

If we want to match relative paths, the pattern still must not start with a path separator:

> minimatch('file.txt', '/**/file.txt')
false

The double asterisk does not match “invisible” path segments whose names start with
dots:

> minimatch('/usr/local/.tmp/data.json', '/usr/**/data.json')
false

We can switch off that behavior via option .dot:

> minimatch('/usr/local/.tmp/data.json', '/usr/**/data.json', {dot: true})
true

7.10.2.6 Negating globs

If we start a globwith an exclamationmark, itmatches if the pattern after the exclamation
mark does not match:

> minimatch('file.txt', '!**/*.txt')
false

80 7 Working with file system paths and file URLs on Node.js

> minimatch('file.js', '!**/*.txt')
true

7.10.2.7 Alternative patterns
Comma-separate patterns inside braces match if one of the patterns matches:

> minimatch('file.txt', 'file.{txt,js}')
true
> minimatch('file.js', 'file.{txt,js}')
true

7.10.2.8 Ranges of integers
A pair of integers separated by double dots defines a range of integers and matches if
any of its elements matches:

> minimatch('file1.txt', 'file{1..3}.txt')
true
> minimatch('file2.txt', 'file{1..3}.txt')
true
> minimatch('file3.txt', 'file{1..3}.txt')
true
> minimatch('file4.txt', 'file{1..3}.txt')
false

Padding with zeros is supported, too:
> minimatch('file1.txt', 'file{01..12}.txt')
false
> minimatch('file01.txt', 'file{01..12}.txt')
true
> minimatch('file02.txt', 'file{01..12}.txt')
true
> minimatch('file12.txt', 'file{01..15}.txt')
true

7.11 Using file: URLs to refer to files
There are two common ways to refer to files in Node.js:

• Paths in strings
• Instances of URL with the protocol file:

For example:
assert.equal(

fs.readFileSync(
'/tmp/data.txt', {encoding: 'utf-8'}),

'Content'
);

7.11 Using file: URLs to refer to files 81

assert.equal(
fs.readFileSync(

new URL('file:///tmp/data.txt'), {encoding: 'utf-8'}),
'Content'

);

7.11.1 Class URL
In this section, we take a closer look at class URL. More information on this class:

• Node.js documentation: section “The WHATWG URL API”
• Section “API“ of the WHATWG URL standard

In this chapter, we access class URL via a global variable because that’s how it’s used on
other web platforms. But it can also be imported:

import {URL} from 'node:url';

7.11.1.1 URIs vs. relative references
URLs are a subset of URIs. RFC 3986, the standard for URIs, distinguishes two kinds of
URI-references:

• A URI starts with a scheme followed by a colon separator.
• All other URI references are relative references.

7.11.1.2 Constructor of URL
Class URL can be instantiated in two ways:

• new URL(uri: string)

urimust be a URI. It specifies the URI of the new instance.
• new URL(uriRef: string, baseUri: string)

baseUri must be a URI. If uriRef is a relative reference, it is resolved against
baseUri and the result becomes the URI of the new instance.
If uriRef is a URI, it completely replaces baseUri as the data onwhich the instance
is based.

Here we can see the class in action:
// If there is only one argument, it must be a proper URI
assert.equal(

new URL('https://example.com/public/page.html').toString(),
'https://example.com/public/page.html'

);
assert.throws(

() => new URL('../book/toc.html'),
/^TypeError \[ERR_INVALID_URL\]: Invalid URL$/

);

https://nodejs.org/api/url.html#the-whatwg-url-api
https://url.spec.whatwg.org/#api
https://datatracker.ietf.org/doc/html/rfc3986#section-4.1
https://datatracker.ietf.org/doc/html/rfc3986#section-4.1
https://datatracker.ietf.org/doc/html/rfc3986#section-3.1

82 7 Working with file system paths and file URLs on Node.js

// Resolve a relative reference against a base URI
assert.equal(

new URL(
'../book/toc.html',
'https://example.com/public/page.html'

).toString(),
'https://example.com/book/toc.html'

);

7.11.1.3 Resolving relative references against instances of URL
Let’s revisit this variant of the URL constructor:

new URL(uriRef: string, baseUri: string)

The argument baseUri is coerced to string. Therefore, any object can be used – as long
as it becomes a valid URL when coereced to string:

const obj = { toString() {return 'https://example.com'} };
assert.equal(

new URL('index.html', obj).href,
'https://example.com/index.html'

);

That enables us to resolve relative references against URL instances:
const url = new URL('https://example.com/dir/file1.html');
assert.equal(

new URL('../file2.html', url).href,
'https://example.com/file2.html'

);

Used this way, the constructor is loosely similar to path.resolve().

7.11.1.4 Properties of URL instances
Instances of URL have the following properties:

type URL = {
protocol: string,
username: string,
password: string,
hostname: string,
port: string,
host: string,
readonly origin: string,

pathname: string,

search: string,
readonly searchParams: URLSearchParams,
hash: string,

7.11 Using file: URLs to refer to files 83

href: string,
toString(): string,
toJSON(): string,

}

7.11.1.5 Converting URLs to strings
There are three common ways in which we can convert URLs to strings:

const url = new URL('https://example.com/about.html');

assert.equal(
url.toString(),
'https://example.com/about.html'

);
assert.equal(

url.href,
'https://example.com/about.html'

);
assert.equal(

url.toJSON(),
'https://example.com/about.html'

);

Method .toJSON() enables us to use URLs in JSON data:
const jsonStr = JSON.stringify({

pageUrl: new URL('https://exploringjs.com')
});
assert.equal(

jsonStr, '{"pageUrl":"https://exploringjs.com"}'
);

7.11.1.6 Getting URL properties
The properties of URL instances are not own data properties, they are implemented via
getters and setters. In the next example, we use the utility function pickProps() (whose
code is shown at the end), to copy the values returned by those getters into a plain object:

const props = pickProps(
new URL('https://jane:pw@example.com:80/news.html?date=today#misc'),
'protocol', 'username', 'password', 'hostname', 'port', 'host',
'origin', 'pathname', 'search', 'hash', 'href'

);
assert.deepEqual(

props,
{

protocol: 'https:',
username: 'jane',
password: 'pw',

84 7 Working with file system paths and file URLs on Node.js

hostname: 'example.com',
port: '80',
host: 'example.com:80',
origin: 'https://example.com:80',
pathname: '/news.html',
search: '?date=today',
hash: '#misc',
href: 'https://jane:pw@example.com:80/news.html?date=today#misc'

}
);
function pickProps(input, ...keys) {

const output = {};
for (const key of keys) {

output[key] = input[key];
}
return output;

}

Alas, the pathname is a single atomic unit. That is, we can’t use class URL to access its
parts (base, extension, etc.).

7.11.1.7 Setting parts of a URL

We can also change parts of a URL by setting properties such as .hostname:

const url = new URL('https://example.com');
url.hostname = '2ality.com';
assert.equal(

url.href, 'https://2ality.com/'
);

We can use the setters to create URLs from parts (idea by Haroen Viaene):

// Object.assign() invokes setters when transferring property values
const urlFromParts = (parts) => Object.assign(

new URL('https://example.com'), // minimal dummy URL
parts // assigned to the dummy

);

const url = urlFromParts({
protocol: 'https:',
hostname: '2ality.com',
pathname: '/p/about.html',

});
assert.equal(

url.href, 'https://2ality.com/p/about.html'
);

https://twitter.com/haroenv/status/1545357986046017539

7.11 Using file: URLs to refer to files 85

7.11.1.8 Managing search parameters via .searchParams
We can use property .searchParams to manage the search parameters of URLs. Its value
is an instance of URLSearchParams.
We can use it to read search parameters:

const url = new URL('https://example.com/?topic=js');
assert.equal(

url.searchParams.get('topic'), 'js'
);
assert.equal(

url.searchParams.has('topic'), true
);

We can also change search parameters via it:
url.searchParams.append('page', '5');
assert.equal(

url.href, 'https://example.com/?topic=js&page=5'
);

url.searchParams.set('topic', 'css');
assert.equal(

url.href, 'https://example.com/?topic=css&page=5'
);

7.11.2 Converting between URLs and file paths
It’s tempting to convert between file paths and URLs manually. For example, we can try
to convert an URL instance myUrl to a file path via myUrl.pathname. However that doesn’t
always work – it’s better to use this function:

url.fileURLToPath(url: URL | string): string

The following code compares the results of that function with the values of .pathname:
import * as url from 'node:url';

//::::: Unix :::::

const url1 = new URL('file:///tmp/with%20space.txt');
assert.equal(

url1.pathname, '/tmp/with%20space.txt');
assert.equal(

url.fileURLToPath(url1), '/tmp/with space.txt');

const url2 = new URL('file:///home/thor/Mj%C3%B6lnir.txt');
assert.equal(

url2.pathname, '/home/thor/Mj%C3%B6lnir.txt');
assert.equal(

url.fileURLToPath(url2), '/home/thor/Mjölnir.txt');

https://nodejs.org/api/url.html#class-urlsearchparams
https://nodejs.org/api/url.html#urlfileurltopathurl

86 7 Working with file system paths and file URLs on Node.js

//::::: Windows :::::

const url3 = new URL('file:///C:/dir/');
assert.equal(

url3.pathname, '/C:/dir/');
assert.equal(

url.fileURLToPath(url3), 'C:\\dir\\');

This function is the inverse of url.fileURLToPath():

url.pathToFileURL(path: string): URL

It converts path to a file URL:

> url.pathToFileURL('/home/john/Work Files').href
'file:///home/john/Work%20Files'

7.11.3 Use case for URLs: accessing files relative to the current module
One important use case for URLs is accessing a file that is a sibling of the current module:

function readData() {
const url = new URL('data.txt', import.meta.url);
return fs.readFileSync(url, {encoding: 'UTF-8'});

}

This function uses import.meta.url which contains the URL of the current module
(which is usually a file: URL on Node.js).

Using fetch()would havemade the previous code evenmore cross-platform. However,
as of Node.js 18.9.0, fetch() doesn’t work for file: URLs yet:

> await fetch('file:///tmp/file.txt')
TypeError: fetch failed

cause: Error: not implemented... yet...

7.11.4 Use case for URLs: detecting if the current module is “main”
(the app entry point)

An ESM module can be used in two ways:

1. It can be used as a library from which other modules can import values.
2. It can be used as script that we run via Node.js – e.g., from a command line. In that

case, it is called the main module.

If we want a module to be used in both ways, we need a way to check if the current
module is the main module because only then do we execute the script functionality. In
this chapter, we learn how to perform that check.

https://nodejs.org/api/url.html#url_url_pathtofileurl_path
https://exploringjs.com/impatient-js/ch_modules.html#import.meta.url-on-node.js

7.11 Using file: URLs to refer to files 87

7.11.4.1 Determining if a CommonJS module is main
With CommonJS, we can use the following pattern to detect if the current module was
the entry point (source: Node.js documentation):

if (require.main === module) {
// Main CommonJS module

}

7.11.4.2 Determining if an ESM module is main
As of now, ESM modules have no simple built-in way to check if a module is main. In-
stead, we have to use the following workaround (based on a tweet by Rich Harris):

import * as url from 'node:url';

if (import.meta.url.startsWith('file:')) { // (A)
const modulePath = url.fileURLToPath(import.meta.url);
if (process.argv[1] === modulePath) { // (B)

// Main ESM module
}

}

Explanations:
• import.meta.url contains the URL of the currently executed ESM module.
• If we are sure our code always runs locally (which may become less common

in the future), we can omit the check in line A. If we do and the code does not
run locally, at least we get an exception (and not a silent failure) – thanks to
url.fileURLToPath() (see next item).

• We use url.fileURLToPath() to convert the URL to a local path. This function
throws an exception if the protocol isn’t file:.

• process.argv[1] contains the path of the initial module. The comparison in line B
works because this value is always an absolute path – Node.js sets it up as follows
(source code):

process.argv[1] = path.resolve(process.argv[1]);

7.11.5 Paths vs. file: URLs
When shell scripts receive references to files or export references to files (e.g. by logging
them on screen), they are virtually always paths. However, there are two cases where
we need URLs (as discussed in previous subsections):

• To access files relative to the current module
• To detect if the current module is running as a script

https://nodejs.org/api/modules.html#accessing-the-main-module
https://twitter.com/Rich_Harris/status/1355289863130673153
https://exploringjs.com/impatient-js/ch_modules.html#import.meta.url
https://github.com/nodejs/node/blob/36fbbe0b86131fa2dcca558872b02335586e0089/lib/internal/bootstrap/pre_execution.js#L100-L107

88 7 Working with file system paths and file URLs on Node.js

Chapter 8

Working with the file system on
Node.js

Contents
8.1 Concepts, patterns and conventions of Node’s file system APIs . . . 90

8.1.1 Ways of accessing files . 90
8.1.2 Function name prefixes . 91
8.1.3 Important classes . 91

8.2 Reading and writing files . 92
8.2.1 Reading a file synchronously into a single string (optional:

splitting into lines) . 92
8.2.2 Reading a file via a stream, line by line 94
8.2.3 Writing a single string to a file synchronously 95
8.2.4 Appending a single string to a file (synchronously) 95
8.2.5 Writing multiple strings to a file via stream 96
8.2.6 Appending multiple strings to a file via a stream (asyn-

chronously) . 97
8.3 Handling line terminators across platforms 97

8.3.1 Reading line terminators . 97
8.3.2 Writing line terminators . 98

8.4 Traversing and creating directories 98
8.4.1 Traversing a directory . 98
8.4.2 Creating a directory (mkdir, mkdir -p) 99
8.4.3 Ensuring that a parent directory exists 100
8.4.4 Creating a temporary directory 100

8.5 Copying, renaming, moving files or directories 101
8.5.1 Copying files or directories . 101
8.5.2 Renaming or moving files or directories 102

8.6 Removing files or directories . 103
8.6.1 Removing files and arbitrary directories (shell: rm, rm -r) . . . 103

89

90 8 Working with the file system on Node.js

8.6.2 Removing an empty directory (shell: rmdir) 104
8.6.3 Clearing directories . 104
8.6.4 Trashing files or directories . 105

8.7 Reading and changing file system entries 105
8.7.1 Checking if a file or directory exists 105
8.7.2 Checking the stats of a file: Is it a directory? When was it cre-

ated? Etc. 106
8.7.3 Changing file attributes: permissions, owner, group, timestamps107

8.8 Working with links . 107
8.9 Further reading . 108

This chapter contains:
• An overview of the different parts of Node’s file system APIs.
• Recipes (code snippets) for performing various tasks via those APIs.

Given that the focus of this book is on shell scripting, we only work with textual data.

8.1 Concepts, patterns and conventions of Node’s file sys-
tem APIs

8.1.1 Ways of accessing files
1. We can read or write the whole content of a file via a string.
2. We can open a stream for reading or a stream for writing and process a file in

smaller pieces, one at a time. Streams only allow sequential access.
3. We can use file descriptors or FileHandles and get both sequential and random

access, via an API that is loosely similar to streams.
• File descriptors are integer numbers that represent files. They are managed
via these functions (only the synchronous names are shown, there are also
callback-based versions – fs.open() etc.):
– fs.openSync(path, flags?, mode?) opens a new file descriptor for a
file at a given path and returns it.

– fs.closeSync(fd) closes a file descriptor.
– fs.fchmodSync(fd, mode)
– fs.fchownSync(fd, uid, gid)
– fs.fdatasyncSync(fd)
– fs.fstatSync(fd, options?)
– fs.fsyncSync(fd)
– fs.ftruncateSync(fd, len?)
– fs.futimesSync(fd, atime, mtime)

• Only the synchronous API and the callback-based API use file descriptors.
The Promise-based API has a better abstraction, class FileHandle, which is
based on file descriptors. Instances are created via fsPromises.open(). Var-
ious operations are provided via methods (not via functions):
– fileHandle.close()
– fileHandle.chmod(mode)

https://nodejs.org/api/fs.html#file-descriptors_1
https://nodejs.org/api/fs.html#class-filehandle

8.1 Concepts, patterns and conventions of Node’s file system APIs 91

– fileHandle.chown(uid, gid)
– Etc.

Note that we don’t use (3) in this chapter – (1) and (2) are enough for our purposes.

8.1.2 Function name prefixes
8.1.2.1 Prefix “l”: symbolic links

Functions whose names start with an “l” usually operate on symbolic links:

• fs.lchmodSync(), fs.lchmod(), fsPromises.lchmod()
• fs.lchownSync(), fs.lchown(), fsPromises.lchown()
• fs.lutimesSync(), fs.lutimes(), fsPromises.lutimes()
• Etc.

8.1.2.2 Prefix “f”: file descriptors

Functions whose names start with an “f” usually manage file descriptors:

• fs.fchmodSync(), fs.fchmod()
• fs.fchownSync(), fs.fchown()
• fs.fstatSync(), fs.fstat()
• Etc.

8.1.3 Important classes
Several classes play important roles in Node’s file system APIs.

8.1.3.1 URLs: an alternative to file system paths in strings

Whenever a Node.js function accepts a file system path in a string (line A), it usually also
accepts an instance of URL (line B):

assert.equal(
fs.readFileSync(

'/tmp/text-file.txt', {encoding: 'utf-8'}), // (A)
'Text content'

);
assert.equal(

fs.readFileSync(
new URL('file:///tmp/text-file.txt'), {encoding: 'utf-8'}), // (B)

'Text content'
);

Manually converting between paths and file: URLs seems easy but has surprisingly
many pitfalls: percent encoding or decoding, Windows drive letters, etc. Instead, it’s
better to use the following two functions:

• url.pathToFileURL()
• url.fileURLToPath()

https://nodejs.org/api/url.html#urlpathtofileurlpath
https://nodejs.org/api/url.html#urlfileurltopathurl

92 8 Working with the file system on Node.js

We don’t use file URLs in this chapter. Use cases for them are described in §7.11.1 “Class
URL”.

8.1.3.2 Buffers
Class Buffer represents fixed-length byte sequences on Node.js. It is a subclass of
Uint8Array (a TypedArray). Buffers are mostly used when working with binary files
and therefore of less interest in this book.
Whenever Node.js accepts a Buffer, it also accepts a Uint8Array. Thus, given that
Uint8Arrays are cross-platform and Buffers aren’t, the former is preferable.
Buffers can do one thing that Uint8Arrays can’t: encoding and decoding text in various
encodings. If we need to encode or decode UTF-8 in Uint8Arrays, we can use class Tex-
tEncoder or class TextDecoder. These classes are available onmost JavaScript platforms:

> new TextEncoder().encode('café')
Uint8Array.of(99, 97, 102, 195, 169)
> new TextDecoder().decode(Uint8Array.of(99, 97, 102, 195, 169))
'café'

8.1.3.3 Node.js streams
Some functions accept or return native Node.js streams:

• stream.Readable is Node’s class for readable streams. Module node:fs uses
fs.ReadStream which is a subclass.

• stream.Writable is Node’s class for writable streams. Module node:fs uses
fs.WriteStream which is a subclass.

Instead of native streams, we can now use cross-platform web streams on Node.js. How
is explained in §10 “Using web streams on Node.js”.

8.2 Reading and writing files
8.2.1 Reading a file synchronously into a single string (optional: split-

ting into lines)
fs.readFileSync(filePath, options?) reads the file at filePath into a single string:

assert.equal(
fs.readFileSync('text-file.txt', {encoding: 'utf-8'}),
'there\r\nare\nmultiple\nlines'

);

Pros and cons of this approach (vs. using a stream):
• Pro: Easy to use and synchronous. Good enough for many use cases.
• Con: Not a good choice for large files.

– Before we can process the data, we have to read it in its entirety.
Next, we’ll look into spliting the string we have read into lines.

https://nodejs.org/api/buffer.html
https://exploringjs.com/impatient-js/ch_typed-arrays.html
https://developer.mozilla.org/en-US/docs/Web/API/TextEncoder
https://developer.mozilla.org/en-US/docs/Web/API/TextEncoder
https://developer.mozilla.org/en-US/docs/Web/API/TextDecoder
https://nodejs.org/api/fs.html#fsreadfilesyncpath-options

8.2 Reading and writing files 93

8.2.1.1 Splitting lines without including line terminators

The following code splits a string into lines while removing line terminators. It works
with Unix and Windows line terminators:

const RE_SPLIT_EOL = /\r?\n/;
function splitLines(str) {

return str.split(RE_SPLIT_EOL);
}
assert.deepEqual(

splitLines('there\r\nare\nmultiple\nlines'),
['there', 'are', 'multiple', 'lines']

);

“EOL” stands for “end of line”. We accept both Unix line terminators ('\n') and Win-
dows line terminators ('\r\n', like the first one in the previous example). For more
information, see §8.3 “Handling line terminators across platforms”.

8.2.1.2 Splitting lines while including line terminators

The following code splits a string into lines while including line terminators. It works
with Unix and Windows line terminators (“EOL” stands for “end of line”):

const RE_SPLIT_AFTER_EOL = /(?<=\r?\n)/; // (A)
function splitLinesWithEols(str) {

return str.split(RE_SPLIT_AFTER_EOL);
}

assert.deepEqual(
splitLinesWithEols('there\r\nare\nmultiple\nlines'),
['there\r\n', 'are\n', 'multiple\n', 'lines']

);
assert.deepEqual(

splitLinesWithEols('first\n\nthird'),
['first\n', '\n', 'third']

);
assert.deepEqual(

splitLinesWithEols('EOL at the end\n'),
['EOL at the end\n']

);
assert.deepEqual(

splitLinesWithEols(''),
['']

);

Line A contains a regular expression with a lookbehind assertion. It matches at loca-
tions that are preceded by a match for the pattern \r?\n but it doesn’t capture anything.
Therefore, it doesn’t remove anything between the string fragments that the input string
is split into.

On engines that don’t support lookbehind assertions (see this table), we can use the fol-

https://exploringjs.com/impatient-js/ch_regexps.html#regexp-lookbehind-assertions
https://caniuse.com/js-regexp-lookbehind

94 8 Working with the file system on Node.js

lowing solution:

function splitLinesWithEols(str) {
if (str.length === 0) return [''];
const lines = [];
let prevEnd = 0;
while (prevEnd < str.length) {

// Searching for '\n' means we’ll also find '\r\n'
const newlineIndex = str.indexOf('\n', prevEnd);
// If there is a newline, it’s included in the line
const end = newlineIndex < 0 ? str.length : newlineIndex+1;
lines.push(str.slice(prevEnd, end));
prevEnd = end;

}
return lines;

}

This solution is simple, but more verbose.

In both versions of splitLinesWithEols(), we again accept both Unix line terminators
('\n') andWindows line terminators ('\r\n'). Formore information, see §8.3 “Handling
line terminators across platforms”.

8.2.2 Reading a file via a stream, line by line
We can also read text files via streams:

import {Readable} from 'node:stream';

const nodeReadable = fs.createReadStream(
'text-file.txt', {encoding: 'utf-8'});

const webReadableStream = Readable.toWeb(nodeReadable);
const lineStream = webReadableStream.pipeThrough(

new ChunksToLinesStream());
for await (const line of lineStream) {

console.log(line);
}

// Output:
// 'there\r\n'
// 'are\n'
// 'multiple\n'
// 'lines'

We used the following external functionality:

• fs.createReadStream(filePath, options?) creates a Node.js stream (an
instance of stream.Readable).

• stream.Readable.toWeb(streamReadable) converts a readable Node.js stream to
a web stream (an instance of ReadableStream).

https://nodejs.org/api/fs.html#fscreatereadstreampath-options
https://nodejs.org/api/stream.html#streamreadabletowebstreamreadable

8.2 Reading and writing files 95

• The TransformStream class ChunksToLinesStream is explained in §10.7.1 “Exam-
ple: transforming a stream of arbitrary chunks to a stream of lines”. Chunks are the
pieces of data produced by streams. If we have a stream whose chunks are strings
with arbitrary lengths and pipe it through a ChunksToLinesStream, then we get a
stream whose chunks are lines.

Web streams are asynchronously iterable, which is why we can use a for-await-of loop
to iterate over lines.
Ifwe are not interested in text lines, thenwedon’t need ChunksToLinesStream, can iterate
over webReadableStream and get chunks with arbitrary lengths.
More information:

• Web streams are covered in §10 “Using web streams on Node.js”.
• Line terminators are covered in §8.3 “Handling line terminators across platforms”.

Pros and cons of this approach (vs. reading a single string):
• Pro: Works well with large files.

– We can process the data incrementally, in smaller pieces and don’t have to
wait for everything to be read.

• Con: More complicated to use and not synchronous.

8.2.3 Writing a single string to a file synchronously
fs.writeFileSync(filePath, str, options?) writes str to a file at filePath. If a file
already exists at that path, it is overwritten.
The following code shows how to use this function:

fs.writeFileSync(
'new-file.txt',
'First line\nSecond line\n',
{encoding: 'utf-8'}

);

For information on line terminators, see §8.3 “Handling line terminators across plat-
forms”.
Pros and cons (vs. using a stream):

• Pro: Easy to use and synchronous. Works for many use cases.
• Con: Not suited for large files.

8.2.4 Appending a single string to a file (synchronously)
The following code appends a line of text to an existing file:

fs.appendFileSync(
'existing-file.txt',
'Appended line\n',
{encoding: 'utf-8'}

);

https://exploringjs.com/impatient-js/ch_async-iteration.html
https://nodejs.org/api/fs.html#fswritefilesyncfile-data-options

96 8 Working with the file system on Node.js

We can also use fs.writeFileSync() to perform this task:

fs.writeFileSync(
'existing-file.txt',
'Appended line\n',
{encoding: 'utf-8', flag: 'a'}

);

This code is almost the same as the one we used to overwrite existing content (see the
previous section for more information). The only difference is that we added the option
.flag: The value 'a' means that we append data. Other possible values (e.g. to throw
an error if a file doesn’t exist yet) are explained in the Node.js documentation.

Watch out: In some functions, this option is named .flag, in others .flags.

8.2.5 Writing multiple strings to a file via stream
The following code uses a stream to write multiple strings to a file:

import {Writable} from 'node:stream';

const nodeWritable = fs.createWriteStream(
'new-file.txt', {encoding: 'utf-8'});

const webWritableStream = Writable.toWeb(nodeWritable);

const writer = webWritableStream.getWriter();
try {

await writer.write('First line\n');
await writer.write('Second line\n');
await writer.close();

} finally {
writer.releaseLock()

}

We used the following functions:

• fs.createWriteStream(path, options?) creates a Node.js stream (an instance of
stream.Writable).

• stream.Writable.toWeb(streamWritable) converts a writable Node.js stream to
a web stream (an instance of WritableStream).

More information:

• WritableStreams and Writers are covered in §10 “Using web streams on Node.js”.
• Line terminators are covered in §8.3 “Handling line terminators across platforms”.

Pros and cons (vs. writing a single string):

• Pro: Works well with large files because we can write the data incrementally, in
smaller pieces.

• Con: More complicated to use and not synchronous.

https://nodejs.org/api/fs.html#fswritefilesyncfile-data-options
https://nodejs.org/api/fs.html#fscreatewritestreampath-options
https://nodejs.org/api/stream.html#streamwritabletowebstreamwritable

8.3 Handling line terminators across platforms 97

8.2.6 Appending multiple strings to a file via a stream (asyn-
chronously)

The following code uses a stream to append text to an existing file:
import {Writable} from 'node:stream';

const nodeWritable = fs.createWriteStream(
'existing-file.txt', {encoding: 'utf-8', flags: 'a'});

const webWritableStream = Writable.toWeb(nodeWritable);

const writer = webWritableStream.getWriter();
try {

await writer.write('First appended line\n');
await writer.write('Second appended line\n');
await writer.close();

} finally {
writer.releaseLock()

}

This code is almost the same as the one we used to overwrite existing content (see the
previous section for more information). The only difference is that we added the option
.flags: The value 'a'means that we append data. Other possible values (e.g. to throw
an error if a file doesn’t exist yet) are explained in the Node.js documentation.
Watch out: In some functions, this option is named .flag, in others .flags.

8.3 Handling line terminators across platforms
Alas, not all platform have the same line terminator characters that mark the end of line
(EOL):

• On Windows, EOL is '\r\n'.
• On Unix (incl. macOS), EOL is '\n'.

To handle EOL in a manner that works on all platforms, we can use several strategies.

8.3.1 Reading line terminators
When reading text, it’s best to recognize both EOLs.
What might that look like when splitting a text into lines? We can include the EOLs (in
either format) at the ends. That enables us to change as little as possible if we modify
those lines and write them to a file.
When processing lines with EOLs, it’s sometimes useful to remove them – e.g. via the
following function:

const RE_EOL_REMOVE = /\r?\n$/;
function removeEol(line) {

const match = RE_EOL_REMOVE.exec(line);
if (!match) return line;

https://nodejs.org/api/fs.html#fswritefilesyncfile-data-options

98 8 Working with the file system on Node.js

return line.slice(0, match.index);
}

assert.equal(
removeEol('Windows EOL\r\n'),
'Windows EOL'

);
assert.equal(

removeEol('Unix EOL\n'),
'Unix EOL'

);
assert.equal(

removeEol('No EOL'),
'No EOL'

);

8.3.2 Writing line terminators
When it comes to writing line terminators, we have two options:

• Constant EOL in module 'node:os' contains the EOL of the current platform.
• We can detect the EOL format of an input file and use that when we change that

file.

8.4 Traversing and creating directories
8.4.1 Traversing a directory
The following function traverses a directory and lists all of its descendants (its children,
the children of its children, etc.):

import * as path from 'node:path';

function* traverseDirectory(dirPath) {
const dirEntries = fs.readdirSync(dirPath, {withFileTypes: true});
// Sort the entries to keep things more deterministic
dirEntries.sort(

(a, b) => a.name.localeCompare(b.name, 'en')
);
for (const dirEntry of dirEntries) {

const fileName = dirEntry.name;
const pathName = path.join(dirPath, fileName);
yield pathName;
if (dirEntry.isDirectory()) {
yield* traverseDirectory(pathName);

}
}

}

https://nodejs.org/api/os.html#oseol

8.4 Traversing and creating directories 99

We used this functionality:
• fs.readdirSync(thePath, options?) returns the children of the directory at

thePath.
– If option .withFileTypes is true, the function returns directory entries, in-
stances of fs.Dirent. These have properties such as:
* dirent.name

* dirent.isDirectory()

* dirent.isFile()

* dirent.isSymbolicLink()
– If option .withFileTypes is false or missing, the function returns strings
with file names.

The following code shows traverseDirectory() in action:
for (const filePath of traverseDirectory('dir')) {

console.log(filePath);
}

// Output:
// 'dir/dir-file.txt'
// 'dir/subdir'
// 'dir/subdir/subdir-file1.txt'
// 'dir/subdir/subdir-file2.csv'

8.4.2 Creating a directory (mkdir, mkdir -p)
We can use the following function to create directories:

fs.mkdirSync(thePath, options?): undefined | string

options.recursive determines how the function creates the directory at thePath:
• If .recursive is missing or false, mkdirSync() returns undefined and an excep-

tion is thrown if:
– A directory (or file) already exists at thePath.
– The parent directory of thePath does not exist.

• If .recursive is true:
– It’s OK if there is already a directory at thePath.
– The ancestor directories of thePath are created as needed.
– mkdirSync() returns the path of the first newly created directory.

This is mkdirSync() in action:
assert.deepEqual(

Array.from(traverseDirectory('.')),
[

'dir',
]

);
fs.mkdirSync('dir/sub/subsub', {recursive: true});
assert.deepEqual(

https://nodejs.org/api/fs.html#fsreaddirsyncpath-options
https://nodejs.org/api/fs.html#class-fsdirent
https://nodejs.org/api/fs.html#fsmkdirsyncpath-options

100 8 Working with the file system on Node.js

Array.from(traverseDirectory('.')),
[

'dir',
'dir/sub',
'dir/sub/subsub',

]
);

Function traverseDirectory(dirPath) lists all descendants of the directory at dirPath.

8.4.3 Ensuring that a parent directory exists
If we want to set up a nested file structure on demand, we can’t always be sure that the
ancestor directories exist when we create a new file. Then the following function helps:

import * as path from 'node:path';

function ensureParentDirectory(filePath) {
const parentDir = path.dirname(filePath);
if (!fs.existsSync(parentDir)) {

fs.mkdirSync(parentDir, {recursive: true});
}

}

Here we can see ensureParentDirectory() in action (line A):
assert.deepEqual(

Array.from(traverseDirectory('.')),
[

'dir',
]

);
const filePath = 'dir/sub/subsub/new-file.txt';
ensureParentDirectory(filePath); // (A)
fs.writeFileSync(filePath, 'content', {encoding: 'utf-8'});
assert.deepEqual(

Array.from(traverseDirectory('.')),
[

'dir',
'dir/sub',
'dir/sub/subsub',
'dir/sub/subsub/new-file.txt',

]
);

8.4.4 Creating a temporary directory
fs.mkdtempSync(pathPrefix, options?) creates a temporary directory: It appends 6
random characters to pathPrefix, creates a directory at the new path and returns that
path.

https://nodejs.org/api/fs.html#fsmkdtempsyncprefix-options

8.5 Copying, renaming, moving files or directories 101

pathPrefix shouldn’t end with a capital “X” because some platforms replace trailing Xs
with random characters.
If we want to create our temporary directory inside an operating-system-specific global
temporary directory, we can use function os.tmpdir():

import * as os from 'node:os';
import * as path from 'node:path';

const pathPrefix = path.resolve(os.tmpdir(), 'my-app');
// e.g. '/var/folders/ph/sz0384m11vxf/T/my-app'

const tmpPath = fs.mkdtempSync(pathPrefix);
// e.g. '/var/folders/ph/sz0384m11vxf/T/my-app1QXOXP'

It’s important to note that temporary directories are not automatically removed when a
Node.js script terminates. We either have to delete it ourselves or rely on the operating
system to periodically clean up its global temporary directory (which it may or may not
do).

8.5 Copying, renaming, moving files or directories
8.5.1 Copying files or directories
fs.cpSync(srcPath, destPath, options?): copies a file or directory from srcPath to
destPath. Interesting options:

• .recursive (default: false): Directories (including empty ones) are only copied
if this option is true.

• .force (default: true): If true, existing files are overwritten. If false, existing
files are preserved.

– In the latter case, setting .errorOnExist to true leads to errors being thrown
if file paths clash.

• .filter is a function that lets us control which files are copied.
• .preserveTimestamps (default: false): If true, the copies in destPath get the

same timestamps as the originals in srcPath.
This is the function in action:

assert.deepEqual(
Array.from(traverseDirectory('.')),
[

'dir-orig',
'dir-orig/some-file.txt',

]
);
fs.cpSync('dir-orig', 'dir-copy', {recursive: true});
assert.deepEqual(

Array.from(traverseDirectory('.')),
[

'dir-copy',

https://nodejs.org/api/os.html#ostmpdir
https://nodejs.org/api/fs.html#fscpsyncsrc-dest-options

102 8 Working with the file system on Node.js

'dir-copy/some-file.txt',
'dir-orig',
'dir-orig/some-file.txt',

]
);

Function traverseDirectory(dirPath) lists all descendants of the directory at dirPath.

8.5.2 Renaming or moving files or directories
fs.renameSync(oldPath, newPath) renames or moves a file or a directory from oldPath
to newPath.

Let’s use this function to rename a directory:

assert.deepEqual(
Array.from(traverseDirectory('.')),
[

'old-dir-name',
'old-dir-name/some-file.txt',

]
);
fs.renameSync('old-dir-name', 'new-dir-name');
assert.deepEqual(

Array.from(traverseDirectory('.')),
[

'new-dir-name',
'new-dir-name/some-file.txt',

]
);

Here we use the function to move a file:

assert.deepEqual(
Array.from(traverseDirectory('.')),
[

'dir',
'dir/subdir',
'dir/subdir/some-file.txt',

]
);
fs.renameSync('dir/subdir/some-file.txt', 'some-file.txt');
assert.deepEqual(

Array.from(traverseDirectory('.')),
[

'dir',
'dir/subdir',
'some-file.txt',

]
);

https://nodejs.org/api/fs.html#fsrenamesyncoldpath-newpath

8.6 Removing files or directories 103

Function traverseDirectory(dirPath) lists all descendants of the directory at dirPath.

8.6 Removing files or directories
8.6.1 Removing files and arbitrary directories (shell: rm, rm -r)
fs.rmSync(thePath, options?) removes a file or directory at thePath. Interesting op-
tions:

• .recursive (default: false): Directories (including empty ones) are only removed
if this option is true.

• .force (default: false): If false, an exception will be thrown if there is no file or
directory at thePath.

Let’s use fs.rmSync() to remove a file:

assert.deepEqual(
Array.from(traverseDirectory('.')),
[

'dir',
'dir/some-file.txt',

]
);
fs.rmSync('dir/some-file.txt');
assert.deepEqual(

Array.from(traverseDirectory('.')),
[

'dir',
]

);

Here we use fs.rmSync() to recursively remove a non-empty directory.

assert.deepEqual(
Array.from(traverseDirectory('.')),
[

'dir',
'dir/subdir',
'dir/subdir/some-file.txt',

]
);
fs.rmSync('dir/subdir', {recursive: true});
assert.deepEqual(

Array.from(traverseDirectory('.')),
[

'dir',
]

);

Function traverseDirectory(dirPath) lists all descendants of the directory at dirPath.

https://nodejs.org/api/fs.html#fsrmsyncpath-options

104 8 Working with the file system on Node.js

8.6.2 Removing an empty directory (shell: rmdir)
fs.rmdirSync(thePath, options?) removes an empty directory (an exception is
thrown if a directory isn’t empty).

The following code shows how this function works:

assert.deepEqual(
Array.from(traverseDirectory('.')),
[

'dir',
'dir/subdir',

]
);
fs.rmdirSync('dir/subdir');
assert.deepEqual(

Array.from(traverseDirectory('.')),
[

'dir',
]

);

Function traverseDirectory(dirPath) lists all descendants of the directory at dirPath.

8.6.3 Clearing directories
A script that saves its output to a directory dir, often needs to clear dir before it starts:
Remove every file in dir so that it is empty. The following function does that.

import * as path from 'node:path';

function clearDirectory(dirPath) {
for (const fileName of fs.readdirSync(dirPath)) {

const pathName = path.join(dirPath, fileName);
fs.rmSync(pathName, {recursive: true});

}
}

We used two file system functions:

• fs.readdirSync(dirPath) returns the names of all children of the directory at
dirPath. It is explained in §8.4.1 “Traversing a directory”.

• fs.rmSync(pathName, options?) removes files and directories (including non-
empty ones). It is explained in §8.6.1 “Removing files and arbitrary directories
(shell: rm, rm -r)”.

This is an example of using clearDirectory():

assert.deepEqual(
Array.from(traverseDirectory('.')),
[

'dir',

https://nodejs.org/api/fs.html#fsrmdirsyncpath-options

8.7 Reading and changing file system entries 105

'dir/dir-file.txt',
'dir/subdir',
'dir/subdir/subdir-file.txt'

]
);
clearDirectory('dir');
assert.deepEqual(

Array.from(traverseDirectory('.')),
[

'dir',
]

);

8.6.4 Trashing files or directories
The library trash moves files and folders to the trash. It works on macOS, Windows,
and Linux (where support is limited and help is wanted). This is an example from its
readme file:

import trash from 'trash';

await trash(['*.png', '!rainbow.png']);

trash() accepts either an Array of strings or a string as its first parameter. Any string
can be a glob pattern (with asterisks and other meta-characters).

8.7 Reading and changing file system entries
8.7.1 Checking if a file or directory exists
fs.existsSync(thePath) returns true if a file or directory exists at thePath:

assert.deepEqual(
Array.from(traverseDirectory('.')),
[

'dir',
'dir/some-file.txt',

]
);
assert.equal(

fs.existsSync('dir'), true
);
assert.equal(

fs.existsSync('dir/some-file.txt'), true
);
assert.equal(

fs.existsSync('dir/non-existent-file.txt'), false
);

Function traverseDirectory(dirPath) lists all descendants of the directory at dirPath.

https://github.com/sindresorhus/trash
https://nodejs.org/api/fs.html#fsexistssyncpath

106 8 Working with the file system on Node.js

8.7.2 Checking the stats of a file: Is it a directory? Whenwas it created?
Etc.

fs.statSync(thePath, options?) returns an instance of fs.Statswith information on
the file or directory at thePath.

Interesting options:

• .throwIfNoEntry (default: true): What happens if there is no entity at path?
– If this option is true, an exception is thrown.
– If it is false, undefined is returned.

• .bigint (default: false): If true, this function uses bigints for numeric values
(such as timestamps, see below).

Properties of instances of fs.Stats:

• What kind of file system entry is it?
– stats.isFile()
– stats.isDirectory()
– stats.isSymbolicLink()

• stats.size is the size in bytes
• Timestamps:

– There are three kinds of timestamps:
* stats.atime: time of last access
* stats.mtime: time of last modification
* stats.birthtime: time of creation

– Each of these timestamps can be specified with three different units – for
example, atime:
* stats.atime: instance of Date
* stats.atimeMS: milliseconds since the POSIX Epoch
* stats.atimeNs: nanoseconds since the POSIX Epoch (requires option
.bigint)

In the following example, we use fs.statSync() to implement a function isDirec-
tory():

function isDirectory(thePath) {
const stats = fs.statSync(thePath, {throwIfNoEntry: false});
return stats !== undefined && stats.isDirectory();

}

assert.deepEqual(
Array.from(traverseDirectory('.')),
[

'dir',
'dir/some-file.txt',

]
);

assert.equal(
isDirectory('dir'), true

https://nodejs.org/api/fs.html#fsstatsyncpath-options
https://nodejs.org/api/fs.html#class-fsstats

8.8 Working with links 107

);
assert.equal(

isDirectory('dir/some-file.txt'), false
);
assert.equal(

isDirectory('non-existent-dir'), false
);

Function traverseDirectory(dirPath) lists all descendants of the directory at dirPath.

8.7.3 Changing file attributes: permissions, owner, group, timestamps
Let’s briefly look at functions for changing file attributes:

• fs.chmodSync(path, mode) changes the permission of a file.
• fs.chownSync(path, uid, gid) changes the owner and group of a file.
• fs.utimesSync(path, atime, mtime) changes the timestamps of a file:

– atime: time of last access
– mtime: time of last modification

8.8 Working with links
Functions for working with hard links:

• fs.linkSync(existingPath, newPath) create a hard link.
• fs.unlinkSync(path) removes a hard link and possibly the file it points to (if it is

the last hard link to that file).
Functions for working with symbolic links:

• fs.symlinkSync(target, path, type?) creates a symbolic link from path to
target.

• fs.readlinkSync(path, options?) returns the target of the symbolic link at path.
The following functions operate on symbolic links without dereferencing them (note the
name prefix “l”):

• fs.lchmodSync(path, mode) changes the permissions of the symbolic link at path.
• fs.lchownSync(path, uid, gid) changes user and group of the symbolic link at

path.
• fs.lutimesSync(path, atime, mtime) changes the timestamps of the symbolic

link at path.
• fs.lstatSync(path, options?) returns the stats (timestamps etc.) of the sym-

bolic link at path.
Other useful functions:

• fs.realpathSync(path, options?) computes the canonical pathname by resolv-
ing dots (.), double dots (..), and symbolic links.

Options of functions that affect how symbolic links are handled:
• fs.cpSync(src, dest, options?):

https://nodejs.org/api/fs.html#fschmodsyncpath-mode
https://nodejs.org/api/fs.html#fschownsyncpath-uid-gid
https://nodejs.org/api/fs.html#fsutimessyncpath-atime-mtime
https://nodejs.org/api/fs.html#fslinksyncexistingpath-newpath
https://nodejs.org/api/fs.html#fsunlinksyncpath
https://nodejs.org/api/fs.html#fssymlinksynctarget-path-type
https://nodejs.org/api/fs.html#fsreadlinksyncpath-options
https://nodejs.org/api/fs.html#fslchmodsyncpath-mode
https://nodejs.org/api/fs.html#fslchownsyncpath-uid-gid
https://nodejs.org/api/fs.html#fslutimessyncpath-atime-mtime
https://nodejs.org/api/fs.html#fslstatsyncpath-options
https://nodejs.org/api/fs.html#fsrealpathsyncpath-options
https://nodejs.org/api/fs.html#fscpsyncsrc-dest-options

108 8 Working with the file system on Node.js

– .dereference (default: false): If true, copy the files that symbolic links
points to, not the symbolic links themselves.

– .verbatimSymlinks (default: false): If false, the target of a copied symbolic
link will be updated so that it still points to the same location. If true, the
target won’t be changed.

8.9 Further reading
• “JavaScript for impatient programmers” has several chapters on writing asyn-

chronous code:
– “Foundations of asynchronous programming in JavaScript”
– “Promises for asynchronous programming”
– “Async functions”
– “Asynchronous iteration”

https://exploringjs.com/impatient-js/ch_async-js.html
https://exploringjs.com/impatient-js/ch_promises.html
https://exploringjs.com/impatient-js/ch_async-functions.html
https://exploringjs.com/impatient-js/ch_async-iteration.html

Chapter 9

Native Node.js streams

Contents
9.1 Recap: asynchronous iteration and asynchronous generators 110
9.2 Streams . 110

9.2.1 Pipelining . 111
9.2.2 Text encodings . 111
9.2.3 Helper function: readableToString() 111
9.2.4 A few preliminary remarks . 112

9.3 Readable streams . 112
9.3.1 Creating readable streams . 112
9.3.2 Reading chunks from readable streams via for-await-of . . . 113
9.3.3 Reading lines from readable streams viamodule 'node:readlines'114

9.4 Transforming readable streams via async generators 114
9.4.1 Going from chunks to numbered lines in async iterables 115

9.5 Writable streams . 116
9.5.1 Creating writable streams for files 116
9.5.2 Writing to writable streams 116

9.6 Quick reference: stream-related functionality 118
9.7 Further reading and sources of this chapter 120

This chapter is an introduction to Node’s native streams. They support asynchronous
iteration which makes them easier to work with and which is what we will mostly use
in this chapter.

Note that cross-platform web streams are covered in §10 “Using web streams on Node.js”.
We will mostly use those in this book. Therefore, you can skip the current chapter if you
want to.

109

https://exploringjs.com/impatient-js/ch_async-iteration.html
https://exploringjs.com/impatient-js/ch_async-iteration.html

110 9 Native Node.js streams

9.1 Recap: asynchronous iteration and asynchronous gen-
erators

Asynchronous iteration is a protocol for retrieving the contents of a data container asyn-
chronously (meaning the current “task” may be paused before retrieving an item).

Asynchronous generators help with async iteration. For example, this is an asyn-
chronous generator function:

/**
* @returns an asynchronous iterable
*/
async function* asyncGenerator(asyncIterable) {

for await (const item of asyncIterable) { // input
if (···) {
yield '> ' + item; // output

}
}

}

• The for-await-of loop iterates over the input asyncIterable. This loop is also
available in normal asynchronous functions.

• The yield feeds values into the asynchronous iterable that is returned by this gen-
erator.

In the remainder of the chapter, pay close attention to whether a function is an async
function or an async generator function:

/** @returns a Promise */
async function asyncFunction() { /*···*/ }

/** @returns an async iterable */
async function* asyncGeneratorFunction() { /*···*/ }

9.2 Streams
A stream is a pattern whose core idea is to “divide and conquer” a large amount of data:
We can handle it if we split it into smaller pieces and handle one portion at a time.

Node.js supports several kinds of streams – for example:

• Readable streams are streams fromwhich we can read data. In other words, they are
sources of data. An example is a readable file stream, which lets us read the contents
of a file.

• Writable streams are streams to which we can write data. In other words, they are
sinks for data. An example is a writable file stream, which lets us write data to a file.

• A transform stream is both readable and writable. As a writable stream, it receives
pieces of data, transforms (changes or discards) them and then outputs them as a
readable stream.

https://exploringjs.com/impatient-js/ch_async-iteration.html
https://exploringjs.com/impatient-js/ch_async-iteration.html#async-generators

9.2 Streams 111

9.2.1 Pipelining
To process streamed data in multiple steps, we can pipeline (connect) streams:

1. Input is received via a readable stream.
2. Each processing step is performed via a transform stream.
3. For the last processing step, we have two options:

• We can write the data in the most recent readable stream into a writable
stream. That is, the writable stream is the last element of our pipeline.

• We can process the data in the most recent readable stream in some other
manner.

Part (2) is optional.

9.2.2 Text encodings
When creating text streams, it is best to always specify an encoding:

• The Node.js docs have a list of supported encodings and their default spellings –
for example:

– 'utf8'
– 'utf16le'
– 'base64'

• A few different spellings are also allowed. You can use Buffer.isEncoding() to
check which ones are:

> buffer.Buffer.isEncoding('utf8')
true
> buffer.Buffer.isEncoding('utf-8')
true
> buffer.Buffer.isEncoding('UTF-8')
true
> buffer.Buffer.isEncoding('UTF:8')
false

The default value for encodings is null, which is equivalent to 'utf8'.

9.2.3 Helper function: readableToString()
We will occasionally use the following helper function. You don’t need to understand
how it works, only (roughly) what it does.

import * as stream from 'stream';

/**
* Reads all the text in a readable stream and returns it as a string,
* via a Promise.
* @param {stream.Readable} readable
*/
function readableToString(readable) {

return new Promise((resolve, reject) => {

https://nodejs.org/api/buffer.html#buffer_buffers_and_character_encodings
https://nodejs.org/api/buffer.html#buffer_class_method_buffer_isencoding_encoding

112 9 Native Node.js streams

let data = '';
readable.on('data', function (chunk) {
data += chunk;

});
readable.on('end', function () {
resolve(data);

});
readable.on('error', function (err) {
reject(err);

});
});

}

This function is implemented via the event-based API. We’ll later see a simpler way of
doing this – via async iteration.

9.2.4 A few preliminary remarks
• We’ll only use text streams in this chapter.
• In the examples, we’ll occasionally encounter await being used at the top level. In

that case, we imagine that we are inside a module or inside the body of an async
function.

• Whenever there are newlines, we support both:
– Unix: '\n' (LF)
– Windows: '\r\n' (CR LF)

The newline characters of the current platform can be accessed via the constant
EOL in module os.

9.3 Readable streams
9.3.1 Creating readable streams
9.3.1.1 Creating readable streams from files

We can use fs.createReadStream() to create readable streams:

import * as fs from 'fs';

const readableStream = fs.createReadStream(
'tmp/test.txt', {encoding: 'utf8'});

assert.equal(
await readableToString(readableStream),
'This is a test!\n');

9.3.1.2 Readable.from(): Creating readable streams from iterables

The static method Readable.from(iterable, options?) creates a readable stream
which holds the data contained in iterable. iterable can be a synchronous iterable

https://github.com/tc39/proposal-top-level-await
https://nodejs.org/api/os.html#os_os_eol
https://nodejs.org/api/os.html#os_os_eol
https://nodejs.org/api/fs.html#fs_fs_createreadstream_path_options
https://nodejs.org/api/stream.html#stream_stream_readable_from_iterable_options

9.3 Readable streams 113

or an asynchronous iterable. The parameter options is optional and can, among other
things, be used to specify a text encoding.

import * as stream from 'stream';

function* gen() {
yield 'One line\n';
yield 'Another line\n';

}
const readableStream = stream.Readable.from(gen(), {encoding: 'utf8'});
assert.equal(

await readableToString(readableStream),
'One line\nAnother line\n');

9.3.1.2.1 Creating readable streams from strings

Readable.from() accepts any iterable and can therefore also be used to convert strings
to streams:

import {Readable} from 'stream';

const str = 'Some text!';
const readable = Readable.from(str, {encoding: 'utf8'});
assert.equal(

await readableToString(readable),
'Some text!');

At the moment, Readable.from() treats a string like any other iterable and therefore
iterates over its code points. That isn’t ideal, performance-wise, but should be OK for
most use cases. I expect Readable.from() to be often used with strings, so maybe there
will be optimizations in the future.

9.3.2 Reading chunks from readable streams via for-await-of
Every readable stream is asynchronously iterable, which means that we can use a for-
await-of loop to read its contents:

import * as fs from 'fs';

async function logChunks(readable) {
for await (const chunk of readable) {

console.log(chunk);
}

}

const readable = fs.createReadStream(
'tmp/test.txt', {encoding: 'utf8'});

logChunks(readable);

https://github.com/nodejs/node/blob/master/lib/internal/streams/from.js

114 9 Native Node.js streams

// Output:
// 'This is a test!\n'

9.3.2.1 Collecting the contents of a readable stream in a string
The following function is a simpler reimplementation of the function that we have seen
at the beginning of this chapter.

import {Readable} from 'stream';

async function readableToString2(readable) {
let result = '';
for await (const chunk of readable) {

result += chunk;
}
return result;

}

const readable = Readable.from('Good morning!', {encoding: 'utf8'});
assert.equal(await readableToString2(readable), 'Good morning!');

Note that, in this case, we had to use an async function because we wanted to return a
Promise.

9.3.3 Reading lines from readable streams viamodule 'node:readlines'
The built-in module 'node:readline' lets us read lines from readable streams:

import * as fs from 'node:fs';
import * as readline from 'node:readline/promises';

const filePath = process.argv[2]; // first command line argument

const rl = readline.createInterface({
input: fs.createReadStream(filePath, {encoding: 'utf-8'}),

});
for await (const line of rl) {

console.log('>', line);
}
rl.close();

9.4 Transforming readable streams via async generators
Async iteration provides an elegant alternative to transform streams for processing
streamed data in multiple steps:

• The input is a readable stream.
• The first transformation is performed by an async generator that iterates over the

readable streams and yields as it sees fit.
• Optionally, we can transform further, by using more async generators.

9.4 Transforming readable streams via async generators 115

• At the end, we have several options for handling the async iterable returned by
the last generator:

– We can convert it to a readable stream via Readable.from() (which can later
be piped into a writable stream).

– We can use an async function to process it.
– Etc.

To summarize, these are the pieces of such processing pipelines:
readable
� first async generator [� … � last async generator]
� readable or async function

9.4.1 Going from chunks to numbered lines in async iterables
In the next example, we’ll see an example of a processing pipeline as it was just explained.

import {Readable} from 'stream';

/**
* @param chunkIterable An asynchronous or synchronous iterable
* over “chunks” (arbitrary strings)
* @returns An asynchronous iterable over “lines”
* (strings with at most one newline that always appears at the end)
*/
async function* chunksToLines(chunkIterable) {

let previous = '';
for await (const chunk of chunkIterable) {

let startSearch = previous.length;
previous += chunk;
while (true) {

// Works for EOL === '\n' and EOL === '\r\n'
const eolIndex = previous.indexOf('\n', startSearch);
if (eolIndex < 0) break;
// Line includes the EOL
const line = previous.slice(0, eolIndex+1);
yield line;
previous = previous.slice(eolIndex+1);
startSearch = 0;

}
}
if (previous.length > 0) {

yield previous;
}

}

async function* numberLines(lineIterable) {
let lineNumber = 1;
for await (const line of lineIterable) {

yield lineNumber + ' ' + line;

116 9 Native Node.js streams

lineNumber++;
}

}

async function logLines(lineIterable) {
for await (const line of lineIterable) {

console.log(line);
}

}

const chunks = Readable.from(
'Text with\nmultiple\nlines.\n',
{encoding: 'utf8'});

await logLines(numberLines(chunksToLines(chunks))); // (A)

// Output:
// '1 Text with\n'
// '2 multiple\n'
// '3 lines.\n'

The processing pipeline is set up in line A. The steps are:
• chunksToLines(): Go from an async iterable with chunks to an async iterable with

lines.
• numberLines(): Go from an async iterable with lines to an async iterable with

numbered lines.
• logLines(): Log the items in an async iterable.

Observation:
• Both input and output of chunksToLines() and numberLines() are async iterables.

That’s why they are async generators (as indicated by async and *).
• Only the input of logLines() is an async iterable. That’s why it is an async func-

tion (as indicated by async).

9.5 Writable streams
9.5.1 Creating writable streams for files
We can use fs.createWriteStream() to create writable streams:

const writableStream = fs.createWriteStream(
'tmp/log.txt', {encoding: 'utf8'});

9.5.2 Writing to writable streams
In this section, we look at approaches to writing to a writable stream:

1. Writing directly to the writable stream via its method .write().
2. Using function pipeline() from module stream to pipe a readable stream to the

writable stream.

https://nodejs.org/api/fs.html#fs_fs_createwritestream_path_options

9.5 Writable streams 117

To demonstrate these approaches, we use them to implement the same function writeIt-
erableToFile().

Method .pipe() of readable streams also supports piping but it has a downside and it’s
better to avoid it.

9.5.2.1 writable.write(chunk)

When it comes to writing data to streams, there are two callback-based mechanisms that
help us:

• Event 'drain' signals that backpressure is over.
• Function finished() invokes a callback when a stream:

– Is no longer readable or writable
– Has experienced an error or a premature close event

In the following example, we promisify these mechanisms so that we can use them via
an async function:

import * as util from 'util';
import * as stream from 'stream';
import * as fs from 'fs';
import {once} from 'events';

const finished = util.promisify(stream.finished); // (A)

async function writeIterableToFile(iterable, filePath) {
const writable = fs.createWriteStream(filePath, {encoding: 'utf8'});
for await (const chunk of iterable) {

if (!writable.write(chunk)) { // (B)
// Handle backpressure
await once(writable, 'drain');

}
}
writable.end(); // (C)
// Wait until done. Throws if there are errors.
await finished(writable);

}

await writeIterableToFile(
['One', ' line of text.\n'], 'tmp/log.txt');

assert.equal(
fs.readFileSync('tmp/log.txt', {encoding: 'utf8'}),
'One line of text.\n');

The default version of stream.finished() is callback-based but can be turned into a
Promise-based version via util.promisify() (line A).

We used the following two patterns:

• Writing to a writable stream while handling backpressure (line B):

118 9 Native Node.js streams

if (!writable.write(chunk)) {
await once(writable, 'drain');

}

• Closing a writable stream and waiting until writing is done (line C):
writable.end();
await finished(writable);

9.5.2.2 Piping readable streams to writable streams via stream.pipeline()
In line A, we use a promisified version of stream.pipeline() to pipe a readable stream
readable to a writable stream writable:

import * as stream from 'stream';
import * as fs from 'fs';
const pipeline = util.promisify(stream.pipeline);

async function writeIterableToFile(iterable, filePath) {
const readable = stream.Readable.from(

iterable, {encoding: 'utf8'});
const writable = fs.createWriteStream(filePath);
await pipeline(readable, writable); // (A)

}
await writeIterableToFile(

['One', ' line of text.\n'], 'tmp/log.txt');
// ···

9.5.2.3 Not recommended: readable.pipe(destination)
Method readable.pipe() also supports piping, but has a caveat: If the readable emits
an error, then the writable is not closed automatically. pipeline() does not have that
caveat.

9.6 Quick reference: stream-related functionality
Module os:

• const EOL: string (since 0.7.8)
Contains the end-of-line character sequence used by the current platform.

Module buffer:
• Buffer.isEncoding(encoding: string): boolean (since 0.9.1)

Returns true if encoding correctly names one of the supported Node.js encodings
for text. Supported encodings include:

– 'utf8'
– 'utf16le'
– 'ascii'

https://nodejs.org/api/stream.html#stream_readable_pipe_destination_options
https://nodejs.org/api/os.html#os_os_eol
https://nodejs.org/api/buffer.html#buffer_class_method_buffer_isencoding_encoding
https://nodejs.org/api/buffer.html#buffer_buffers_and_character_encodings

9.6 Quick reference: stream-related functionality 119

– 'latin1
– 'base64'
– 'hex' (each byte as two hexadecimal characters)

Module stream:
• Readable.prototype[Symbol.asyncIterator](): AsyncIterableItera-

tor<any> (since 10.0.0)
Readable streams are asynchronously iterable. For example, you can use for-
await-of loops in asyc functions or async generators to iterate over them.

• finished(stream: ReadableStream | WritableStream | ReadWriteStream,
callback: (err?: ErrnoException | null) => void): () => Promise<void>
(since 10.0.0)
The returned Promise is settled when reading/writing is done or there was an
error.
This promisified version is created as follows:

const finished = util.promisify(stream.finished);

• pipeline(...streams: Array<ReadableStream|ReadWriteStream|WritableStream>):
Promise<void> (since 10.0.0)
Pipes between streams. The returned Promise is settled when the pipeline is com-
plete or when there was an error.
This promisified version is created as follows:

const pipeline = util.promisify(stream.pipeline);

• Readable.from(iterable: Iterable<any> | AsyncIterable<any>, options?:
ReadableOptions): Readable (since 12.3.0)
Converts an iterable into a readable stream.

interface ReadableOptions {
highWaterMark?: number;
encoding?: string;
objectMode?: boolean;
read?(this: Readable, size: number): void;
destroy?(this: Readable, error: Error | null,
callback: (error: Error | null) => void): void;

autoDestroy?: boolean;
}

These options are the same as the options for the Readable constructor and docu-
mented there.

Module fs:
• createReadStream(path: string | Buffer | URL, options?: string | {en-

coding?: string; start?: number}): ReadStream (since 2.3.0)
Creates a readable stream. More options are available.

https://nodejs.org/api/stream.html#stream_readable_symbol_asynciterator
https://nodejs.org/api/stream.html#stream_stream_finished_stream_options_callback
https://nodejs.org/api/stream.html#stream_stream_pipeline_streams_callback
https://nodejs.org/api/stream.html#stream_stream_readable_from_iterable_options
https://nodejs.org/api/stream.html#stream_new_stream_readable_options
https://nodejs.org/api/stream.html#stream_new_stream_readable_options
https://nodejs.org/api/fs.html#fs_fs_createreadstream_path_options

120 9 Native Node.js streams

• createWriteStream(path: PathLike, options?: string | {encoding?:
string; flags?: string; mode?: number; start?: number}): WriteStream
(since 2.3.0)
With option .flags you can specify if you want to write or append and what hap-
pens if a file does or does not exist. More options are available.

The static type information in this section is based on Definitely Typed.

9.7 Further reading and sources of this chapter
• Section “StreamsCompatibilitywithAsyncGenerators andAsync Iterators” in the

Node.js docs
• Chapter “Async functions” in “JavaScript for impatient programmers”
• Chapter “Asynchronous iteration” in “JavaScript for impatient programmers”

https://nodejs.org/api/fs.html#fs_fs_createwritestream_path_options
https://github.com/DefinitelyTyped/DefinitelyTyped/tree/master/types/node
https://nodejs.org/api/stream.html#stream_streams_compatibility_with_async_generators_and_async_iterators
https://exploringjs.com/impatient-js/ch_async-functions.html
https://exploringjs.com/impatient-js/ch_async-iteration.html

Chapter 10

Using web streams on Node.js

Contents
10.1 What are web streams? . 122

10.1.1 Kinds of streams . 122
10.1.2 Pipe chains . 123
10.1.3 Backpressure . 123
10.1.4 Support for web streams in Node.js 124

10.2 Reading from ReadableStreams . 125
10.2.1 Consuming ReadableStreams via Readers 126
10.2.2 Consuming ReadableStreams via asynchronous iteration . . . 128
10.2.3 Piping ReadableStreams to WritableStreams 130

10.3 Turning data sources into ReadableStreams via wrapping 130
10.3.1 A first example of implementing an underlying source 132
10.3.2 Using a ReadableStream to wrap a push source or a pull source 132

10.4 Writing to WritableStreams . 135
10.4.1 Writing to WritableStreams via Writers 136
10.4.2 Piping to WritableStreams . 139

10.5 Turning data sinks into WritableStreams via wrapping 141
10.5.1 Example: tracing a ReadableStream 142
10.5.2 Example: collecting chunks written to a WriteStream in a string 143

10.6 Using TransformStreams . 144
10.6.1 Standard TransformStreams 144

10.7 Implementing custom TransformStreams 146
10.7.1 Example: transforming a streamof arbitrary chunks to a stream

of lines . 147
10.7.2 Tip: async generators are also great for transforming streams . 148

10.8 A closer look at backpressure . 149
10.8.1 Signalling backpressure . 149
10.8.2 Reacting to backpressure . 150

10.9 Byte streams . 152

121

122 10 Using web streams on Node.js

10.9.1 Readable byte streams . 152
10.9.2 Example: an infinite readable byte stream filled with random

data . 153
10.9.3 Example: compressing a readable byte stream 153
10.9.4 Example: reading a web page via fetch() 154

10.10Node.js-specific helpers . 154
10.11Further reading . 155

Web streams are a standard for streams that is now supported on all major web platforms:
web browsers, Node.js, and Deno. (Streams are an abstraction for reading and writing
data sequentially in small pieces from all kinds of sources – files, data hosted on servers,
etc.)
For example, the global function fetch() (which downloads online resources) asyn-
chronously returns a Response which has a property .body with a web stream.
This chapter covers web streams onNode.js, but most of what we learn applies to all web
platforms that support them.

10.1 What are web streams?
Let’s start with an overview of a few fundamentals of web streams. Afterwards, we’ll
quickly move on to examples.
Streams are a data structure for accessing data such as:

• Files
• Data hosted on web servers
• Etc.

Two of their benefits are:
• We can work with large amounts of data because streams allow us to split them

up into smaller pieces (so-called chunks) which we can process one at a time.
• We can work with the same data structure, streams, while processing different

data. That makes it easier to reuse code.
Web streams (“web” is often omitted) are a relatively new standard that originated in
web browsers but is now also supported by Node.js and Deno (as shown in this MDN
compatibility table).
In web streams, chunks are usually either:

• Text streams: Strings
• Binary streams: Uint8Arrays (a kind of TypedArray)

10.1.1 Kinds of streams
There are three main kinds of web streams:

• A ReadableStream is used to read data from a source. Code that does that is called
a consumer.

https://streams.spec.whatwg.org/
https://developer.mozilla.org/en-US/docs/Web/API/fetch
https://streams.spec.whatwg.org/#intro
https://developer.mozilla.org/en-US/docs/Web/API/Streams_API#browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/Streams_API#browser_compatibility
https://exploringjs.com/impatient-js/ch_typed-arrays.html

10.1 What are web streams? 123

• A WritableStream is used to write data to a sink. Code that does that is called a
producer.

• A TransformStream consists of two streams:

– It receives input from its writable side, a WritableStream.
– It sends output to its readable side, a ReadableStream.

The idea is to transform data by “piping it through” a TransformStream. That is,
we write data to the writable side and read transformed data from the readable
side. The following TransformStreams are built into most JavaScript platforms
(more on them later):

– Because JavaScript strings are UTF-16 encoded, UTF-8 encoded data is
treated as binary in JavaScript. A TextDecoderStream converts such data to
strings.

– A TextEncoderStream converts JavaScript strings to UTF-8 data.
– A ‘CompressionStream compresses binary data to GZIP and other compres-
sion formats.

– A DecompressionStream decompresses binary data from GZIP and other
compression formats.

ReadableStreams, WritableStreams and TransformStreams can be used to transport text
or binary data. We’ll mostly do the former in this chapter. Byte streams for binary data
are briefly mentioned at the end.

10.1.2 Pipe chains
Piping is an operation that lets us pipe a ReadableStream to a WritableStream: As long
as the ReadableStream produces data, this operation reads that data and writes it to the
WritableStream. If we connect just two streams, we get a convenient way of transferring
data from one location to another (e.g. to copy a file). However, we can also connectmore
than two streams and get pipe chains that can process data in a variety of ways. This is an
example of a pipe chain:

• It starts with a ReadableStream.
• Next are one or more TransformStreams.
• The chain ends with a WritableStream.

A ReadableStream is connected to a TransformStream by piping the former to the
writable side of the latter. Similarly, a TransformStream is connected to another Trans-
formStream by piping the readable side of the former to the writable side of the latter.
And a TransformStream is connected to a WritableStream by piping the readable side of
the former to the latter.

10.1.3 Backpressure
One problem in pipe chains is that a member may receive more data than it can handle
at the moment. Backpressure is a technique for solving this problem: It enables a receiver
of data to tell its sender that it should temporarily stop sending data so that the receiver
doesn’t get overwhelmed.

124 10 Using web streams on Node.js

Another way to look at backpressure is as a signal that travels backwards through a pipe
chain, from a member that is getting overwhelmed to the beginning of the chain. As an
example, consider the following pipe chain:

ReadableStream -pipeTo-> TransformStream -pipeTo-> WriteableStream

This is how backpressure travels through this chain:

• Initially, theWriteableStream signals that it can’t process more data at the moment.
• The pipe stops reading from the TransformStream.
• Input accumulates inside the TransformStream (which is buffered).
• The TransformStream signals that it’s full.
• The pipe stops reading from the ReadableStream.

We have reached the beginning of the pipe chain. Therefore, no data accumulates inside
the ReadableStream (which is also buffered) and theWriteableStream has time to recover.
Once it does, it signals that it is ready to receive data again. That signal also travels back
through the chain until it reaches the ReadableStream and data processing resumes.

In this first look at backpressure, several details were omitted to make things easier to
understand. These will be covered later.

10.1.4 Support for web streams in Node.js
In Node.js, web streams are available from two sources:

• From module 'node:stream/web'
• Via global variables (like in web browsers)

At the moment, only one API has direct support for web streams in Node.js – the Fetch
API:

const response = await fetch('https://example.com');
const readableStream = response.body;

For other things, we need to use one of the following static methods in module
'node:stream' to either convert a Node.js stream to a web stream or vice versa:

• Node.js Readables can be converted to and from WritableStreams:
– Readable.toWeb(nodeReadable)
– Readable.fromWeb(webReadableStream, options?)

• Node.js Writables can be converted to and from ReadableStreams:
– Writable.toWeb(nodeWritable)
– Writable.fromWeb(webWritableStream, options?)

• Node.js Duplexes can be converted to and from TransformStreams:
– Duplex.toWeb(nodeDuplex)
– Duplex.fromWeb(webTransformStream, options?)

One other API partially supports web streams: FileHandles have the method .read-
ableWebStream().

https://nodejs.org/api/webstreams.html
https://nodejs.org/api/globals.html#fetch
https://nodejs.org/api/globals.html#fetch
https://nodejs.org/dist/latest-v18.x/docs/api/fs.html#filehandlereadablewebstream
https://nodejs.org/dist/latest-v18.x/docs/api/fs.html#filehandlereadablewebstream

10.2 Reading from ReadableStreams 125

10.2 Reading from ReadableStreams
ReadableStreams let us read chunks of data from various sources. They have the follow-
ing type (feel free to skim this type and the explanations of its properties; they will be
explained again when we encounter them in examples):

interface ReadableStream<TChunk> {
getReader(): ReadableStreamDefaultReader<TChunk>;
readonly locked: boolean;
[Symbol.asyncIterator](): AsyncIterator<TChunk>;

cancel(reason?: any): Promise<void>;

pipeTo(
destination: WritableStream<TChunk>,
options?: StreamPipeOptions

): Promise<void>;
pipeThrough<TChunk2>(

transform: ReadableWritablePair<TChunk2, TChunk>,
options?: StreamPipeOptions

): ReadableStream<TChunk2>;

// Not used in this chapter:
tee(): [ReadableStream<TChunk>, ReadableStream<TChunk>];

}

interface StreamPipeOptions {
signal?: AbortSignal;
preventClose?: boolean;
preventAbort?: boolean;
preventCancel?: boolean;

}

Explanations of these properties:
• .getReader() returns a Reader – an object throughwhichwe can read from aRead-

ableStream. ReadableStreams returning Readers is similar to iterables returning
iterators.

• .locked: There can only be one active Reader per ReadableStream at a time. While
one Reader is in use, the ReadableStream is locked and .getReader() cannot be
invoked.

• [Symbol.asyncIterator](https://exploringjs.com/impatient-js/ch_async-
iteration.html): This method makes ReadableStreams asynchronously iterable.
It is currently only implemented on some platforms.

• .cancel(reason) cancels the stream because the consumer isn’t interested in it
anymore. reason is passed on to the .cancel() method of the ReadableStream’s
underlying source (more on that later). The returned Promise fulfills when this op-
eration is done.

• .pipeTo() feeds the contents of its ReadableStream to a WritableStream. The re-
turned Promise fulfills when this operation is done. .pipeTo() ensures that back-

https://exploringjs.com/impatient-js/ch_sync-iteration.html
https://exploringjs.com/impatient-js/ch_async-iteration.html

126 10 Using web streams on Node.js

pressure, closing, errors, etc. are all correctly propagated through a pipe chain. We
can specify options via its second parameter:

– .signal lets us pass anAbortSignal to thismethod, which enables us to abort
piping via an AbortController.

– .preventClose: If true, it prevents the WritableStream from being closed
when the ReadableStream is closed. That is useful when we want to pipe
more than one ReadableStream to the same WritableStream.

– The remaining options are beyond the scope of this chapter. They are docu-
mented in the web streams specification.

• .pipeThrough() connects its ReadableStream to a ReadableWritablePair (roughly:
a TransformStream, more on that later). It returns the resulting ReadableStream
(i.e., the readable side of the ReadableWritablePair).

The following subsections cover three ways of consuming ReadableStreams:

• Reading via Readers
• Reading via asynchronous iteration
• Piping ReadableStreams to WritableStreams

10.2.1 Consuming ReadableStreams via Readers
We can use Readers to read data from ReadableStreams. They have the following type
(feel free to skim this type and the explanations of its properties; they will be explained
again when we encounter them in examples):

interface ReadableStreamGenericReader {
readonly closed: Promise<undefined>;
cancel(reason?: any): Promise<void>;

}
interface ReadableStreamDefaultReader<TChunk>

extends ReadableStreamGenericReader
{

releaseLock(): void;
read(): Promise<ReadableStreamReadResult<TChunk>>;

}

interface ReadableStreamReadResult<TChunk> {
done: boolean;
value: TChunk | undefined;

}

Explanations of these properties:

• .closed: This Promise is fulfilled after the stream is closed. It is rejected if the
stream errors or if a Reader’s lock is released before the stream is closed.

• .cancel(): In an active Reader, this method cancels the associated Read-
ableStream.

• .releaseLock() deactivates the Reader and unlocks its stream.
• .read() returns a Promise for a ReadableStreamReadResult (a wrapped chunk)
which has two properties:

https://streams.spec.whatwg.org/#rs-prototype

10.2 Reading from ReadableStreams 127

– .done is a boolean that is false as long as chunks can be read and true after
the last chunk.

– .value is the chunk (or undefined after the last chunk).

ReadableStreamReadResult may look familiar if you know how iteration works: Read-
ableStreams are similar to iterables, Readers are similar to iterators, and ReadableStream-
ReadResults are similar to the objects returned by the iterator method .next().

The following code demonstrates the protocol for using Readers:

const reader = readableStream.getReader(); // (A)
assert.equal(readableStream.locked, true); // (B)
try {

while (true) {
const {done, value: chunk} = await reader.read(); // (C)
if (done) break;
// Use `chunk`

}
} finally {

reader.releaseLock(); // (D)
}

Getting a Reader. We can’t read directly from readableStream, we first need to acquire
a Reader (line A). Each ReadableStream can have at most one Reader. After a Reader was
acquired, readableStream is locked (line B). Before we can call .getReader() again, we
must call .releaseLock() (line D).

Reading chunks. .read() returns a Promise for an object with the properties .done and
.value (line C). After the last chunk was read, .done is true. This approach is similar to
how asynchronous iteration works in JavaScript.

10.2.1.1 Example: reading a file via a ReadableStream

In the following example, we read chunks (strings) from a text file data.txt:

import * as fs from 'node:fs';
import {Readable} from 'node:stream';

const nodeReadable = fs.createReadStream(
'data.txt', {encoding: 'utf-8'});

const webReadableStream = Readable.toWeb(nodeReadable); // (A)

const reader = webReadableStream.getReader();
try {

while (true) {
const {done, value} = await reader.read();
if (done) break;
console.log(value);

}
} finally {

reader.releaseLock();

https://exploringjs.com/impatient-js/ch_async-iteration.html

128 10 Using web streams on Node.js

}
// Output:
// 'Content of text file\n'

We are converting a Node.js Readable to a web ReadableStream (line A). Then we use
the previously explained protocol to read the chunks.

10.2.1.2 Example: assembling a string with the contents of a ReadableStream

In the next example, we concatenate all chunks of a ReadableStream into a string and
return it:

/**
* Returns a string with the contents of `readableStream`.
*/
async function readableStreamToString(readableStream) {

const reader = readableStream.getReader();
try {

let result = '';
while (true) {
const {done, value} = await reader.read();
if (done) {
return result; // (A)

}
result += value;

}
} finally {

reader.releaseLock(); // (B)
}

}

Conveniently, the finally clause is always executed – nowmatter howwe leave the try
clause. That is, the lock is correctly released (line B) if we return a result (line A).

10.2.2 Consuming ReadableStreams via asynchronous iteration
ReadableStreams can also be consumed via asynchronous iteration:

const iterator = readableStream[Symbol.asyncIterator]();
let exhaustive = false;
try {

while (true) {
let chunk;
({done: exhaustive, value: chunk} = await iterator.next());
if (exhaustive) break;
console.log(chunk);

}
} finally {

// If the loop was terminated before we could iterate exhaustively
// (via an exception or `return`), we must call `iterator.return()`.

https://exploringjs.com/impatient-js/ch_async-iteration.html

10.2 Reading from ReadableStreams 129

// Check if that was the case.
if (!exhaustive) {

iterator.return();
}

}

Thankfully, the for-await-of loop handles all the details of asynchronous iteration for
us:

for await (const chunk of readableStream) {
console.log(chunk);

}

10.2.2.1 Example: using asynchronous iteration to read a stream
Let’s redo our previous attempt to read text from a file. This time, we use asynchronous
iteration instead of a Reader:

import * as fs from 'node:fs';
import {Readable} from 'node:stream';

const nodeReadable = fs.createReadStream(
'text-file.txt', {encoding: 'utf-8'});

const webReadableStream = Readable.toWeb(nodeReadable);
for await (const chunk of webReadableStream) {

console.log(chunk);
}
// Output:
// 'Content of text file'

10.2.2.2 Example: assembling a string with the contents of a ReadableStream
We have previously used a Reader to assemble a string with the contents of a Read-
ableStream. With asynchronous iteration, the code becomes simpler:

/**
* Returns a string with the contents of `readableStream`.
*/
async function readableStreamToString2(readableStream) {

let result = '';
for await (const chunk of readableStream) {

result += chunk;
}
return result;

}

10.2.2.3 Caveat: Browsers don’t support asynchronous iteration over Read-
ableStreams

At themoment, Node.js andDeno support asynchronous iteration over ReadableStreams
but web browsers don’t: There is a GitHub issue that links to bug reports.

https://github.com/whatwg/streams/issues/778

130 10 Using web streams on Node.js

Given that it’s not yet completely clear how async iteration will be supported on
browsers, wrapping is a safer choice than polyfilling. The following code is based on a
suggestion in the Chromium bug report:

async function* getAsyncIterableFor(readableStream) {
const reader = readableStream.getReader();
try {

while (true) {
const {done, value} = await reader.read();
if (done) return;
yield value;

}
} finally {

reader.releaseLock();
}

}

10.2.3 Piping ReadableStreams to WritableStreams
ReadableStreams have two methods for piping:

• readableStream.pipeTo(writeableStream) synchronously returns a Promise p.
It asynchronously reads all chunks of readableStream and writes them to writa-
bleStream. When it is done, it fulfills p.

We’ll see examples of .pipeTo()when we explore WritableStreams, as it provides
a convenient way to transfer data into them.

• readableStream.pipeThrough(transformStream) pipes readableStream into
transformStream.writable and returns transformStream.readable (every
TransformStream has these properties that refer to its writable side and its
readable side). Another way to view this operation is that we create a new
ReadableStream by connecting a transformStream to a readableStream.

We’ll see examples of .pipeThrough()whenwe explore TransformStreams, as this
method is the main way in which they are used.

10.3 Turning data sources into ReadableStreams via wrap-
ping

If we want to read an external source via a ReadableStream, we can wrap it in an adapter
object andpass that object to the ReadableStream constructor. The adapter object is called
the underlying source of the ReadableStream (queuing strategies are explained later, when
we take a closer look at backpressure):

new ReadableStream(underlyingSource?, queuingStrategy?)

This is the type of underlying sources (feel free to skim this type and the explanations of
its properties; they will be explained again when we encounter them in examples):

https://bugs.chromium.org/p/chromium/issues/detail?id=929585#c10
https://bugs.chromium.org/p/chromium/issues/detail?id=929585#c10

10.3 Turning data sources into ReadableStreams via wrapping 131

interface UnderlyingSource<TChunk> {
start?(

controller: ReadableStreamController<TChunk>
): void | Promise<void>;
pull?(

controller: ReadableStreamController<TChunk>
): void | Promise<void>;
cancel?(reason?: any): void | Promise<void>;

// Only used in byte streams and ignored in this section:
type: 'bytes' | undefined;
autoAllocateChunkSize: bigint;

}

This is when the ReadableStream calls these methods:

• .start(controller) is called immediately after we invoke the constructor of
ReadableStream.

• .pull(controller) is called whenever there is room in the internal queue of the
ReadableStream. It is called repeatedly until the queue is full again. This method
will only be called after .start() is finished. If .pull() doesn’t enqueue anything,
it won’t be called again.

• .cancel(reason) is called if the consumer of a ReadableStream cancels it via read-
ableStream.cancel() or reader.cancel(). reason is the value that was passed
to these methods.

Each of these methods can return a Promise and no further steps will be taken until the
Promise is settled. That is useful if we want to do something asynchronous.

The parameter controller of .start() and .pull() lets them access the stream. It has
the following type:

type ReadableStreamController<TChunk> =
| ReadableStreamDefaultController<TChunk>
| ReadableByteStreamController<TChunk> // ignored here

;

interface ReadableStreamDefaultController<TChunk> {
enqueue(chunk?: TChunk): void;
readonly desiredSize: number | null;
close(): void;
error(err?: any): void;

}

For now, chunks are strings. We’ll later get to byte streams, where Uint8Arrays are com-
mon. This is what the methods do:

• .enqueue(chunk) adds chunk to the ReadableStream’s internal queue.
• .desiredSize indicates how much room there is in the queue into which .en-

queue() writes. It is zero if the queue is full and negative if it has exceeded its

132 10 Using web streams on Node.js

maximum size. Therefore, if the desired size is zero or negative, we have to stop
enqueuing.

– If a stream is closed, its desired size is zero.
– If a stream is in error mode, its desired size is null.

• .close() closes the ReadableStream. Consumers will still be able to empty the
queue, but after that, the stream ends. It’s important that an underlying source
calls this method – otherwise, reading its stream will never finish.

• .error(err) puts the stream in an error mode: All future interactions with it will
fail with the error value err.

10.3.1 A first example of implementing an underlying source
In our first example of implementing an underlying source, we only provide method
.start(). We’ll see use cases for .pull() in the next subsection.

const readableStream = new ReadableStream({
start(controller) {

controller.enqueue('First line\n'); // (A)
controller.enqueue('Second line\n'); // (B)
controller.close(); // (C)

},
});
for await (const chunk of readableStream) {

console.log(chunk);
}

// Output:
// 'First line\n'
// 'Second line\n'

Weuse the controller to create a streamwith two chunks (lineA and line B). It’s important
that we close the stream (line C). Otherwise, the for-await-of loop would never finish!
Note that this way of enqueuing isn’t completely safe: There is a risk of exceding the
capacity of the internal queue. We’ll see soon how we can avoid that risk.

10.3.2 Using a ReadableStream to wrap a push source or a pull source
A common scenario is turning a push source or a pull source into a ReadableStream. The
source being push or pull determines how we will hook into the ReadableStream with
our UnderlyingSource:

• Push source: Such a source notifies us when there is new data. We use .start()
to set up listeners and supporting data structures. If we receive too much data
and the desired size isn’t positive anymore, we must tell our source to pause. If
.pull() is called later, we can unpause it. Pausing an external source in reaction
to the desired size becoming non-positive is called applying backpressure.

• Pull source: We ask such a source for new data – often asynchronously. There-
fore, we usually don’t do much in .start() and retrieve data whenever .pull()
is called.

10.3 Turning data sources into ReadableStreams via wrapping 133

We’ll see examples for both kinds of sources next.

10.3.2.1 Example: creating a ReadableStream from a push source with backpressure
support

In the following example, we wrap a ReadableStream around a socket – which pushes
its data to us (it calls us). This example is taken from the web stream specification:

function makeReadableBackpressureSocketStream(host, port) {
const socket = createBackpressureSocket(host, port);

return new ReadableStream({
start(controller) {

socket.ondata = event => {
controller.enqueue(event.data);

if (controller.desiredSize <= 0) {
// The internal queue is full, so propagate
// the backpressure signal to the underlying source.
socket.readStop();

}
};

socket.onend = () => controller.close();
socket.onerror = () => controller.error(
new Error('The socket errored!'));

},

pull() {
// This is called if the internal queue has been emptied, but the
// stream’s consumer still wants more data. In that case, restart
// the flow of data if we have previously paused it.
socket.readStart();

},

cancel() {
socket.close();

},
});

}

10.3.2.2 Example: creating a ReadableStream from a pull source
The tool function iterableToReadableStream() takes an iterable over chunks and turns
it into a ReadableStream:

/**
* @param iterable an iterable (asynchronous or synchronous)
*/
function iterableToReadableStream(iterable) {

https://streams.spec.whatwg.org/#example-rs-push-backpressure

134 10 Using web streams on Node.js

return new ReadableStream({
start() {
if (typeof iterable[Symbol.asyncIterator] === 'function') {
this.iterator = iterable[Symbol.asyncIterator]();

} else if (typeof iterable[Symbol.iterator] === 'function') {
this.iterator = iterable[Symbol.iterator]();

} else {
throw new Error('Not an iterable: ' + iterable);

}
},

async pull(controller) {
if (this.iterator === null) return;
// Sync iterators return non-Promise values,
// but `await` doesn’t mind and simply passes them on
const {value, done} = await this.iterator.next();
if (done) {
this.iterator = null;
controller.close();
return;

}
controller.enqueue(value);

},

cancel() {
this.iterator = null;
controller.close();

},
});

}

Let’s use an async generator function to create an asynchronous iterable and turn that
iterable into a ReadableStream:

async function* genAsyncIterable() {
yield 'how';
yield 'are';
yield 'you';

}
const readableStream = iterableToReadableStream(genAsyncIterable());
for await (const chunk of readableStream) {

console.log(chunk);
}

// Output:
// 'how'
// 'are'
// 'you'

10.4 Writing to WritableStreams 135

iterableToReadableStream() also works with synchronous iterables:
const syncIterable = ['hello', 'everyone'];
const readableStream = iterableToReadableStream(syncIterable);
for await (const chunk of readableStream) {

console.log(chunk);
}

// Output:
// 'hello'
// 'everyone'

There may eventually by a static helper method ReadableStream.from() that provides
this functionality (see its pull request for more information).

10.4 Writing to WritableStreams
WritableStreams let us write chunks of data to various sinks. They have the following
type (feel free to skim this type and the explanations of its properties; they will be ex-
plained again when we encounter them in examples):

interface WritableStream<TChunk> {
getWriter(): WritableStreamDefaultWriter<TChunk>;
readonly locked: boolean;

close(): Promise<void>;
abort(reason?: any): Promise<void>;

}

Explanations of these properties:
• .getWriter() returns a Writer – an object through which we can write to a Writa-

bleStream.
• .locked: There can only be one active Writer per WritableStream at a time. While

one Writer is in use, the WritableStream is locked and .getWriter() cannot be
invoked.

• .close() closes the stream:
– The underlying sink (more on that later) will still receive all queued chunks
before it’s closed.

– From now on, all attempts to write will fail silently (without errors).
– The method returns a Promise that will be fulfilled if the sink succeeds in
writing all queued chunks and closing. It will be rejected if any errors occur
during these steps.

• .abort() aborts the stream:
– It puts the stream in error mode.
– The returned Promise fulfills if the sink shuts down successfully and rejects
if errors occur.

The following subsections cover two approaches to sending data to WritableStreams:
• Writing to WritableStreams via Writers

https://github.com/whatwg/streams/pull/1083

136 10 Using web streams on Node.js

• Piping to WritableStreams

10.4.1 Writing to WritableStreams via Writers
We can useWriters to write toWritableStreams. They have the following type (feel free to
skim this type and the explanations of its properties; they will be explained again when
we encounter them in examples):

interface WritableStreamDefaultWriter<TChunk> {
readonly desiredSize: number | null;
readonly ready: Promise<undefined>;
write(chunk?: TChunk): Promise<void>;
releaseLock(): void;

close(): Promise<void>;
readonly closed: Promise<undefined>;
abort(reason?: any): Promise<void>;

}

Explanations of these properties:

• .desiredSize indicates howmuch room there is in this WriteStream’s queue. It is
zero if the queue is full and negative if it has exceeded itsmaximum size. Therefore,
if the desired size is zero or negative, we have to stop writing.

– If a stream is closed, its desired size is zero.
– If a stream is in error mode, its desired size is null.

• .ready returns a Promise that is fulfilled when the desired size changes from non-
positive to positive. That means that no backpressure is active and it’s OK to write
data. If the desired size later changes back to non-positive, a new pending Promise
is created and returned.

• .write() writes a chunk to the stream. It returns a Promise that is fulfilled after
writing succeeds and rejected if there is an error.

• .releaseLock() releases the Writer’s lock on its stream.

• .close() has the same effect as closing the Writer’s stream.

• .closed returns a Promise that is fulfilled when the stream is closed.

• .abort() has the same effect as aborting the Writer’s stream.

The following code shows the protocol for using Writers:

const writer = writableStream.getWriter(); // (A)
assert.equal(writableStream.locked, true); // (B)
try {

// Writing the chunks (explained later)
} finally {

writer.releaseLock(); // (C)
}

10.4 Writing to WritableStreams 137

We can’t write directly to a writableStream, we first need to acquire a Writer (line A).
Each WritableStream can have at most one Writer. After a Writer was acquired, writa-
bleStream is locked (line B). Before we can call .getWriter() again, we must call .re-
leaseLock() (line C).
There are three approaches to writing chunks.

10.4.1.1 Writing approach 1: awaiting .write() (handlingbackpressure inefficiently)
The first writing approach is to await each result of .write():

await writer.write('Chunk 1');
await writer.write('Chunk 2');
await writer.close();

The Promise returned by .write() fulfills when the chunk that we passed to it, was suc-
cessfully written. What exactly “successfully written” means, depends on how a Writa-
bleStream is implemented – e.g., with a file stream, the chunk may have been sent to the
operating system but still reside in a cache and therefore not have actually been written
to disk.
The Promise returned by .close() is fulfilled when the stream becomes closed.
A downside of this writing approach is that waiting until writing succeeds means that
the queue isn’t used. As a consequence, data throughput may be lower.

10.4.1.2 Writing approach 2: ignoring .write() rejections (ignoring backpressure)
In the second writing approach, we ignore the Promises returned by .write() and only
await the Promise returned by .close():

writer.write('Chunk 1').catch(() => {}); // (A)
writer.write('Chunk 2').catch(() => {}); // (B)
await writer.close(); // reports errors

The synchronous invocations of .write() add chunks to the internal queue of the Writa-
bleStream. By not awaiting the returned Promises, we don’t wait until each chunk is
written. However, awaiting .close() ensures that the queue is empty and all writing
succeeded before we continue.
Invoking .catch() in line A and line B is necessary to avoid warnings about unhandled
Promise rejectionswhen something goeswrong duringwriting. Suchwarnings are often
logged to the console. We can afford to ignore the errors reported by .write() because
.close() will also report them to us.
The previous code can be improved by using a helper function that ignores Promise
rejections:

ignoreRejections(
writer.write('Chunk 1'),
writer.write('Chunk 2'),

);
await writer.close(); // reports errors

138 10 Using web streams on Node.js

function ignoreRejections(...promises) {
for (const promise of promises) {

promise.catch(() => {});
}

}

One downside of this approach is that backpressure is ignored: We simply assume that
the queue is big enough to hold everything we write.

10.4.1.3 Writing approach 3: awaiting .ready (handling backpressure efficiently)

In thiswriting approach, we handle backpressure efficiently by awaiting theWriter getter
.ready:

await writer.ready; // reports errors
// How much room do we have?
console.log(writer.desiredSize);
writer.write('Chunk 1').catch(() => {});

await writer.ready; // reports errors
// How much room do we have?
console.log(writer.desiredSize);
writer.write('Chunk 2').catch(() => {});

await writer.close(); // reports errors

The Promise in .ready fulfills whenever the stream transitions fromhaving backpressure
to not having backpressure.

10.4.1.4 Example: writing to a file via a Writer

In this example, we create a text file data.txt via a WritableStream:

import * as fs from 'node:fs';
import {Writable} from 'node:stream';

const nodeWritable = fs.createWriteStream(
'new-file.txt', {encoding: 'utf-8'}); // (A)

const webWritableStream = Writable.toWeb(nodeWritable); // (B)

const writer = webWritableStream.getWriter();
try {

await writer.write('First line\n');
await writer.write('Second line\n');
await writer.close();

} finally {
writer.releaseLock()

}

10.4 Writing to WritableStreams 139

In line A, we create a Node.js stream for the file data.txt. In line B, we convert this
stream to a web stream. Then we use a Writer to write strings to it.

10.4.2 Piping to WritableStreams
Instead of using Writers, we can also write to WritableStreams by piping Read-
ableStreams to them:

await readableStream.pipeTo(writableStream);

The Promise returned by .pipeTo() fulfills when piping finishes successfully.

10.4.2.1 Piping happens asynchronously
Piping is performed after the current task completes or pauses. The following code
demonstrates that:

const readableStream = new ReadableStream({ // (A)
start(controller) {

controller.enqueue('First line\n');
controller.enqueue('Second line\n');
controller.close();

},
});
const writableStream = new WritableStream({ // (B)

write(chunk) {
console.log('WRITE: ' + JSON.stringify(chunk));

},
close() {

console.log('CLOSE WritableStream');
},

});

console.log('Before .pipeTo()');
const promise = readableStream.pipeTo(writableStream); // (C)
promise.then(() => console.log('Promise fulfilled'));
console.log('After .pipeTo()');

// Output:
// 'Before .pipeTo()'
// 'After .pipeTo()'
// 'WRITE: "First line\n"'
// 'WRITE: "Second line\n"'
// 'CLOSE WritableStream'
// 'Promise fulfilled'

In line A we create a ReadableStream. In line B we create a WritableStream.
We can see that .pipeTo() (line C) returns immediately. In a new task, chunks are read
and written. Then writableStream is closed and, finally, promise is fulfilled.

140 10 Using web streams on Node.js

10.4.2.2 Example: piping to a WritableStream for a file

In the following example, we create a WritableStream for a file and pipe a Read-
ableStream to it:

const webReadableStream = new ReadableStream({ // (A)
async start(controller) {

controller.enqueue('First line\n');
controller.enqueue('Second line\n');
controller.close();

},
});

const nodeWritable = fs.createWriteStream(// (B)
'data.txt', {encoding: 'utf-8'});

const webWritableStream = Writable.toWeb(nodeWritable); // (C)

await webReadableStream.pipeTo(webWritableStream); // (D)

In line A, we create a ReadableStream. In line B, we create a Node.js stream for the file
data.txt. In line C, we convert this stream to a web stream. In line D, we pipe our
webReadableStream to the WritableStream for the file.

10.4.2.3 Example: writing two ReadableStreams to a WritableStream

In the following example, we write two ReadableStreams to a single WritableStream.

function createReadableStream(prefix) {
return new ReadableStream({

async start(controller) {
controller.enqueue(prefix + 'chunk 1');
controller.enqueue(prefix + 'chunk 2');
controller.close();

},
});

}

const writableStream = new WritableStream({
write(chunk) {

console.log('WRITE ' + JSON.stringify(chunk));
},
close() {

console.log('CLOSE');
},
abort(err) {

console.log('ABORT ' + err);
},

});

await createReadableStream('Stream 1: ')

10.5 Turning data sinks into WritableStreams via wrapping 141

.pipeTo(writableStream, {preventClose: true}); // (A)
await createReadableStream('Stream 2: ')

.pipeTo(writableStream, {preventClose: true}); // (B)
await writableStream.close();

// Output
// 'WRITE "Stream 1: chunk 1"'
// 'WRITE "Stream 1: chunk 2"'
// 'WRITE "Stream 2: chunk 1"'
// 'WRITE "Stream 2: chunk 2"'
// 'CLOSE'

We tell .pipeTo() to not close theWritableStream after the ReadableStream is closed (line
A and line B). Therefore, the WritableStream remains open after line A and we can pipe
another ReadableStream to it.

10.5 Turning data sinks into WritableStreams via wrap-
ping

If we want to write to an external sink via aWritableStream, we can wrap it in an adapter
object andpass that object to the WritableStream constructor. The adapter object is called
the underlying sink of the WritableStream (queuing strategies are explained later, when
we take a closer look at backpressure):

new WritableStream(underlyingSink?, queuingStrategy?)

This is the type of underlying sinks (feel free to skim this type and the explanations of
its properties; they will be explained again when we encounter them in examples):

interface UnderlyingSink<TChunk> {
start?(

controller: WritableStreamDefaultController
): void | Promise<void>;
write?(

chunk: TChunk,
controller: WritableStreamDefaultController

): void | Promise<void>;
close?(): void | Promise<void>;;
abort?(reason?: any): void | Promise<void>;

}

Explanations of these properties:

• .start(controller) is called immediately after we invoke the constructor of
WritableStream. If we do something asynchronous, we can return a Promise. In
this method, we can prepare for writing.

• .write(chunk, controller) is called when a new chunk is ready to be written to
the external sink. We can exert backpressure by returning a Promise that fulfills
once the backpressure is gone.

142 10 Using web streams on Node.js

• .close() is called after writer.close() was called and all queued writes suc-
ceeded. In this method, we can clean up after writing.

• .abort(reason) is called if writeStream.abort() or writer.abort() were
invoked. reason is the value passed to these methods.

The parameter controller of .start() and .write() lets them error theWritableStream.
It has the following type:

interface WritableStreamDefaultController {
readonly signal: AbortSignal;
error(err?: any): void;

}

• .signal is an AbortSignal that we can listen to if we want to abort a write or close
operation when the stream is aborted.

• .error(err) errors theWritableStream: It is closed and all future interactionswith
it fail with the error value err.

10.5.1 Example: tracing a ReadableStream
In the next example, we pipe a ReadableStream to a WritableStream in order to check
how the ReadableStream produces chunks:

const readableStream = new ReadableStream({
start(controller) {

controller.enqueue('First chunk');
controller.enqueue('Second chunk');
controller.close();

},
});
await readableStream.pipeTo(

new WritableStream({
write(chunk) {
console.log('WRITE ' + JSON.stringify(chunk));

},
close() {
console.log('CLOSE');

},
abort(err) {
console.log('ABORT ' + err);

},
})

);
// Output:
// 'WRITE "First chunk"'
// 'WRITE "Second chunk"'
// 'CLOSE'

10.5 Turning data sinks into WritableStreams via wrapping 143

10.5.2 Example: collecting chunks written to a WriteStream in a string
In the next example, we create a subclass of WriteStream that collects all written chunks
in a string. We can access that string via method .getString():

class StringWritableStream extends WritableStream {
#string = '';
constructor() {

super({
// We need to access the `this` of `StringWritableStream`.
// Hence the arrow function (and not a method).
write: (chunk) => {
this.#string += chunk;

},
});

}
getString() {

return this.#string;
}

}
const stringStream = new StringWritableStream();
const writer = stringStream.getWriter();
try {

await writer.write('How are');
await writer.write(' you?');
await writer.close();

} finally {
writer.releaseLock()

}
assert.equal(

stringStream.getString(),
'How are you?'

);

Adownside of this approach is that we aremixing twoAPIs: TheAPI of WritableStream
and our new string stream API. An alternative is to delegate to the WritableStream in-
stead of extending it:

function StringcreateWritableStream() {
let string = '';
return {

stream: new WritableStream({
write(chunk) {
string += chunk;

},
}),
getString() {

return string;
},

};

144 10 Using web streams on Node.js

}

const stringStream = StringcreateWritableStream();
const writer = stringStream.stream.getWriter();
try {

await writer.write('How are');
await writer.write(' you?');
await writer.close();

} finally {
writer.releaseLock()

}
assert.equal(

stringStream.getString(),
'How are you?'

);

This functionality could also be implemented via a class (instead of as a factory function
for objects).

10.6 Using TransformStreams
A TransformStream:

• Receives input via its writable side, a WritableStream.
• It then may or may not transform this input.
• The result can be read via a ReadableStream, its readable side.

The most common way to use TransformStreams is to “pipe through” them:
const transformedStream = readableStream.pipeThrough(transformStream);

.pipeThrough() pipes readableStream to the writable side of transformStream and re-
turns its readable side. In other words: We have created a new ReadableStream that is a
transformed version of readableStream.
.pipeThrough() accepts not only TransformStreams, but any object that has the follow-
ing shape:

interface ReadableWritablePair<RChunk, WChunk> {
readable: ReadableStream<RChunk>;
writable: WritableStream<WChunk>;

}

10.6.1 Standard TransformStreams
Node.js supports the following standard TransformStreams:

• Encoding (WHATWG standard) – TextEncoderStream and TextDecoderStream:
– These streams support UTF-8, but also many “legacy encodings”.
– AsingleUnicode code point is encoded as up to fourUTF-8 code units (bytes).
In byte streams, encoded code points be be split across chunks. TextDecoder-
Stream handles these cases correctly.

https://encoding.spec.whatwg.org
https://encoding.spec.whatwg.org/#names-and-labels

10.6 Using TransformStreams 145

– Available on most JavaScript platforms (TextEncoderStream, TextDecoder-
Stream).

• Compression Streams (W3C Draft Community Group Report) – Compression-
Stream, DecompressionStream:

– Currently supported compression formats: deflate (ZLIB Compressed Data
Format), deflate-raw (DEFLATE algorithm), gzip (GZIP file format).

– Available on many JavaScript platforms (CompressionStream, Decompres-
sionStream).

10.6.1.1 Example: decoding a stream of UTF-8-encoded bytes

In the following example, we decode a stream of UTF-8-encoded bytes:

const response = await fetch('https://example.com');
const readableByteStream = response.body;
const readableStream = readableByteStream

.pipeThrough(new TextDecoderStream('utf-8'));
for await (const stringChunk of readableStream) {

console.log(stringChunk);
}

response.body is a ReadableByteStream whose chunks are instances of Uint8Array
(TypedArrays). We pipe that stream through a TextDecoderStream to get a stream that
has string chunks.

Note that translating each byte chunk separately (e.g. via a TextDecoder) doesn’t work
because a single Unicode code point is encoded as up to four bytes in UTF-8 and those
bytes might not all be in the same chunk.

10.6.1.2 Example: creating a readable text stream for standard input

The following Node.js module logs everything that is sent to it via standard input:

// echo-stdin.mjs
import {Readable} from 'node:stream';

const webStream = Readable.toWeb(process.stdin)
.pipeThrough(new TextDecoderStream('utf-8'));

for await (const chunk of webStream) {
console.log('>>>', chunk);

}

We can access standard input via a stream stored in process.stdin (process is a global
Node.js variable). If we don’t set an encoding for this stream and convert it via Read-
able.toWeb(), we get a byte stream. We pipe it through a TextDecoderStream in order
to get a text stream.

Note that we process standard input incrementally: As soon as another chunk is avail-
able, we log it. In other words, we don’t wait until standard input is finished. That is
useful when the data is either large or only sent intermittently.

https://developer.mozilla.org/en-US/docs/Web/API/TextEncoderStream#browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/TextDecoderStream#browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/TextDecoderStream#browser_compatibility
https://wicg.github.io/compression/
https://developer.mozilla.org/en-US/docs/Web/API/CompressionStream
https://developer.mozilla.org/en-US/docs/Web/API/CompressionStream
https://developer.mozilla.org/en-US/docs/Web/API/DecompressionStream
https://wicg.github.io/compression/#supported-formats
https://developer.mozilla.org/en-US/docs/Web/API/CompressionStream#browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/DecompressionStream#browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/DecompressionStream#browser_compatibility
https://exploringjs.com/impatient-js/ch_typed-arrays.html
https://developer.mozilla.org/en-US/docs/Web/API/TextDecoder
https://exploringjs.com/impatient-js/ch_unicode.html#utf-8-unicode-transformation-format-8

146 10 Using web streams on Node.js

10.7 Implementing custom TransformStreams
We can implement a custom TransformStream by passing a Transformer object to the
constructor of TransformStream. Such has object has the following type (feel free to skim
this type and the explanations of its properties; they will be explained again when we
encounter them in examples):

interface Transformer<TInChunk, TOutChunk> {
start?(

controller: TransformStreamDefaultController<TOutChunk>
): void | Promise<void>;
transform?(

chunk: TInChunk,
controller: TransformStreamDefaultController<TOutChunk>

): void | Promise<void>;
flush?(

controller: TransformStreamDefaultController<TOutChunk>
): void | Promise<void>;

}

Explanations of these properties:

• .start(controller) is called immediately after we invoke the constructor of
TransformStream. Here we can prepare things before the transformations start.

• .transform(chunk, controller) performs the actual transformations. It receives
an input chunk and can use its parameter controller to enqueue one or more
transformed output chunks. It can also choose not to enqueue anything at all.

• .flush(controller) is called after all input chunkswere transformed successfully.
Here we can perform clean-ups after the transformations are done.

Each of these methods can return a Promise and no further steps will be taken until the
Promise is settled. That is useful if we want to do something asynchronous.

The parameter controller has the following type:

interface TransformStreamDefaultController<TOutChunk> {
enqueue(chunk?: TOutChunk): void;
readonly desiredSize: number | null;
terminate(): void;
error(err?: any): void;

}

• .enqueue(chunk) adds chunk to the readable side (output) of the Transform-
Stream.

• .desiredSize returns the desired size of the internal queue of the readable side
(output) of the TransformStream.

• .terminate() closes the readable side (output) and errors the writable side (input)
of the TransformStream. It can be used if a transformer is not interested in the
remaining chunks of the writable side (input) and wants to skip them.

• .error(err) errors the TransformStream: All future interactions with it will fail
with the error value err.

10.7 Implementing custom TransformStreams 147

What about backpressure in a TransformStream? The class propagates the backpressure
from its readable side (output) to its writable side (input). The assumption is that trans-
forming doesn’t change the amount of data much. Therefore, Transforms can get away
with ignoring backpressure. However, it could be detected via transformStreamDe-
faultController.desiredSize and propagated by returning a Promise from trans-
former.transform().

10.7.1 Example: transforming a stream of arbitrary chunks to a stream
of lines

The following subclass of TransformStream converts a streamwith arbitrary chunks into
a stream where each chunk comprises exactly one line of text. That is, with the possible
exception of the last chunk, each chunk ends with an end-of-line (EOL) string: '\n' on
Unix (incl. macOS) and '\r\n' on Windows.

class ChunksToLinesTransformer {
#previous = '';

transform(chunk, controller) {
let startSearch = this.#previous.length;
this.#previous += chunk;
while (true) {

// Works for EOL === '\n' and EOL === '\r\n'
const eolIndex = this.#previous.indexOf('\n', startSearch);
if (eolIndex < 0) break;
// Line includes the EOL
const line = this.#previous.slice(0, eolIndex+1);
controller.enqueue(line);
this.#previous = this.#previous.slice(eolIndex+1);
startSearch = 0;

}
}

flush(controller) {
// Clean up and enqueue any text we’re still holding on to
if (this.#previous.length > 0) {

controller.enqueue(this.#previous);
}

}
}
class ChunksToLinesStream extends TransformStream {

constructor() {
super(new ChunksToLinesTransformer());

}
}

const stream = new ReadableStream({
async start(controller) {

148 10 Using web streams on Node.js

controller.enqueue('multiple\nlines of\ntext');
controller.close();

},
});
const transformStream = new ChunksToLinesStream();
const transformed = stream.pipeThrough(transformStream);

for await (const line of transformed) {
console.log('>>>', JSON.stringify(line));

}

// Output:
// '>>> "multiple\n"'
// '>>> "lines of\n"'
// '>>> "text"'

Note that Deno’s built-in TextLineStream provides similar functionality.
Tip: We can also make this transformation via an async generator. It would asyn-
chronously iterate over a ReadableStream and return an asynchronous iterable with
lines. Its implementation is shown in §9.4 “Transforming readable streams via async
generators”.

10.7.2 Tip: async generators are also great for transforming streams
Due to ReadableStreams being asynchronously iterable, we can use asynchronous gen-
erators to transform them. That leads to very elegant code:

const stream = new ReadableStream({
async start(controller) {

controller.enqueue('one');
controller.enqueue('two');
controller.enqueue('three');
controller.close();

},
});

async function* prefixChunks(prefix, asyncIterable) {
for await (const chunk of asyncIterable) {

yield '> ' + chunk;
}

}

const transformedAsyncIterable = prefixChunks('> ', stream);
for await (const transformedChunk of transformedAsyncIterable) {

console.log(transformedChunk);
}

// Output:
// '> one'

https://doc.deno.land/https://deno.land/std@0.141.0/streams/mod.ts/~/TextLineStream
https://exploringjs.com/impatient-js/ch_async-iteration.html#async-generators
https://exploringjs.com/impatient-js/ch_async-iteration.html#async-generators

10.8 A closer look at backpressure 149

// '> two'
// '> three'

10.8 A closer look at backpressure
Let’s take a closer look at backpressure. Consider the following pipe chain:

rs.pipeThrough(ts).pipeTo(ws);

rs is a ReadableStream, ts is a TransformStream, ws is a WritableStream. These are the
connections that are created by the previous expression (.pipeThrough uses .pipeTo to
connect rs to the writable side of ts):

rs -pipeTo-> ts{writable,readable} -pipeTo-> ws

Observations:

• The underlying source of rs can be viewed as a pipe chain member that comes
before rs.

• The underlying sink of ws can be viewed as a pipe chain member that comes after
ws.

• Each stream has an internal buffer: ReadableStreams buffers after their underlying
sources. WritableStreams have buffers before their underlying sinks.

Let’s assume that the underlying sink of ws is slow and the buffer of ws is eventually full.
Then the following steps happen:

• ws signals it’s full.
• pipeTo stops reading from ts.readable.
• ts.readable signals it’s full.
• ts stops moving chunks from ts.writable to ts.readable.
• ts.writable signals it’s full.
• pipeTo stops reading from rs.
• rs signals it’s full to its underlying source.
• The underlying source pauses.

This example illustrates that we need two kinds of functionality:

• Entities receiving data need to be able to signal backpressure.
• Entities sending data need to react to signals by exerting backpressure.

Let’s explore how these functionalities are implemented in the web streams API.

10.8.1 Signalling backpressure
Backpressure is signalled by entities that are receiving data. Web streams have two such
entities:

• A WritableStream receives data via the Writer method .write().
• A ReadableStream receives data when its underlying source calls the Read-

ableStreamDefaultController method .enqueue().

150 10 Using web streams on Node.js

In both cases, the input is buffered via queues. The signal to apply backpressure is when
a queue is full. Let’s see how that can be detected.

These are the locations of the queues:

• The queue of a WritableStream is stored internally in the WritableStreamDefault-
Controller (see web streams standard).

• The queue of a ReadableStream is stored internally in the ReadableStreamDefault-
Controller (see web streams standard).

The desired size of a queue is a number that indicates howmuch room is left in the queue:

• It is positive if there is still room in the queue.
• It is zero if the queue has reached its maximum size.
• It is negative if the queue has exceeded its maximum size.

Therefore, we have to apply backpressure if the desired size is zero or less. It is available
via the getter .desiredSize of the object which contains the queue.

How is the desired size computed? Via an object that specifies a so-called queuing strategy.
ReadableStream and WritableStream have default queuing strategieswhich can be over-
ridden via optional parameters of their constructors. The interface QueuingStrategy has
two properties:

• Method .size(chunk) returns a size for chunk.
– The current size of a queue is the sum of the sizes of the chunks it contains.

• Property .highWaterMark specifies the maximum size of a queue.

The desired size of a queue is the high water mark minus the current size of the queue.

10.8.2 Reacting to backpressure
Entities sending data need to react to signalled backpressure by exerting backpressure.

10.8.2.1 Code writing to a WritableStream via a Writer

• We can await the Promise in writer.ready. While we do, we are blocked and the
desired backpressure is achieved. The Promise is fulfilled once there is room in
the queue. Fulfillment is triggered when writer.desiredSize has a value greater
than zero.

• Alternatively, we can await the Promise returned by writer.write(). If we do
that, the queue won’t even be filled.

If we want to, we can additionally base the size of our chunks on writer.desiredSize.

10.8.2.2 The underlying source of a ReadableStream

The underlying source object that can be passed to a ReadableStream wraps an exter-
nal source. In a way, it is also a member of the pipe chain; one that comes before its
ReadableStream.

https://streams.spec.whatwg.org/#ws-default-controller-internal-slots
https://streams.spec.whatwg.org/#rs-default-controller-internal-slots
https://streams.spec.whatwg.org/#dictdef-queuingstrategy

10.8 A closer look at backpressure 151

• Underlying pull sources are only asked for new datawhenever there is room in the
queue. While there isn’t, backpressure is exerted automatically because no data is
pulled.

• Underlying push sources should check controller.desiredSize after enqueuing
something: If it’s zero or less, they should exert backpressure by pausing their
external sources.

10.8.2.3 The underlying sink of a WritableStream
The underlying sink object that can be passed to aWritableStreamwraps an external sink.
In a way, it is also a member of the pipe chain; one that comes after its WritableStream.
Each external sink signals backpressure differently (in some cases not at all). The under-
lying sink can exert backpressure by returning a Promise from method .write() that is
fulfilled once writing is finished. There is an example in the web streams standard that
demonstrates how that works.

10.8.2.4 A transformStream (.writable → .readable)
The TransformStream connects its writable side with its readable side by implementing
an underlying sink for the former and an underlying source for the latter. It has an inter-
nal slot .[[backpressure]] that indicates if internal backpressure is currently active or
not.

• Method .write() of the underlying sink of the writable side waits asyn-
chronously until there is no internal backpressure before it feeds another chunk to
the TransformStream’s transformer (web streams standard: TransformStreamDe-
faultSinkWriteAlgorithm). The transformer may then enqueue something via
its TransformStreamDefaultController. Note that .write() returns a Promise that
fulfills when the method is finished. Until that happens, the WriteStream buffers
incoming write requests via its queue. Therefore, backpressure for the writable
side is signalled via that queue and its desired size.

• The TransformStream’s backpressure is activated if a chunk is enqueued via the
TransformStreamDefaultController and the queue of the readable side becomes
full (web streams standard: TransformStreamDefaultControllerEnqueue).

• The TransformStream’s backpressuremay be deactivated if something is read from
the Reader (web streams standard: ReadableStreamDefaultReaderRead):

– If there is room in the queue now, it may be time to call .pull() of the un-
derlying source (web streams standard: .[[PullSteps]]).

– .pull() of the underlying source of the readable side deactivates the back-
pressure (web streams standard: TransformStreamDefaultSourcePullAl-
gorithm).

10.8.2.5 .pipeTo() (ReadableStream →WritableStream)
.pipeTo() reads chunks from the ReadableStream via a reader and write them to the
WritableStream via a Writer. It pauses whenever writer.desiredSize is zero or less
(web streams standard: Step 15 of ReadableStreamPipeTo).

https://streams.spec.whatwg.org/#example-ws-backpressure
https://streams.spec.whatwg.org/#transform-stream-default-sink-write-algorithm
https://streams.spec.whatwg.org/#transform-stream-default-sink-write-algorithm
https://streams.spec.whatwg.org/#transform-stream-default-controller-enqueue
https://streams.spec.whatwg.org/#readable-stream-default-reader-read
https://streams.spec.whatwg.org/#rs-default-controller-private-pull
https://streams.spec.whatwg.org/#transform-stream-default-source-pull
https://streams.spec.whatwg.org/#transform-stream-default-source-pull
https://streams.spec.whatwg.org/#readable-stream-pipe-to

152 10 Using web streams on Node.js

10.9 Byte streams
So far, we have only worked with text streams, streams whose chunks were strings.
But the web streams API also supports byte streams for binary data, where chunks are
Uint8Arrays (TypedArrays):

• ReadableStream has a special 'bytes'mode.
• WritableStream itself doesn’t care if chunks are strings or Uint8Arrays. Therefore,
whether an instance is a text stream or a byte stream depends on what kind of
chunks the underlying sink can handle.

• What kind of chunks a TransformStream can handle also depends on its Trans-
former.

Next, we’ll learn how to create readable byte streams.

10.9.1 Readable byte streams
What kind of stream is created by the ReadableStream constructor depends on the op-
tional property .type of its optional first parameter underlyingSource:

• If .type is omitted or no underlying source is provided, the new instance is a text
stream.

• If .type is the string 'bytes', the new instance is a byte stream:
const readableByteStream = new ReadableStream({

type: 'bytes',
async start() { /*...*/ }
// ...

});

What changes if a ReadableStream is in 'bytes'mode?
In default mode, the underlying source can return any kind of chunk. In bytes mode,
the chunks must be ArrayBufferViews, i.e. TypedArrays (such as Uint8Arrays) or
DataViews.
Additionally, a readable byte stream can create two kinds of readers:

• .getReader() returns an instance of ReadableStreamDefaultReader.
• .getReader({mode: 'byob'}) returns an instance of ReadableStreamBYOBReader.

“BYOB“ stands for “Bring Your Own Buffer” andmeans that we can pass a buffer (an Ar-
rayBufferView) to reader.read(). Afterwards, that ArrayBufferView will be detached
and no longer usable. But .read() returns its data in a new ArrayBufferView that has
the same type and accesses the same region of the same ArrayBuffer.
Additionally, readable byte streams have different controllers: They are instances of
ReadableByteStreamController (vs. ReadableStreamDefaultController). Apart from
forcing underlying sources to enqueue ArrayBufferViews (TypedArrays or DataViews),
it also supports ReadableStreamBYOBReaders via its property .byobRequest. An un-
derlying source writes its data into the BYOBRequest stored in this property. The web
streams standard has two examples of using .byobRequest in its section “Examples of
creating streams”.

https://exploringjs.com/impatient-js/ch_typed-arrays.html
https://streams.spec.whatwg.org/#rbs-controller-prototype
https://streams.spec.whatwg.org/#creating-examples
https://streams.spec.whatwg.org/#creating-examples

10.9 Byte streams 153

10.9.2 Example: an infinite readable byte stream filled with random
data

In the next example, create an infinite readable byte stream that fills its chunks with
random data (inspiration: example4.mjs in “Implementing the Web Streams API in
Node.js”).

import {promisify} from 'node:util';
import {randomFill} from 'node:crypto';
const asyncRandomFill = promisify(randomFill);

const readableByteStream = new ReadableStream({
type: 'bytes',
async pull(controller) {

const byobRequest = controller.byobRequest;
await asyncRandomFill(byobRequest.view);
byobRequest.respond(byobRequest.view.byteLength);

},
});

const reader = readableByteStream.getReader({mode: 'byob'});
const buffer = new Uint8Array(10); // (A)
const firstChunk = await reader.read(buffer); // (B)
console.log(firstChunk);

Due to readableByteStream being infinite, we can’t loop over it. That’s why we only
read its first chunk (line B).

The buffer we create in line A is transferred and therefore unreadable after line B.

10.9.3 Example: compressing a readable byte stream
In the following example, we create a readable byte stream and pipe it through a stream
that compresses it to the GZIP format:

const readableByteStream = new ReadableStream({
type: 'bytes',
start(controller) {

// 256 zeros
controller.enqueue(new Uint8Array(256));
controller.close();

},
});
const transformedStream = readableByteStream.pipeThrough(

new CompressionStream('gzip'));
await logChunks(transformedStream);

async function logChunks(readableByteStream) {
const reader = readableByteStream.getReader();
try {

https://www.jasnell.me/posts/webstreams#creating-and-using-a-readablestream
https://www.jasnell.me/posts/webstreams#creating-and-using-a-readablestream

154 10 Using web streams on Node.js

while (true) {
const {done, value} = await reader.read();
if (done) break;
console.log(value);

}
} finally {

reader.releaseLock();
}

}

10.9.4 Example: reading a web page via fetch()
The result of fetch() resolves to a response object whose property .body is a readable
byte stream. We convert that byte stream to a text stream via TextDecoderStream:

const response = await fetch('https://example.com');
const readableByteStream = response.body;
const readableStream = readableByteStream.pipeThrough(

new TextDecoderStream('utf-8'));
for await (const stringChunk of readableStream) {

console.log(stringChunk);
}

10.10 Node.js-specific helpers
Node.js is the only web platform that supports the following helper functions that it calls
utility consumers:

import {
arrayBuffer,
blob,
buffer,
json,
text,

} from 'node:stream/consumers';

These functions convert web ReadableStreams, Node.js Readables and AsyncIterators to
Promises that are fulfilled with:

• ArrayBuffers (arrayBuffer())
• Blobs (blob())
• Node.js Buffers (buffer())
• JSON objects (json())
• Strings (text())

Binary data is assumed to be UTF-8-encoded:

import * as streamConsumers from 'node:stream/consumers';

const readableByteStream = new ReadableStream({

https://nodejs.org/api/webstreams.html#utility-consumers

10.11 Further reading 155

type: 'bytes',
start(controller) {

// TextEncoder converts strings to UTF-8 encoded Uint8Arrays
const encoder = new TextEncoder();
const view = encoder.encode('" "');
assert.deepEqual(

view,
Uint8Array.of(34, 240, 159, 152, 128, 34)

);
controller.enqueue(view);
controller.close();

},
});
const jsonData = await streamConsumers.json(readableByteStream);
assert.equal(jsonData, ' ');

String streams work as expected:

import * as streamConsumers from 'node:stream/consumers';

const readableByteStream = new ReadableStream({
start(controller) {

controller.enqueue('" "');
controller.close();

},
});
const jsonData = await streamConsumers.json(readableByteStream);
assert.equal(jsonData, ' ');

10.11 Further reading
All of the material mentioned in this section was a source for this chapter.

This chapter doesn’t cover every aspect of the web streams API. You can find more infor-
mation here:

• “WHATWG Streams Standard” by Adam Rice, Domenic Denicola, Mattias Bue-
lens, and � � � � (Takeshi Yoshino)

• “Web Streams API” in the Node.js documentation

More material:

• Web streams API:
– “Implementing the Web Streams API in Node.js” by James M. Snell
– “Streams API” on MDN
– “Streams—The definitive guide” by Thomas Steiner

• Backpressure:
– “Node.js Backpressuring in Streams” by Vladimir Topolev
– “Backpressuring in Streams” in the Node.js documentation

https://streams.spec.whatwg.org/
https://nodejs.org/api/webstreams.html
https://www.jasnell.me/posts/webstreams
https://developer.mozilla.org/en-US/docs/Web/API/Streams_API
https://web.dev/streams/
https://enlear.academy/nodejs-backpressuring-in-streams-52638f505e1b
https://nodejs.org/en/docs/guides/backpressuring-in-streams/

156 10 Using web streams on Node.js

• Unicode (code points, UTF-8, UTF-16, etc.): Chapter “Unicode – a brief introduc-
tion” in “JavaScript for impatient programmers”

• Chapter “Asynchronous iteration” in “JavaScript for impatient programmers”
• Chapter “Typed Arrays: handling binary data” in “JavaScript for impatient pro-

grammers”

https://exploringjs.com/impatient-js/ch_unicode.html
https://exploringjs.com/impatient-js/ch_unicode.html
https://exploringjs.com/impatient-js/ch_async-iteration.html
https://exploringjs.com/impatient-js/ch_typed-arrays.html

Chapter 11

Stream recipes

Contents
11.1 Writing to standard output (stdout) 157

11.1.1 Writing to stdout via ‘console.log() 157
11.1.2 Writing to stdout via a Node.js stream 158
11.1.3 Writing to stdout via a web stream 158

11.2 Writing to standard error (stderr) . 158
11.3 Reading from standard input (stdin) 159

11.3.1 Reading from stdin via a Node.js stream 159
11.3.2 Reading from stdin via a web stream 159
11.3.3 Reading from stdin via module 'node:readline' 159

11.4 Node.js stream recipes . 160
11.5 Web stream recipes . 160

11.1 Writing to standard output (stdout)
These are three options for writing to stdout:

• We can write to it via console.log().
• We can write to it via a Node.js stream.
• We can write to it via a web stream.

11.1.1 Writing to stdout via ‘console.log()
console.log(format, ...args) writes to stdout and always appends a newline '\n'
(even on Windows). The first argument can include placeholders which are interpreted
in the same way as they are by util.format():

console.log('String: %s Number: %d Percent: %%', 'abc', 123);

const obj = {one: 1, two: 2};

157

https://nodejs.org/docs/latest/api/console.html#consolelogdata-args

158 11 Stream recipes

console.log('JSON: %j Object: %o', obj, obj);

// Output:
// 'String: abc Number: 123 Percent: %'
// 'JSON: {"one":1,"two":2} Object: { one: 1, two: 2 }'

All arguments after the first one always show up in the output, even if there are not
enough placeholders for them.

11.1.2 Writing to stdout via a Node.js stream
process.stdout is an instance of stream.Readable. That means that we can use it like
any other Node.js stream – for example:

process.stdout.write('two');
process.stdout.write(' words');
process.stdout.write('\n');

The previous code is equivalent to:
console.log('two words');

Note that there is no newline at the end in this case because console.log() always adds
one.
If we use .write() with large amounts of data, we should take backpressure into con-
sideration, as explained in §9.5.2.1 “writable.write(chunk)”.
The following recipes work with process.stdout: §11.4 “Node.js stream recipes”.

11.1.3 Writing to stdout via a web stream
We can convert process.stdout to a web stream and write to it:

import {Writable} from 'node:stream';
const webOut = Writable.toWeb(process.stdout);
const writer = webOut.getWriter();
try {

await writer.write('First line\n');
await writer.write('Second line\n');
await writer.close();

} finally {
writer.releaseLock()

}

The following recipes work with webOut: §11.5 “Web stream recipes”.

11.2 Writing to standard error (stderr)
Writing to stderr works similarly to writing to stdout:

• We can write to it via console.error().
• We can write to it via a Node.js stream.

11.3 Reading from standard input (stdin) 159

• We can write to it via a web stream.
See the previous section for more information.

11.3 Reading from standard input (stdin)
These are options for reading from stdin:

• We can read from it via a Node.js stream.
• We can read from it via a web stream.
• We can use module 'node:readline'.

11.3.1 Reading from stdin via a Node.js stream
process.stdin is an instance of stream.Writable. That means that we can use it like
any other Node.js stream:

// Switch to text mode (otherwise we get chunks of binary data)
process.stdin.setEncoding('utf-8');
for await (const chunk of process.stdin) {

console.log('>', chunk);
}

The following recipes work with webIn: §11.4 “Node.js stream recipes”.

11.3.2 Reading from stdin via a web stream
We first have to convert process.stdin to a web stream:

import {Readable} from 'node:stream';
// Switch to text mode (otherwise we get chunks of binary data)
process.stdin.setEncoding('utf-8');
const webIn = Readable.toWeb(process.stdin);
for await (const chunk of webIn) {

console.log('>', chunk);
}

The following recipes work with webIn: §11.5 “Web stream recipes”.

11.3.3 Reading from stdin via module 'node:readline'
The built-in module 'node:readline' lets us prompt users to enter information interac-
tively – for example:

import * as fs from 'node:fs';
import * as readline from 'node:readline/promises';

const rl = readline.createInterface({
input: process.stdin,
output: process.stdout,

});

160 11 Stream recipes

const filePath = await rl.question('Please enter a file path: ');
fs.writeFileSync(filePath, 'Hi!', {encoding: 'utf-8'})

rl.close();

For more information on module 'node:readline', see:
• §9.3.3 “Reading lines from readable streams via module 'node:readlines'”
• Its official documentation.

11.4 Node.js stream recipes
Readable streams:

• §9.3.1.2 “Readable.from(): Creating readable streams from iterables”
• §9.3.2 “Reading chunks from readable streams via for-await-of”

– §9.3.2.1 “Collecting the contents of a readable stream in a string”
• §9.3.3 “Reading lines from readable streams via module 'node:readlines'”
• §9.4 “Transforming readable streams via async generators”

– §9.4.1 “Going from chunks to numbered lines in async iterables”
Writable streams:

• §9.5.2 “Writing to writable streams”
• §9.5.2.2 “Piping readable streams to writable streams via stream.pipeline()”

11.5 Web stream recipes
Creating a ReadableStream from:

• Strings: §10.3.1 “A first example of implementing an underlying source”
• An iterable: §10.3.2.2 “Example: creating a ReadableStream from a pull source”

Reading from a ReadableStream:
• §10.2.1 “Consuming ReadableStreams via Readers”
• §10.2.2 “Consuming ReadableStreams via asynchronous iteration”

– §10.2.2.2 “Example: assembling a string with the contents of a Read-
ableStream”

• §10.2.3 “Piping ReadableStreams to WritableStreams”
Transforming ReadableStreams:

• §10.6 “Using TransformStreams”
• §10.7.2 “Tip: async generators are also great for transforming streams”
• §10.7.1 “Example: transforming a stream of arbitrary chunks to a stream of lines”

Using WritableStreams:
• §10.4 “Writing to WritableStreams”
• §10.5.2 “Example: collecting chunks written to a WriteStream in a string”

https://nodejs.org/api/readline.html

Chapter 12

Running shell commands in child
processes

Contents
12.1 Overview of this chapter . 162

12.1.1 Windows vs. Unix . 162
12.1.2 Functionality we often use in the examples 162

12.2 Spawning processes asynchronously: spawn() 163
12.2.1 How spawn() works . 163
12.2.2 When is the shell command executed? 166
12.2.3 Command-only mode vs. args mode 166
12.2.4 Sending data to the stdin of the child process 169
12.2.5 Piping manually . 170
12.2.6 Handling unsuccessful exits (including errors) 171
12.2.7 Waiting for the exit of a child process 173
12.2.8 Terminating child processes 174

12.3 Spawning processes synchronously: spawnSync() 175
12.3.1 When is the shell command executed? 176
12.3.2 Reading from stdout . 176
12.3.3 Sending data to the stdin of the child process 177
12.3.4 Handling unsuccessful exits (including errors) 177

12.4 Asynchronous helper functions based on spawn() 179
12.4.1 exec() . 179
12.4.2 execFile() . 180

12.5 Synchronous helper functions based on spawnAsync() 181
12.5.1 execSync() . 181
12.5.2 execFileSync() . 181

12.6 Useful libraries . 181
12.6.1 tinysh: a helper for spawning shell commands 181

161

162 12 Running shell commands in child processes

12.6.2 node-powershell: executing Windows PowerShell commands
via Node.js . 182

12.7 Choosing between the functions of module 'node:child_process' . 182

In this chapter, we’ll explore how we can execute shell commands from Node.js, via
module 'node:child_process'.

12.1 Overview of this chapter
Module 'node:child_process' has a function for executing shell commands (in spawned
child processes) that comes in two versions:

• An asynchronous version spawn().
• A synchronous version spawnSync().

We’ll first explore spawn() and then spawnSync(). We’ll conclude by looking at the fol-
lowing functions that are based on them and relatively similar:

• Based on spawn():
– exec()
– execFile()

• Based on spawnSync():
– execSync()
– execFileSync()

12.1.1 Windows vs. Unix
The code shown in this chapter runs on Unix, but I have also tested it on Windows –
where most of it works with minor changes (such as ending lines with '\r\n' instead of
'\n').

12.1.2 Functionality we often use in the examples
The following functionality shows up often in the examples. That’s why it’s explained
here, once:

• Assertions: assert.equal() for primitive values and assert.deepEqual() for ob-
jects. The necessary import is never shown in the examples:

import * as assert from 'node:assert/strict';

• Function Readable.toWeb() converts Node’s native stream.Readable to a web
stream (an instance of ReadableStream). It is explained in §10 “Using web streams
on Node.js”. Readable is always imported in the examples.

• The asynchronous function readableStreamToString() consumes a readable web
stream and returns a string (wrapped in a Promise). It is explained in the chapter
on web streams. This function is assumed to available in the examples.

12.2 Spawning processes asynchronously: spawn() 163

12.2 Spawning processes asynchronously: spawn()
12.2.1 How spawn() works

spawn(
command: string,
args?: Array<string>,
options?: Object

): ChildProcess

spawn() asynchronously executes a command in a new process: The process runs con-
currently to Node’s main JavaScript process and we can communicate with it in various
ways (often via streams).
Next, there is documentation for the parameters and the result of spawn(). If you prefer
to learn by example, you can skip that content and continue with the subsections that
follow.

12.2.1.1 Parameter: command
command is a stringwith the shell command. There are twomodes of using this parameter:

• Command-only mode: args is omitted and command contains the whole shell com-
mand. We can even use shell features such as piping betweenmultiple executables,
redirecting I/O into files, variables, and wildcards.

– options.shell must be true because we need an shell to handle the shell
features.

• Args mode: command contains only the name of the command and args contains
its arguments.

– If options.shell is true, many meta-characters inside arguments are inter-
preted and features such as wildcards and variable names work.

– If options.shell is false, strings are used verbatim and we never have to
escape meta-characters.

Both modes are demonstrated later in this chapter.

12.2.1.2 Parameter: options
The following options are most interesting:

• .shell: boolean|string (default: false)
Should a shell be used to execute the command?

– On Windows, this option should almost always be true. For example, .bat
and .cmd files cannot be executed otherwise.

– On Unix, only core shell features (e.g. piping, I/O redirection, filename wild-
cards, and variables) are not available if .shell is false.

– If .shell is true, we have to be carefulwith user input and sanitize it because
it’s easy to execute arbitrary code. We also have to escape meta-characters if
we want to use them as non-meta-characters.

– We can also set .shell to the path of a shell executable. Then Node.js uses
that executable to execute the command. If we set .shell to true, Node.js
uses:

https://nodejs.org/api/child_process.html#child_processspawncommand-args-options

164 12 Running shell commands in child processes

* Unix: '/bin/sh'
* Windows: process.env.ComSpec

• .cwd: string | URL
Specifies the current working directory (CWD) to use while executing the command.

• .stdio: Array<string|Stream>|string
Configures how standard I/O is set up. This is explained below.

• .env: Object (default: process.env)
Lets us specify shell variables for the child process. Tips:

– Look at process.env (e.g. in the Node.js REPL) to see what variables exist.
– We can use spreading to non-destructively override an existing variable – or
create it if it doesn’t exist yet:

{env: {...process.env, MY_VAR: 'Hi!'}}
• .signal: AbortSignal

If we create an AbortController ac, we can pass ac.signal to spawn() and abort
the child process via ac.abort(). That is demonstrated later in this chapter.

• .timeout: number
If the child process takes longer than .timeoutmilliseconds, it is killed.

12.2.1.3 options.stdio

Each of the standard I/O streams of the child process has a numeric ID, a so-called file
descriptor:

• Standard input (stdin) has the file descriptor 0.
• Standard output (stdout) has the file descriptor 1.
• Standard error (stderr) has the file descriptor 2.

There can be more file descriptors, but that’s rare.

options.stdio configures if and how the streams of the child process are piped to
streams in the parent process. It can be an Array where each element configures the file
descriptor that is equal to its index. The following values can be used as Array elements:

• 'pipe':

– Index 0: Pipe childProcess.stdin to the child’s stdin. Note that, despite its
name, the former is a stream that belongs to the parent process.

– Index 1: Pipe the child’s stdout to childProcess.stdout.
– Index 2: Pipe the child’s stderr to childProcess.stderr.

• 'ignore': Ignore the child’s stream.

• 'inherit': Pipe the child’s stream to the corresponding stream of the parent pro-
cess.

– For example, if we want the child’s stderr to be logged to the console, we can
use 'inherit' at index 2.

• Native Node.js stream: Pipe to or from that stream.

• Other values are supported, too, but that’s beyond the scope of this chapter.

Instead of specifying options.stdio via an Array, we can also abbreviate:

12.2 Spawning processes asynchronously: spawn() 165

• 'pipe' is equivalent to ['pipe', 'pipe', 'pipe'] (the default for op-
tions.stdio).

• 'ignore' is equivalent to ['ignore', 'ignore', 'ignore'].
• 'inherit' is equivalent to ['inherit', 'inherit', 'inherit'].

12.2.1.4 Result: instance of ChildProcess
spawn() returns instances of ChildProcess.
Interesting data properties:

• .exitCode: number | null
Contains the code with which the child process exited:

– 0 (zero) means normal exit.
– A number greater than zero means an error happened.
– nullmeans the process hasn’t exited yet.

• .signalCode: string | null
The POSIX signal with which a child process was killed or null if it wasn’t. See
the description of method .kill() below for more information.

• Streams: Depending on how standard I/O is configured (see previous subsection),
the following streams become available:

– .stdin
– .stdout
– .stderr

• .pid: number | undefined
The process identifier (PID) of the child process. If spawning fails, .pid is undefined.
This value is available immediately after calling spawn().

Interesting methods:
• .kill(signalCode?: number | string = 'SIGTERM'): boolean

Sends a POSIX signal to the child process (which usually results in the termination
of the process):

– The man page for signal contains a list of values.
– Windows does not support signals, but Node.js emulates some of them – e.g.:

SIGINT, SIGTERM, and SIGKILL. For more information, see the Node.js docu-
mentation.

This method is demonstrated later in this chapter.
Interesting events:

• .on('exit', (exitCode: number|null, signalCode: string|null) => {})
This event is emitted after the child process ends:

– The callback parameters provide us with either the exit code or the signal
code: One of them will always be non-null.

– Some of its standard I/O streams might still be open because multiple pro-
cessesmight share the same streams. Event 'close' notifies uswhen all stdio
streams are closed after the exit of a child process.

• .on('error', (err: Error) => {})
This event is most commonly emitted if a process could not be spawned (see ex-

https://nodejs.org/api/child_process.html#class-childprocess
https://man7.org/linux/man-pages/man7/signal.7.html
https://nodejs.org/api/process.html#signal-events
https://nodejs.org/api/process.html#signal-events

166 12 Running shell commands in child processes

ample later) or the child process could not be killed. An 'exit' event may or may
not be emitted after this event.

We’ll see later how events can be turned into Promises that can be awaited.

12.2.2 When is the shell command executed?
When using the asynchronous spawn(), the child process for the command is started
asynchronously. The following code demonstrates that:

import {spawn} from 'node:child_process';

spawn(
'echo', ['Command starts'],
{

stdio: 'inherit',
shell: true,

}
);
console.log('After spawn()');

This is the output:
After spawn()
Command starts

12.2.3 Command-only mode vs. args mode
In this section, we specify the same command invocation in two ways:

• Command-only mode: We provide the whole invocation via the first parameter
command.

• Args mode: We provide the command via the first parameter command and its ar-
guments via the second parameter args.

12.2.3.1 Command-only mode
import {Readable} from 'node:stream';
import {spawn} from 'node:child_process';

const childProcess = spawn(
'echo "Hello, how are you?"',
{

shell: true, // (A)
stdio: ['ignore', 'pipe', 'inherit'], // (B)

}
);
const stdout = Readable.toWeb(

childProcess.stdout.setEncoding('utf-8'));

// Result on Unix

12.2 Spawning processes asynchronously: spawn() 167

assert.equal(
await readableStreamToString(stdout),
'Hello, how are you?\n' // (C)

);

// Result on Windows: '"Hello, how are you?"\r\n'

Each command-only spawning with arguments requires .shell to be true (line A) –
even if it’s as simple as this one.
In line B, we tell spawn() how to handle standard I/O:

• Ignore standard input.
• Pipe the child process stdout to childProcess.stdout (a stream that belongs to

the parent process).
• Pipe child process stderr to parent process stderr.

In this case, we are only interested in the output of the child process. Therefore, we are
done once we have processed the output. In other cases, we might have to wait until the
child exits. How to do that, is demonstrated later.
In command-only mode, we see more pecularities of shells – for example, the Windows
Command shell output includes double quotes (last line).

12.2.3.2 Args mode
import {Readable} from 'node:stream';
import {spawn} from 'node:child_process';

const childProcess = spawn(
'echo', ['Hello, how are you?'],
{

shell: true,
stdio: ['ignore', 'pipe', 'inherit'],

}
);
const stdout = Readable.toWeb(

childProcess.stdout.setEncoding('utf-8'));

// Result on Unix
assert.equal(

await readableStreamToString(stdout),
'Hello, how are you?\n'

);
// Result on Windows: 'Hello, how are you?\r\n'

12.2.3.3 Meta-characters in args

Let’s explore what happens if there are meta-characters in args:
import {Readable} from 'node:stream';
import {spawn} from 'node:child_process';

168 12 Running shell commands in child processes

async function echoUser({shell, args}) {
const childProcess = spawn(

`echo`, args,
{
stdio: ['ignore', 'pipe', 'inherit'],
shell,

}
);
const stdout = Readable.toWeb(

childProcess.stdout.setEncoding('utf-8'));
return readableStreamToString(stdout);

}

// Results on Unix
assert.equal(

await echoUser({shell: false, args: ['$USER']}), // (A)
'$USER\n'

);
assert.equal(

await echoUser({shell: true, args: ['$USER']}), // (B)
'rauschma\n'

);
assert.equal(

await echoUser({shell: true, args: [String.raw`\$USER`]}), // (C)
'$USER\n'

);

• If we don’t use a shell, meta-characters such as the dollar sign ($) have no effect
(line A).

• With a shell, $USER is interpreted as a variable (line B).
• If we don’t want that, we have to escape the dollar sign via a backslash (line C).

Similar effects occur with other meta-characters such as asterisks (*).

These were two examples of Unix shell meta-characters. Windows shells have their own
meta-characters and their own ways of escaping.

12.2.3.4 A more complicated shell command

Let’s use more shell features (which requires command-only mode):

import {Readable} from 'node:stream';
import {spawn} from 'node:child_process';
import {EOL} from 'node:os';

const childProcess = spawn(
`(echo cherry && echo apple && echo banana) | sort`,
{

stdio: ['ignore', 'pipe', 'inherit'],

12.2 Spawning processes asynchronously: spawn() 169

shell: true,
}

);
const stdout = Readable.toWeb(

childProcess.stdout.setEncoding('utf-8'));
assert.equal(

await readableStreamToString(stdout),
'apple\nbanana\ncherry\n'

);

12.2.4 Sending data to the stdin of the child process
So far, we have only read the standard output of a child process. But we can also send
data to standard input:

import {Readable, Writable} from 'node:stream';
import {spawn} from 'node:child_process';

const childProcess = spawn(
`sort`, // (A)
{

stdio: ['pipe', 'pipe', 'inherit'],
}

);
const stdin = Writable.toWeb(childProcess.stdin); // (B)
const writer = stdin.getWriter(); // (C)
try {

await writer.write('Cherry\n');
await writer.write('Apple\n');
await writer.write('Banana\n');

} finally {
writer.close();

}

const stdout = Readable.toWeb(
childProcess.stdout.setEncoding('utf-8'));

assert.equal(
await readableStreamToString(stdout),
'Apple\nBanana\nCherry\n'

);

We use the shell command sort (line A) to sort lines of text for us.

In line B, we use Writable.toWeb() to convert a native Node.js stream to a web stream
(for more information, see §10 “Using web streams on Node.js”).

How to write to a WritableStream via a writer (line C) is also explained in the chapter on
web streams.

170 12 Running shell commands in child processes

12.2.5 Piping manually
We previously let a shell execute the following command:

(echo cherry && echo apple && echo banana) | sort

In the following example, we do the piping manually, from the echoes (line A) to the
sorting (line B):

import {Readable, Writable} from 'node:stream';
import {spawn} from 'node:child_process';

const echo = spawn(// (A)
`echo cherry && echo apple && echo banana`,
{

stdio: ['ignore', 'pipe', 'inherit'],
shell: true,

}
);
const sort = spawn(// (B)

`sort`,
{

stdio: ['pipe', 'pipe', 'inherit'],
shell: true,

}
);

//==== Transferring chunks from echo.stdout to sort.stdin ====

const echoOut = Readable.toWeb(
echo.stdout.setEncoding('utf-8'));

const sortIn = Writable.toWeb(sort.stdin);

const sortInWriter = sortIn.getWriter();
try {

for await (const chunk of echoOut) { // (C)
await sortInWriter.write(chunk);

}
} finally {

sortInWriter.close();
}

//==== Reading sort.stdout ====

const sortOut = Readable.toWeb(
sort.stdout.setEncoding('utf-8'));

assert.equal(
await readableStreamToString(sortOut),
'apple\nbanana\ncherry\n'

);

12.2 Spawning processes asynchronously: spawn() 171

ReadableStreams such as echoOut are asynchronously iterable. That’s why we can use a
for-await-of loop to read their chunks (the fragments of the streamed data). For more
information, see §10 “Using web streams on Node.js”.

12.2.6 Handling unsuccessful exits (including errors)
There are three main kinds of unsuccessful exits:

• The child process can’t be spawned.
• An error happens in the shell.
• A process is killed.

12.2.6.1 The child process can’t be spawned
The following code demonstrates what happens if a child process can’t be spawned. In
this case, the cause is that the shell’s path doesn’t point to an executable (line A).

import {spawn} from 'node:child_process';

const childProcess = spawn(
'echo hello',
{

stdio: ['inherit', 'inherit', 'pipe'],
shell: '/bin/does-not-exist', // (A)

}
);
childProcess.on('error', (err) => { // (B)

assert.equal(
err.toString(),
'Error: spawn /bin/does-not-exist ENOENT'

);
});

This is the first time that we use events toworkwith child processes. In line B, we register
an event listener for the 'error' event. The child process starts after the current code
fragment is finished. That helps prevent race conditions: Whenwe start listening we can
be sure that the event hasn’t been emitted yet.

12.2.6.2 An error happens in the shell
If the shell code contains an error, we don’t get an 'error' event (line B), we get an
'exit' event with a non-zero exit code (line A):

import {Readable} from 'node:stream';
import {spawn} from 'node:child_process';

const childProcess = spawn(
'does-not-exist',
{

stdio: ['inherit', 'inherit', 'pipe'],
shell: true,

172 12 Running shell commands in child processes

}
);
childProcess.on('exit',

async (exitCode, signalCode) => { // (A)
assert.equal(exitCode, 127);
assert.equal(signalCode, null);
const stderr = Readable.toWeb(
childProcess.stderr.setEncoding('utf-8'));

assert.equal(
await readableStreamToString(stderr),
'/bin/sh: does-not-exist: command not found\n'

);
}

);
childProcess.on('error', (err) => { // (B)

console.error('We never get here!');
});

12.2.6.3 A process is killed

If a process is killed on Unix, the exit code is null (line C) and the signal code is a string
(line D):

import {Readable} from 'node:stream';
import {spawn} from 'node:child_process';

const childProcess = spawn(
'kill $$', // (A)
{

stdio: ['inherit', 'inherit', 'pipe'],
shell: true,

}
);
console.log(childProcess.pid); // (B)
childProcess.on('exit', async (exitCode, signalCode) => {

assert.equal(exitCode, null); // (C)
assert.equal(signalCode, 'SIGTERM'); // (D)
const stderr = Readable.toWeb(

childProcess.stderr.setEncoding('utf-8'));
assert.equal(

await readableStreamToString(stderr),
'' // (E)

);
});

Note that there is no error output (line E).

Instead of the child process killing itself (lineA), we could have also paused it for a longer
time and killed it manually via the process ID that we logged in line B.

12.2 Spawning processes asynchronously: spawn() 173

What happens if we kill a child process on Windows?
• exitCode is 1.
• signalCode is null.

12.2.7 Waiting for the exit of a child process
Sometimes we only want to wait until a command is finished. That can be achieved via
events and via Promises.

12.2.7.1 Waiting via events
import * as fs from 'node:fs';
import {spawn} from 'node:child_process';

const childProcess = spawn(
`(echo first && echo second) > tmp-file.txt`,
{

shell: true,
stdio: 'inherit',

}
);
childProcess.on('exit', (exitCode, signalCode) => { // (A)

assert.equal(exitCode, 0);
assert.equal(signalCode, null);
assert.equal(

fs.readFileSync('tmp-file.txt', {encoding: 'utf-8'}),
'first\nsecond\n'

);
});

We are using the standard Node.js event pattern and register a listener for the 'exit'
event (line A).

12.2.7.2 Waiting via Promises
import * as fs from 'node:fs';
import {spawn} from 'node:child_process';

const childProcess = spawn(
`(echo first && echo second) > tmp-file.txt`,
{

shell: true,
stdio: 'inherit',

}
);

const {exitCode, signalCode} = await onExit(childProcess); // (A)

assert.equal(exitCode, 0);

174 12 Running shell commands in child processes

assert.equal(signalCode, null);
assert.equal(

fs.readFileSync('tmp-file.txt', {encoding: 'utf-8'}),
'first\nsecond\n'

);

The helper function onExit() that we use in line A, returns a Promise that is fulfilled if
an 'exit' event is emitted:

export function onExit(eventEmitter) {
return new Promise((resolve, reject) => {

eventEmitter.once('exit', (exitCode, signalCode) => {
if (exitCode === 0) { // (B)
resolve({exitCode, signalCode});

} else {
reject(new Error(

`Non-zero exit: code ${exitCode}, signal ${signalCode}`));
}

});
eventEmitter.once('error', (err) => { // (C)
reject(err);

});
});

}

If eventEmitter fails, the returned Promise is rejected and await throws an exception in
line A. onExit() handles two kinds of failures:

• exitCode isn’t zero (line B). That happens:
– If there is a shell error. Then exitCode is greater than zero.
– If the child process is killed on Unix. Then exitCode is null and signalCode
is non-null.
* Killing child process on Windows produces a shell error.

• An 'error' event is emitted (line C). That happens if the child process can’t be
spawned.

12.2.8 Terminating child processes
12.2.8.1 Terminating a child process via an AbortController
In this example, we use an AbortController to terminate a shell command:

import {spawn} from 'node:child_process';

const abortController = new AbortController(); // (A)

const childProcess = spawn(
`echo Hello`,
{

stdio: 'inherit',
shell: true,

12.3 Spawning processes synchronously: spawnSync() 175

signal: abortController.signal, // (B)
}

);
childProcess.on('error', (err) => {

assert.equal(
err.toString(),
'AbortError: The operation was aborted'

);
});
abortController.abort(); // (C)

We create an AbortController (line A), pass its signal to spawn() (line B), and terminate
the shell command via the AbortController (line C).
The child process starts asynchronously (after the current code fragment is executed).
That’s why we can abort before the process has even started and why we don’t see any
output in this case.

12.2.8.2 Terminating a child process via .kill()
In the next example, we terminate a child process via the method .kill() (last line):

import {spawn} from 'node:child_process';

const childProcess = spawn(
`echo Hello`,
{

stdio: 'inherit',
shell: true,

}
);
childProcess.on('exit', (exitCode, signalCode) => {

assert.equal(exitCode, null);
assert.equal(signalCode, 'SIGTERM');

});
childProcess.kill(); // default argument value: 'SIGTERM'

Once again, we kill the child process before it has started (asynchronously!) and there is
no output.

12.3 Spawning processes synchronously: spawnSync()
spawnSync(

command: string,
args?: Array<string>,
options?: Object

): Object

spawnSync() is the synchronous version of spawn() – it waits until the child process exits
before it synchronously(!) returns an object.

https://nodejs.org/api/child_process.html#child_processspawnsynccommand-args-options

176 12 Running shell commands in child processes

The parameters are mostly the same as those of spawn(). options has a few additional
properties – e.g.:

• .input: string | TypedArray | DataView
If this property exists, its value is sent to the standard input of the child process.

• .encoding: string (default: 'buffer')
Specifies the encoding that is used for all standard I/O streams.

The function returns an object. Its most interesting properties are:
• .stdout: Buffer | string

Contains whatever was written to the standard output stream of the child process.
• .stderr: Buffer | string

Contains whatever was written to the standard error stream of the child process.
• .status: number | null

Contains the exit code of the child process or null. Either the exit code or the signal
code are non-null.

• .signal: string | null
Contains the signal code of the child process or null. Either the exit code or the
signal code are non-null.

• .error?: Error
This property is only created if spawning didn’t work and then contains an Error
object.

With the asynchronous spawn(), the child process ran concurrently and we could read
standard I/Ovia streams. In contrast, the synchronous spawnSync() collects the contents
of the streams and returns them to us synchronously (see next subsection).

12.3.1 When is the shell command executed?
When using the synchronous spawnSync(), the child process for the command is started
synchronously. The following code demonstrates that:

import {spawnSync} from 'node:child_process';

spawnSync(
'echo', ['Command starts'],
{

stdio: 'inherit',
shell: true,

}
);
console.log('After spawnSync()');

This is the output:
Command starts
After spawnSync()

12.3.2 Reading from stdout
The following code demonstrates how to read standard output:

12.3 Spawning processes synchronously: spawnSync() 177

import {spawnSync} from 'node:child_process';

const result = spawnSync(
`echo rock && echo paper && echo scissors`,
{

stdio: ['ignore', 'pipe', 'inherit'], // (A)
encoding: 'utf-8', // (B)
shell: true,

}
);
console.log(result);
assert.equal(

result.stdout, // (C)
'rock\npaper\nscissors\n'

);
assert.equal(result.stderr, null); // (D)

In line A, we use options.stdio to tell spawnSync() that we are only interested in stan-
dard output. We ignore standard input and pipe standard error to the parent process.
As a consequence, we only get a result property for standard output (line C) and the
property for standard error is null (line D).
Sincewe can’t access the streams that spawnSync() uses internally to handle the standard
I/O of the child process, we tell it which encoding to use, via options.encoding (line B).

12.3.3 Sending data to the stdin of the child process
We can send data to the standard input stream of a child process via the options property
.input (line A):

import {spawnSync} from 'node:child_process';

const result = spawnSync(
`sort`,
{

stdio: ['pipe', 'pipe', 'inherit'],
encoding: 'utf-8',
input: 'Cherry\nApple\nBanana\n', // (A)

}
);
assert.equal(

result.stdout,
'Apple\nBanana\nCherry\n'

);

12.3.4 Handling unsuccessful exits (including errors)
There are three main kinds of unsuccessful exits (when the exit code isn’t zero):

• The child process can’t be spawned.

178 12 Running shell commands in child processes

• An error happens in the shell.
• A process is killed.

12.3.4.1 The child process can’t be spawned

If spawning fails, spawn() emits an 'error' event. In contrast, spawnSync() sets re-
sult.error to an error object:

import {spawnSync} from 'node:child_process';

const result = spawnSync(
'echo hello',
{

stdio: ['ignore', 'inherit', 'pipe'],
encoding: 'utf-8',
shell: '/bin/does-not-exist',

}
);
assert.equal(

result.error.toString(),
'Error: spawnSync /bin/does-not-exist ENOENT'

);

12.3.4.2 An error happens in the shell

If an error happens in the shell, the exit code result.status is greater than zero and
result.signal is null:

import {spawnSync} from 'node:child_process';

const result = spawnSync(
'does-not-exist',
{

stdio: ['ignore', 'inherit', 'pipe'],
encoding: 'utf-8',
shell: true,

}
);
assert.equal(result.status, 127);
assert.equal(result.signal, null);
assert.equal(

result.stderr, '/bin/sh: does-not-exist: command not found\n'
);

12.3.4.3 A process is killed

If the child process is killed on Unix, result.signal contains the name of the signal and
result.status is null:

12.4 Asynchronous helper functions based on spawn() 179

import {spawnSync} from 'node:child_process';

const result = spawnSync(
'kill $$',
{

stdio: ['ignore', 'inherit', 'pipe'],
encoding: 'utf-8',
shell: true,

}
);

assert.equal(result.status, null);
assert.equal(result.signal, 'SIGTERM');
assert.equal(result.stderr, ''); // (A)

Note that no output was sent to the standard error stream (line A).
If we kill a child process on Windows:

• result.status is 1
• result.signal is null
• result.stderr is ''

12.4 Asynchronous helper functions based on spawn()

In this section, we look at two asynchronous functions in module node:child_process
that are based on spawn():

• exec()
• execFile()

We ignore fork() in this chapter. Quoting the Node.js documentation:
fork() spawns a new Node.js process and invokes a specified module with
an IPC communication channel established that allows sending messages
between parent and child.

12.4.1 exec()

exec(
command: string,
options?: Object,
callback?: (error, stdout, stderr) => void

): ChildProcess

exec() runs a command in a newly spawned shell. The main differences with spawn()
are:

• In addition to returning a ChildProcess, exec() also delivers a result via a callback:
Either an error object or the contents of stdout and stderr.

• Causes of errors: child process can’t be spawned, shell error, child process killed.

https://nodejs.org/api/child_process.html#child_processforkmodulepath-args-options
https://nodejs.org/api/child_process.html#child-process
https://nodejs.org/api/child_process.html#child_processexeccommand-options-callback

180 12 Running shell commands in child processes

– In contrast, spawn() only emits 'error' events if the child process can’t be
spawned. The other two failures are handled via exit codes and (on Unix)
signal codes.

• There is no parameter args.
• The default for options.shell is true.
import {exec} from 'node:child_process';

const childProcess = exec(
'echo Hello',
(error, stdout, stderr) => {

if (error) {
console.error('error: ' + error.toString());
return;

}
console.log('stdout: ' + stdout); // 'stdout: Hello\n'
console.error('stderr: ' + stderr); // 'stderr: '

}
);

exec() can be converted to a Promise-based function via util.promisify():
• The ChildProcess becomes a property of the returned Promise.
• The Promise is settled as follows:

– Fulfillment value: {stdout, stderr}
– Rejection value: same value as parameter error of the callback but with two
additional properties: .stdout and .stderr.

import * as util from 'node:util';
import * as child_process from 'node:child_process';

const execAsync = util.promisify(child_process.exec);

try {
const resultPromise = execAsync('echo Hello');
const {childProcess} = resultPromise;
const obj = await resultPromise;
console.log(obj); // { stdout: 'Hello\n', stderr: '' }

} catch (err) {
console.error(err);

}

12.4.2 execFile()

execFile(file, args?, options?, callback?): ChildProcess

Works similarly to exec(), with the following differences:
• The parameter args is supported.
• The default for options.shell is false.

Like exec(), execFile() can be converted to a Promise-based function via util.promisify().

https://nodejs.org/api/util.html#utilpromisifyoriginal
https://nodejs.org/api/child_process.html#child_processexecfilefile-args-options-callback

12.5 Synchronous helper functions based on spawnAsync() 181

12.5 Synchronous helper functions based on spaw-
nAsync()

12.5.1 execSync()

execSync(
command: string,
options?: Object

): Buffer | string

execSync() runs a command in a new child process and waits synchronously until that
process exits. The main differences with spawnSync() are:

• Only returns the contents of stdout.
• Three kinds of failures are reported via exceptions: child process can’t be spawned,

shell error, child process killed.
– In contrast, the result of spawnSync() only has an .error property if the child
process can’t be spawned. The other two failures are handled via exit codes
and (on Unix) signal codes.

• There is no parameter args.
• The default for options.shell is true.
import {execSync} from 'node:child_process';

try {
const stdout = execSync('echo Hello');
console.log('stdout: ' + stdout); // 'stdout: Hello\n'

} catch (err) {
console.error('Error: ' + err.toString());

}

12.5.2 execFileSync()

execFileSync(file, args?, options?): Buffer | string

Works similarly to execSync(), with the following differences:
• The parameter args is supported.
• The default for options.shell is false.

12.6 Useful libraries
12.6.1 tinysh: a helper for spawning shell commands
tinysh by Anton Medvedev is a small library that helps with spawning shell commands
– e.g.:

import sh from 'tinysh';

console.log(sh.ls('-l'));
console.log(sh.cat('README.md'));

https://nodejs.org/api/child_process.html#child_processexecsynccommand-options
https://nodejs.org/api/child_process.html#child_processexecfilesyncfile-args-options
https://github.com/antonmedv/tinysh

182 12 Running shell commands in child processes

We can override the default options by using .call() to pass an object as this:
sh.tee.call({input: 'Hello, world!'}, 'file.txt');

We can use any property name and tinysh executes the shell command with that name.
It achieves that feat via a Proxy. This is a slightly modified version of the actual library:

import {execFileSync} from 'node:child_process';
const sh = new Proxy({}, {

get: (_, bin) => function (...args) { // (A)
return execFileSync(bin, args,
{
encoding: 'utf-8',
shell: true,
...this // (B)

}
);

},
});

In line A, we can see that if we get a property whose name is bin from sh, a function is
returned that invokes execFileSync() and uses bin as the first argument.
Spreading this in line B enables us to specify options via .call(). The defaults come
first, so that they can be overridden via this.

12.6.2 node-powershell: executing Windows PowerShell commands
via Node.js

Using the library node-powershell on Windows, looks as follows:
import { PowerShell } from 'node-powershell';
PowerShell.$`echo "hello from PowerShell"`;

12.7 Choosingbetween the functions ofmodule 'node:child_-
process'

General constraints:
• Should other asynchronous tasks run while the command is executed?

– Use any asynchronous function.
• Do you only execute one command at a time (without async tasks in the back-

ground)?
– Use any synchronous function.

• Do you want to access stdin or stdout of the child process via a stream?
– Only asynchronous functions give you access to streams: spawn() is simpler
in this case because it doesn’t have a callback that delivers errors and stan-
dard I/O content.

• Do you want to capture stdout or stderr in a string?
– Asynchronous options: exec() and execFile()

https://exploringjs.com/deep-js/ch_proxies.html
https://github.com/rannn505/child-shell/tree/master/packages/node-powershell

12.7 Choosing between the functions of module 'node:child_process' 183

– Synchronous options: spawnSync(), execSync(), execFileSync()
Asynchronous functions – choosing between spawn() and exec() or execFile():

• exec() and execFile() have two benefits:
– Failures are easier to handle because they are all reported in the samemanner
– via the first callback parameter.

– Getting stdout and stderr as strings is easier - due to the callback.
• You can pick spawn() if those benefits don’t matter to you. Its signature is simpler
without the (optional) callback.

Synchronous functions – choosing between spawnSync() and execSync() or exec-
FileSync():

• execSync() and execFileSync() have two specialties:
– They return a string with the content of stdout.
– Failures are easier to handle because they are all reported in the samemanner
– via exceptions.

• Pick spawnSync() if you need more information than execSync() and exec-
FileSync() provide via their return values and exceptions.

Choosing between exec() and execFile() (the same arguments apply to choosing be-
tween execSync() and execFileSync()):

• The default for options.shell is true in exec() but false in execFile().
• execFile() supports args, exec() doesn’t.

184 12 Running shell commands in child processes

Chapter 13

Where are the remaining
chapters?

You are reading a preview version of this book. You can either read all chapters online
or you can buy the full version.

185

https://exploringjs.com/nodejs-shell-scripting/toc.html
https://exploringjs.com/nodejs-shell-scripting/#buy

	I About this book
	About this book
	Why should I read this book?
	What knowledge is required to read this book?
	Buying and previewing this book
	About the author
	Acknowledgements

	Instructions
	How to read this book
	How assertions are used in this book

	II Foundations
	Getting started with Node.js
	Getting help for Node.js
	Installing Node.js and npm
	Running Node.js code

	An overview of Node.js: architecture, APIs, event loop, concurrency
	The Node.js platform
	The Node.js event loop
	libuv: the cross-platform library that handles asynchronous I/O (and more) for Node.js
	Escaping the main thread with user code
	Sources of this chapter

	Packages: JavaScript's units for software distribution
	What is a package?
	The file system layout of a package
	Archiving and installing packages
	Referring to modules via specifiers
	Module specifiers in Node.js

	An overview of npm (a package manager for JavaScript)
	The npm package manager
	Getting help for npm
	Common npm commands
	Abbreviations for npm commands

	III Core Node.js functionality
	Working with file system paths and file URLs on Node.js
	Path-related functionality on Node.js
	Foundational path concepts and their API support
	Getting the paths of standard directories via module 'node:os'
	Concatenating paths
	Ensuring paths are normalized, fully qualified, or relative
	Parsing paths: extracting various parts of a path (filename extension etc.)
	Categorizing paths
	path.format(): creating paths out of parts
	Using the same paths on different platforms
	Using a library to match paths via globs
	Using file: URLs to refer to files

	Working with the file system on Node.js
	Concepts, patterns and conventions of Node's file system APIs
	Reading and writing files
	Handling line terminators across platforms
	Traversing and creating directories
	Copying, renaming, moving files or directories
	Removing files or directories
	Reading and changing file system entries
	Working with links
	Further reading

	Native Node.js streams
	Recap: asynchronous iteration and asynchronous generators
	Streams
	Readable streams
	Transforming readable streams via async generators
	Writable streams
	Quick reference: stream-related functionality
	Further reading and sources of this chapter

	Using web streams on Node.js
	What are web streams?
	Reading from ReadableStreams
	Turning data sources into ReadableStreams via wrapping
	Writing to WritableStreams
	Turning data sinks into WritableStreams via wrapping
	Using TransformStreams
	Implementing custom TransformStreams
	A closer look at backpressure
	Byte streams
	Node.js-specific helpers
	Further reading

	Stream recipes
	Writing to standard output (stdout)
	Writing to standard error (stderr)
	Reading from standard input (stdin)
	Node.js stream recipes
	Web stream recipes

	Running shell commands in child processes
	Overview of this chapter
	Spawning processes asynchronously: spawn()
	Spawning processes synchronously: spawnSync()
	Asynchronous helper functions based on spawn()
	Synchronous helper functions based on spawnAsync()
	Useful libraries
	Choosing between the functions of module 'node:child_process'

	Where are the remaining chapters?

