
Exploring JavaScript (ES2024 Edition)
Dr. Axel Rauschmayer

2024-07-06

“An exhaustive resource, yet cuts out the fluff that clutters many
programming books – with explanations that are understandable and to
the point, as promised by the title! The quizzes and exercises are a very

useful feature to check and lock in your knowledge. And you can
definitely tear through the book fairly quickly, to get up and running in

JavaScript.”
— Pam Selle, thewebivore.com

“The best introductory book for modern JavaScript.”
— Tejinder Singh, Senior Software Engineer, IBM

“This is JavaScript. No filler. No frameworks. No third-party libraries.
If you want to learn JavaScript, you need this book.”

— Shelley Powers, Software Engineer/Writer

Copyright © 2024-07-06 by Dr. Axel Rauschmayer
Image on cover by Fran Caye
All rights reserved. This book or any portion thereof may not be reproduced or used in
any manner whatsoever without the express written permission of the publisher except
for the use of brief quotations in a book review or scholarly journal.
ISBN 978-1-09-121009-7
exploringjs.com

Table of contents

I Background 11
1 Before you buy the book 13

1.1 About the content . 13
1.2 Previewing and buying this book . 14
1.3 About the author . 14
1.4 Acknowledgements . 14

2 FAQ: book and supplementary material 17
2.1 How to read this book . 17
2.2 I own a digital version . 18
2.3 I own the print version (“JavaScript for impatient programmers”) 18
2.4 Notations and conventions . 19

3 Why JavaScript? 21
3.1 The cons of JavaScript . 21
3.2 The pros of JavaScript . 22
3.3 Pro and con of JavaScript: innovation . 23

4 The nature of JavaScript 25
4.1 JavaScript’s influences . 25
4.2 The nature of JavaScript . 25
4.3 Tips for getting started with JavaScript . 26

5 History and evolution of JavaScript 29
5.1 How JavaScript was created . 29
5.2 Standardization: JavaScript vs. ECMAScript 30
5.3 Timeline of ECMAScript versions . 30
5.4 Evolving JavaScript: TC39 (Ecma Technical Committee 39) 31
5.5 The TC39 process for proposed ECMAScript features 31
5.6 How to not break the web while changing JavaScript 34
5.7 FAQ: ECMAScript and TC39 . 35

6 New JavaScript features 37

3

4

6.1 New in ECMAScript 2024 . 37
6.2 New in ECMAScript 2023 . 39
6.3 New in ECMAScript 2022 . 40
6.4 New in ECMAScript 2021 . 41
6.5 New in ECMAScript 2020 . 42
6.6 New in ECMAScript 2019 . 43
6.7 New in ECMAScript 2018 . 44
6.8 New in ECMAScript 2017 . 45
6.9 New in ECMAScript 2016 . 45
6.10 Source of this chapter . 46

7 FAQ: JavaScript 47
7.1 What are good references for JavaScript? 47
7.2 How do I find out what JavaScript features are supported where? 47
7.3 Where can I look up what features are planned for JavaScript? 48
7.4 Why does JavaScript fail silently so often? 48
7.5 Why can’t we clean up JavaScript, by removing quirks and outdated features? 48
7.6 How can I quickly try out a piece of JavaScript code? 48

II First steps 49
8 Using JavaScript: the big picture 51

8.1 What are you learning in this book? . 51
8.2 The structure of browsers and Node.js . 51
8.3 JavaScript references . 52
8.4 Further reading . 52

9 Syntax 53
9.1 An overview of JavaScript’s syntax . 54
9.2 (Advanced) . 61
9.3 Hashbang lines (Unix shell scripts) . 61
9.4 Identifiers . 62
9.5 Statement vs. expression . 62
9.6 Ambiguous syntax . 64
9.7 Semicolons . 65
9.8 Automatic semicolon insertion (ASI) . 66
9.9 Semicolons: best practices . 68
9.10 Strict mode vs. sloppy mode . 68

10 Consoles: interactive JavaScript command lines 71
10.1 Trying out JavaScript code . 71
10.2 The console.* API: printing data and more 73

11 Assertion API 77
11.1 Assertions in software development . 77
11.2 How assertions are used in this book . 77
11.3 Normal comparison vs. deep comparison 78
11.4 Quick reference: module assert . 79

5

12 Getting started with exercises 83
12.1 Exercises . 83
12.2 Unit tests in JavaScript . 84

III Variables and values 87
13 Variables and assignment 89

13.1 let . 90
13.2 const . 90
13.3 Deciding between const and let . 91
13.4 The scope of a variable . 91
13.5 (Advanced) . 93
13.6 Terminology: static vs. dynamic . 93
13.7 Global variables and the global object . 93
13.8 Declarations: scope and activation . 96
13.9 Closures . 100

14 Values 103
14.1 What’s a type? . 103
14.2 JavaScript’s type hierarchy . 104
14.3 The types of the language specification 104
14.4 Primitive values vs. objects . 105
14.5 The operators typeof and instanceof: what’s the type of a value? 108
14.6 Classes and constructor functions . 109
14.7 Converting between types . 110

15 Operators 113
15.1 Making sense of operators . 113
15.2 The plus operator (+) . 114
15.3 Assignment operators . 115
15.4 Equality: == vs. === . 116
15.5 Ordering operators . 119
15.6 Various other operators . 120

IV Primitive values 121
16 The non-values undefined and null 123

16.1 undefined vs. null . 123
16.2 Occurrences of undefined and null . 124
16.3 Checking for undefined or null . 125
16.4 The nullish coalescing operator (??) for default values [ES2020] 125
16.5 undefined and null don’t have properties 128
16.6 The history of undefined and null . 129

17 Booleans 131
17.1 Converting to boolean . 132
17.2 Falsy and truthy values . 132

6

17.3 Truthiness-based existence checks . 134
17.4 Conditional operator (? :) . 135
17.5 Binary logical operators: And (x && y), Or (x || y) 136
17.6 Logical Not (!) . 138

18 Numbers 139
18.1 Numbers are used for both floating point numbers and integers 140
18.2 Number literals . 140
18.3 Arithmetic operators . 142
18.4 Converting to number . 144
18.5 Error values . 145
18.6 The precision of numbers: careful with decimal fractions 148
18.7 (Advanced) . 148
18.8 Background: floating point precision . 148
18.9 Integer numbers in JavaScript . 150
18.10Bitwise operators . 153
18.11Quick reference: numbers . 155

19 Math 161
19.1 Data properties . 161
19.2 Exponents, roots, logarithms . 162
19.3 Rounding . 163
19.4 Trigonometric Functions . 164
19.5 Various other functions . 166
19.6 Sources . 167

20 Bigints – arbitrary-precision integers [ES2020] (advanced) 169
20.1 Why bigints? . 170
20.2 Bigints . 170
20.3 Bigint literals . 172
20.4 Reusing number operators for bigints (overloading) 172
20.5 The wrapper constructor BigInt . 176
20.6 Coercing bigints to other primitive types 178
20.7 TypedArrays and DataView operations for 64-bit values 178
20.8 Bigints and JSON . 178
20.9 FAQ: Bigints . 179

21 Unicode – a brief introduction (advanced) 181
21.1 Code points vs. code units . 181
21.2 Encodings used in web development: UTF-16 and UTF-8 184
21.3 Grapheme clusters – the real characters 185

22 Strings 187
22.1 Cheat sheet: strings . 188
22.2 Plain string literals . 190
22.3 Accessing JavaScript characters . 191
22.4 String concatenation . 192
22.5 Converting to string . 193
22.6 Comparing strings . 195

7

22.7 Atoms of text: code points, JavaScript characters, grapheme clusters 195
22.8 Quick reference: Strings . 197

23 Using template literals and tagged templates [ES6] 209
23.1 Disambiguation: “template” . 209
23.2 Template literals . 210
23.3 Tagged templates . 211
23.4 Examples of tagged templates (as provided via libraries) 213
23.5 Raw string literals . 214
23.6 (Advanced) . 215
23.7 Multiline template literals and indentation 215
23.8 Simple templating via template literals . 216

24 Symbols [ES6] 219
24.1 Symbols are primitives that are also like objects 219
24.2 The descriptions of symbols . 220
24.3 Use cases for symbols . 220
24.4 Publicly known symbols . 223
24.5 Converting symbols . 224

V Control flow and data flow 225
25 Control flow statements 227

25.1 Controlling loops: break and continue . 228
25.2 Conditions of control flow statements . 230
25.3 if statements [ES1] . 230
25.4 switch statements [ES3] . 231
25.5 while loops [ES1] . 234
25.6 do-while loops [ES3] . 234
25.7 for loops [ES1] . 235
25.8 for-of loops [ES6] . 236
25.9 for-await-of loops [ES2018] . 237
25.10for-in loops (avoid) [ES1] . 237
25.11Recomendations for looping . 238

26 Exception handling 239
26.1 Motivation: throwing and catching exceptions 240
26.2 throw . 241
26.3 The try statement . 241
26.4 Error and its subclasses . 243
26.5 Chaining errors . 246

27 Callable values 249
27.1 Kinds of functions . 250
27.2 Ordinary functions . 250
27.3 Specialized functions [ES6] . 253

8

27.4 Summary: kinds of callable values . 258
27.5 Returning values from functions and methods 259
27.6 Parameter handling . 260
27.7 Methods of functions: .call(), .apply(), .bind() 264

28 Evaluating code dynamically: eval(), new Function() (advanced) 267
28.1 eval() . 267
28.2 new Function() . 268
28.3 Recommendations . 268

VI Modularity 271
29 Modules [ES6] 273

29.1 Cheat sheet: modules . 274
29.2 JavaScript source code formats . 276
29.3 Before we had modules, we had scripts 277
29.4 Module systems created prior to ES6 . 278
29.5 ECMAScript modules . 280
29.6 Named exports and imports . 281
29.7 Default exports and imports . 283
29.8 Re-exporting . 285
29.9 More details on exporting and importing 286
29.10npm packages . 287
29.11Naming modules . 289
29.12Module specifiers . 290
29.13import.meta – metadata for the current module [ES2020] 292
29.14Loading modules dynamically via import() [ES2020] (advanced) 294
29.15Top-level await in modules [ES2022] (advanced) 297
29.16Polyfills: emulating native web platform features (advanced) 299

30 Objects 301
30.1 Cheat sheet: objects . 303
30.2 What is an object? . 305
30.3 Fixed-layout objects . 306
30.4 Spreading into object literals (...) [ES2018] 309
30.5 Methods and the special variable this . 312
30.6 Optional chaining for property getting and method calls [ES2020] (advanced) 318
30.7 Dictionary objects (advanced) . 322
30.8 Property attributes and property descriptors [ES5] (advanced) 331
30.9 Protecting objects from being changed [ES5] (advanced) 333
30.10Prototype chains . 334
30.11FAQ: objects . 340
30.12Quick reference: Object . 340
30.13Quick reference: Reflect . 348

31 Classes [ES6] 351

9

31.1 Cheat sheet: classes . 352
31.2 The essentials of classes . 355
31.3 The internals of classes . 364
31.4 Prototype members of classes . 370
31.5 Instance members of classes [ES2022] . 374
31.6 Static members of classes . 379
31.7 Subclassing . 388
31.8 The methods and accessors of Object.prototype (advanced) 396
31.9 FAQ: classes . 403

32 Where are the remaining chapters? 405

10

Part I

Background

11

Chapter 1

Before you buy the book

1.1 About the content . 13
1.1.1 What’s in this book? . 13
1.1.2 What is not covered by this book? 13

1.2 Previewing and buying this book . 14
1.2.1 How can I preview the book and its bundled material? 14
1.2.2 How can I buy a digital version of this book? 14
1.2.3 How can I buy the print version of this book? 14

1.3 About the author . 14
1.4 Acknowledgements . 14

1.1 About the content
1.1.1 What’s in this book?
This book makes JavaScript less challenging to learn for newcomers by offering a modern
view that is as consistent as possible.
Highlights:

• Get started quickly by initially focusing on modern features.
• Test-driven exercises available for most chapters.
• Covers all essential features of JavaScript, up to and including ES2022.
• Optional advanced sections let you dig deeper.

No prior knowledge of JavaScript is required, but you should know how to program.

1.1.2 What is not covered by this book?
• Some advanced language features are not explained, but references to appropri-

ate material are provided – for example, to my other JavaScript books at Explor-

13

https://exploringjs.com/
https://exploringjs.com/

14 1 Before you buy the book

ingJS.com, which are free to read online.
• This book deliberately focuses on the language. Browser-only features, etc. are not

described.

1.2 Previewing and buying this book
1.2.1 How can I preview the book and its bundled material?
Go to the homepage of this book:

• All chapters of this book are free to read online.
• Most material has free preview versions (with about 50% of their content) that are

available at the homepage.

1.2.2 How can I buy a digital version of this book?
The homepage of Exploring JavaScript explains how you can buy one of its digital packages.

1.2.3 How can I buy the print version of this book?
An older edition of Exploring JavaScript is called JavaScript for impatient programmers. Its
paper version is available on Amazon.

1.3 About the author
Dr. Axel Rauschmayer specializes in JavaScript andweb development. He has been devel-
opingweb applications since 1995. In 1999, hewas technical manager at a German internet
startup that later expanded internationally. In 2006, he held his first talk on Ajax. In 2010,
he received a PhD in Informatics from the University of Munich.

Since 2011, he has been blogging about web development at 2ality.com and has written
several books on JavaScript. He has held trainings and talks for companies such as eBay,
Bank of America, and O’Reilly Media.

He lives in Munich, Germany.

1.4 Acknowledgements
• Cover image by Fran Caye
• Thanks for answering questions, discussing language topics, etc.:

– Allen Wirfs-Brock
– Benedikt Meurer
– Brian Terlson
– Daniel Ehrenberg
– Jordan Harband
– Maggie Johnson-Pint
– Mathias Bynens
– Myles Borins

https://exploringjs.com/
https://exploringjs.com/
https://exploringjs.com/js/
https://exploringjs.com/js/#buy
http://francaye.com

1.4 Acknowledgements 15

– Rob Palmer
– Šime Vidas
– And many others

• Thanks for reviewing:
– Johannes Weber

16 1 Before you buy the book

Chapter 2

FAQ: book and supplementary
material

2.1 How to read this book . 17
2.1.1 In which order should I read the content in this book? 17
2.1.2 Why are some chapters and sections marked with “(advanced)”? . 18

2.2 I own a digital version . 18
2.2.1 How do I submit feedback and corrections? 18
2.2.2 How do I get updates for the downloads I bought at Payhip? . . . 18
2.2.3 How do I upgrade from a smaller package to a larger one or an older

package to a newer one? . 18
2.3 I own the print version (“JavaScript for impatient programmers”) 18

2.3.1 Can I get a discount for a digital version? 18
2.3.2 How do I submit feedback and corrections? 19

2.4 Notations and conventions . 19
2.4.1 What is a type signature? Why am I sometimes seeing static types

in this book? . 19
2.4.2 What do the notes with icons mean? 19

This chapter answers questions you may have and gives tips for reading this book.

2.1 How to read this book
2.1.1 In which order should I read the content in this book?
This book is three books in one:

• You can use it to get started with JavaScript as quickly as possible:
– Start reading with “Using JavaScript: the big picture” (§8).
– Skip all chapters and sections marked as “advanced”, and all quick references.

17

18 2 FAQ: book and supplementary material

• It gives you a comprehensive look at current JavaScript. In this “mode”, you read
everything and don’t skip advanced content and quick references.

• It serves as a reference. If there is a topic that you are interested in, you can find in-
formation on it via the table of contents or via the index. Due to basic and advanced
content being mixed, everything you need is usually in a single location.

Exercises play an important part in helping you practice and retainwhat you have learned.

2.1.2 Why are some chapters and sections marked with “(advanced)”?
Several chapters and sections are marked with “(advanced)”. The idea is that you can
initially skip them. That is, you can get a quick working knowledge of JavaScript by only
reading the basic (non-advanced) content.

As your knowledge evolves, you can later come back to some or all of the advanced con-
tent.

2.2 I own a digital version
2.2.1 How do I submit feedback and corrections?
The HTML version of this book (online, or ad-free archive in the paid version) has a link
at the end of each chapter that enables you to give feedback.

2.2.2 How do I get updates for the downloads I bought at Payhip?
• The receipt email for the purchase includes a link. You’ll always be able to download

the latest version of the files at that location.

• If you opted into emails while buying, you’ll get an email whenever there is new
content. To opt in later, you must contact Payhip (see bottom of payhip.com).

2.2.3 How do I upgrade from a smaller package to a larger one or an
older package to a newer one?

The book’s homepage explains how to do that.

2.3 I own the print version (“JavaScript for impatient pro-
grammers”)

2.3.1 Can I get a discount for a digital version?
If you bought the print version, you can get a discount for a digital version. The homepage
explains how.

Alas, the reverse is not possible: you cannot get a discount for the print version if you
bought a digital version.

https://exploringjs.com/js/#upgrading
https://exploringjs.com/js/#discounts

2.4 Notations and conventions 19

2.3.2 How do I submit feedback and corrections?
• Before reporting an error, please go to the online version of “Exploring JavaScript”

and check the latest release of this book. The error may already have been corrected
online.

• If the error is still there, you can use the comment link at the end of each chapter to
report it.

• You can also use the comments to give feedback.

2.4 Notations and conventions
2.4.1 What is a type signature? Why am I sometimes seeing static types

in this book?
For example, you may see:

Number.isFinite(num: number): boolean

That is called the type signature of Number.isFinite(). This notation, especially the static
types number of num and boolean of the result, are not real JavaScript. The notation is bor-
rowed from the compile-to-JavaScript language TypeScript (which ismostly just JavaScript
plus static typing).
Why is this notation being used? It helps give you a quick idea of how a function works.
The notation is explained in detail in “Tackling TypeScript”, but is usually relatively intu-
itive.

2.4.2 What do the notes with icons mean?

Reading instructions
Explains how to best read the content.

External content
Points to additional, external, content.

Tip
Gives a tip related to the current content.

Question
Asks and answers a question pertinent to the current content (think FAQ).

https://exploringjs.com/js/
https://exploringjs.com/tackling-ts/ch_typescript-essentials.html

20 2 FAQ: book and supplementary material

Warning
Warns about pitfalls, etc.

Details
Provides additional details, complementing the current content. It is similar to a
footnote.

Exercise
Mentions the path of a test-driven exercise that you can do at that point.

Chapter 3

Why JavaScript?

3.1 The cons of JavaScript . 21
3.2 The pros of JavaScript . 22

3.2.1 Community . 22
3.2.2 Practically useful . 22
3.2.3 Language . 23

3.3 Pro and con of JavaScript: innovation . 23

In this chapter, we examine the pros and cons of JavaScript.

“ECMAScript 6” and “ES6” refer to versions of JavaScript
ECMAScript is the name of the language standard; the number refers to the version
of that standard. For more information, consult “Standardization: JavaScript vs.
ECMAScript” (§5.2).

3.1 The cons of JavaScript
Among programmers, JavaScript isn’t always well liked. One reason is that it has a fair
amount of quirks. Some of them are just unusual ways of doing something. Others are
considered bugs. Either way, learning why JavaScript does something the way it does,
helps with dealing with the quirks and with accepting JavaScript (maybe even liking it).
Hopefully, this book can be of assistance here.

Additionally, many traditional quirks have been eliminated now. For example:

• Traditionally, JavaScript variables weren’t block-scoped. ES6 introduced let and
const, which let you declare block-scoped variables.

21

22 3 Why JavaScript?

• Prior to ES6, implementing object factories and inheritance via function and .pro-

totypewas clumsy. ES6 introduced classes, which provide more convenient syntax
for these mechanisms.

• Traditionally, JavaScript did not have built-in modules. ES6 added them to the lan-
guage.

Lastly, JavaScript’s standard library is limited, but:

• There are plans for adding more functionality.
• Many libraries are easily available via the npm software registry.

3.2 The pros of JavaScript
On the plus side, JavaScript offers many benefits.

3.2.1 Community
JavaScript’s popularity means that it’s well supported and well documented. Whenever
you create something in JavaScript, you can rely on many people being (potentially) in-
terested. And there is a large pool of JavaScript programmers from which you can hire, if
you need to.

No single party controls JavaScript – it is evolved by TC39, a committee comprising many
organizations. The language is evolved via an open process that encourages feedback from
the public.

3.2.2 Practically useful
With JavaScript, you can write apps for many client platforms. These are a few example
technologies:

• Progressive Web Apps can be installed natively on Android and many desktop oper-
ating systems.

• Electron lets you build cross-platform desktop apps.
• React Native lets youwrite apps for iOS andAndroid that have native user interfaces.
• Node.js provides extensive support for writing shell scripts (in addition to being a

platform for web servers).

JavaScript is supported by many server platforms and services – for example:

• Node.js (many of the following services are based on Node.js or support its APIs)
• ZEIT Now
• Microsoft Azure Functions
• AWS Lambda
• Google Cloud Functions

There are many data technologies available for JavaScript: many databases support it and
intermediate layers (such as GraphQL) exist. Additionally, the standard data format JSON
(JavaScript Object Notation) is based on JavaScript and supported by its standard library.

https://github.com/tc39/proposal-built-in-modules
https://www.npmjs.com
https://web.dev/explore/progressive-web-apps
https://electronjs.org
https://reactnative.dev
https://nodejs.org/

3.3 Pro and con of JavaScript: innovation 23

Lastly, many, if not most, tools for JavaScript are written in JavaScript. That includes IDEs,
build tools, and more. As a consequence, you install them the same way you install your
libraries and you can customize them in JavaScript.

3.2.3 Language
• Many libraries are available, via the de-facto standard in the JavaScript universe, the

npm software registry.
• If you are unhappywith “plain” JavaScript, it is relatively easy to addmore features:

– You can compile future andmodern language features to current and past ver-
sions of JavaScript, via Babel.

– You can add static typing, via TypeScript and Flow.
– You can work with ReasonML, which is, roughly, OCaml with JavaScript syn-
tax. It can be compiled to JavaScript or native code.

• The language is flexible: it is dynamic and supports both object-oriented program-
ming and functional programming.

• JavaScript has become suprisingly fast for such a dynamic language.
– Whenever it isn’t fast enough, you can switch to WebAssembly, a universal
virtual machine built into most JavaScript engines. It can run static code at
nearly native speeds.

3.3 Pro and con of JavaScript: innovation
There is much innovation in the JavaScript ecosystem: new approaches to implementing
user interfaces, new ways of optimizing the delivery of software, and more. The upside is
that you will constantly learn new things. The downside is that the constant change can
be exhausting at times. Thankfully, things have somewhat slowed down, recently: all of
ES6 (which was a considerable modernization of the language) is becoming established,
as are certain tools and workflows.

https://www.npmjs.com
https://www.npmjs.com
https://babeljs.io
https://www.typescriptlang.org
https://flow.org

24 3 Why JavaScript?

Chapter 4

The nature of JavaScript

4.1 JavaScript’s influences . 25
4.2 The nature of JavaScript . 25

4.2.1 JavaScript often fails silently . 26
4.3 Tips for getting started with JavaScript . 26

4.1 JavaScript’s influences
When JavaScriptwas created in 1995, itwas influenced by several programming languages:

• JavaScript’s syntax is largely based on Java.
• Self inspired JavaScript’s prototypal inheritance.
• Closures and environments were borrowed from Scheme.
• AWK influenced JavaScript’s functions (including the keyword function).
• JavaScript’s strings, Arrays, and regular expressions take cues from Perl.
• HyperTalk inspired event handling via onclick in web browsers.

With ECMAScript 6, new influences came to JavaScript:

• Generators were borrowed from Python.
• The syntax of arrow functions came from CoffeeScript.
• C++ contributed the keyword const.
• Destructuring was inspired by Lisp’s destructuring bind.
• Template literals came from the E language (where they are called quasi literals).

4.2 The nature of JavaScript
These are a few traits of the language:

• Its syntax is part of the C family of languages (curly braces, etc.).

25

26 4 The nature of JavaScript

• It is a dynamic language: most objects can be changed in various ways at runtime,
objects can be created directly, etc.

• It is a dynamically typed language: variables don’t have fixed static types and you
can assign any value to a given (mutable) variable.

• It has functional programming features: first-class functions, closures, partial appli-
cation via bind(), etc.

• It has object-oriented features: mutable state, objects, inheritance, classes, etc.

• It often fails silently: see the next subsection for details.

• It is deployed as source code. But that source code is often minified (rewritten to
require less storage). And there are plans for a binary source code format.

• JavaScript is part of the web platform – it is the language built into web browsers.
But it is also used elsewhere – for example, in Node.js, for server things, and shell
scripting.

• JavaScript engines often optimize less-efficient languagemechanismsunder the hood.
For example, in principle, JavaScript Arrays are dictionaries. But under the hood,
engines store Arrays contiguously if they have contiguous indices.

4.2.1 JavaScript often fails silently
JavaScript often fails silently. Let’s look at two examples.

First example: If the operands of an operator don’t have the appropriate types, they are
converted as necessary.

> '3' * '5'

15

Second example: If an arithmetic computation fails, you get an error value, not an excep-
tion.

> 1 / 0

Infinity

The reason for the silent failures is historical: JavaScript did not have exceptions until
ECMAScript 3. Since then, its designers have tried to avoid silent failures.

4.3 Tips for getting started with JavaScript
These are a few tips to help you get started with JavaScript:

• Take your time to really get to know this language. The conventional C-style syntax
hides that this is a very unconventional language. Learn especially the quirks and
the rationales behind them. Then you will understand and appreciate the language
better.

– In addition to details, this book also teaches simple rules of thumb to be safe –
for example, “Always use === to determine if two values are equal, never ==.”

https://github.com/tc39/proposal-binary-ast

4.3 Tips for getting started with JavaScript 27

• Language tools make it easier to work with JavaScript. For example:
– You can statically type JavaScript via TypeScript.
– You can check for problems and anti-patterns via linters such as ESLint.
– You can format your code automatically via code formatters such as Prettier.
– For more information on JavaScript tooling, see “Next steps: overview of web
development”.

• Get in contact with the community:
– Social media services such as Mastodon are popular among JavaScript pro-
grammers. As a mode of communication that sits between the spoken and the
written word, it is well suited for exchanging knowledge.

– Many cities have regular free meetups where people come together to learn
topics related to JavaScript.

– JavaScript conferences are another convenientway ofmeeting other JavaScript
programmers.

• Read books and blogs. Much material is free online!

https://www.typescriptlang.org
https://eslint.org
https://prettier.io

28 4 The nature of JavaScript

Chapter 5

History and evolution of
JavaScript

5.1 How JavaScript was created . 29
5.2 Standardization: JavaScript vs. ECMAScript 30
5.3 Timeline of ECMAScript versions . 30
5.4 Evolving JavaScript: TC39 (Ecma Technical Committee 39) 31
5.5 The TC39 process for proposed ECMAScript features 31

5.5.1 Tip: Think in individual features and stages, not ECMAScript versions 31
5.5.2 The details of the TC39 process (advanced) 32

5.6 How to not break the web while changing JavaScript 34
5.7 FAQ: ECMAScript and TC39 . 35

5.7.1 Where can I look up which features were added in a given ECMA-
Script version? . 35

5.7.2 How is [my favorite proposed JavaScript feature] doing? 35
5.7.3 Why does stage 2.7 have such a peculiar number? 36

5.1 How JavaScript was created
JavaScript was created in May 1995 in 10 days, by Brendan Eich. Eich worked at Netscape
and implemented JavaScript for their web browser, Netscape Navigator.
The idea was that major interactive parts of the client-side web were to be implemented
in Java. JavaScript was supposed to be a glue language for those parts and to also make
HTML slightly more interactive. Given its role of assisting Java, JavaScript had to look like
Java. That ruled out existing solutions such as Perl, Python, TCL, and others.
Initially, JavaScript’s name changed several times:

• Its code name wasMocha.

29

30 5 History and evolution of JavaScript

• In the Netscape Navigator 2.0 betas (September 1995), it was called LiveScript.
• In Netscape Navigator 2.0 beta 3 (December 1995), it got its final name, JavaScript.

5.2 Standardization: JavaScript vs. ECMAScript
There are two standards for JavaScript:

• ECMA-262 is hosted by Ecma International. It is the primary standard.
• ISO/IEC 16262 is hosted by the InternationalOrganization for Standardization (ISO)

and the International Electrotechnical Commission (IEC). This is a secondary stan-
dard.

The language described by these standards is called ECMAScript, not JavaScript. A differ-
ent name was chosen because Sun (now Oracle) had a trademark for the latter name. The
“ECMA” in “ECMAScript” comes from the organization that hosts the primary standard.

The original name of that organization was ECMA, an acronym for European Computer
Manufacturers Association. It was later changed to Ecma International (with “Ecma” being a
proper name, not an acronym) because the organization’s activities had expanded beyond
Europe. The initial all-caps acronym explains the spelling of ECMAScript.

Often, JavaScript and ECMAScript mean the same thing. Sometimes the following dis-
tinction is made:

• The term JavaScript refers to the language and its implementations.
• The term ECMAScript refers to the language standard and language versions.

Therefore, ECMAScript 6 is a version of the language (its 6th edition).

5.3 Timeline of ECMAScript versions
This is a brief timeline of ECMAScript versions:

• ECMAScript 1 (June 1997): First version of the standard.
• ECMAScript 2 (June 1998): Small update to keep ECMA-262 in sync with the ISO

standard.
• ECMAScript 3 (December 1999): Adds many core features – “[…] regular expres-

sions, better string handling, new control statements [do-while, switch], try/catch
exception handling, […]”

• ECMAScript 4 (abandoned in July 2008): Would have been amassive upgrade (with
static typing, modules, namespaces, and more), but ended up being too ambitious
and dividing the language’s stewards.

• ECMAScript 5 (December 2009): Brought minor improvements – a few standard
library features and strict mode.

• ECMAScript 5.1 (June 2011): Another small update to keep Ecma and ISO standards
in sync.

• ECMAScript 6 (June 2015): A large update that fulfilled many of the promises of
ECMAScript 4. This version is the first one whose official name – ECMAScript 2015
– is based on the year of publication.

5.4 Evolving JavaScript: TC39 (Ecma Technical Committee 39) 31

• ECMAScript 2016 (June 2016): First yearly release. The shorter release life cycle
resulted in fewer new features compared to the large ES6.

• ECMAScript 2017 (June 2017). Second yearly release.
• Subsequent ECMAScript versions (ES2018, etc.) are always ratified in June.

5.4 Evolving JavaScript: TC39 (EcmaTechnical Committee 39)
TC39 is the committee that evolves JavaScript. Its members are, strictly speaking, com-
panies: Adobe, Apple, Facebook, Google, Microsoft, Mozilla, Opera, Twitter, and others.
That is, companies that are usually competitors are working together on JavaScript.

Every two months, TC39 has meetings that member-appointed delegates and invited ex-
perts attend. The minutes of those meetings are public in a GitHub repository.

Outside of meetings, TC39 also collaborates with various members and groups of the
JavaScript community.

5.5 The TC39 process for proposed ECMAScript features
With ECMAScript 6, two issues with the release process used at that time became obvious:

• If too much time passes between releases then features that are ready early, have to
wait a long time until they can be released. And features that are ready late, risk
being rushed to make the deadline.

• Features were often designed long before they were implemented and used. Design
deficiencies related to implementation and use were therefore discovered too late.

In response to these issues, TC39 instituted the new TC39 process:

• ECMAScript features are designed independently andgo through six stages: a straw-
person stage 0 and five “maturity” stages (1, 2, 2.7, 3, 4).

• Especially the later stages require prototype implementations and real-world test-
ing, leading to feedback loops between designs and implementations.

• ECMAScript versions are released once per year and include all features that have
reached stage 4 prior to a release deadline.

The result: smaller, incremental releases, whose features have already been field-tested.

ES2016was the first ECMAScript version thatwas designed according to the TC39 process.

5.5.1 Tip: Think in individual features and stages, not ECMAScript ver-
sions

Up to and including ES6, it wasmost common to think about JavaScript in terms of ECMA-
Script versions – for example, “Does this browser support ES6 yet?”

Startingwith ES2016, it’s better to think in individual features: once a feature reaches stage
4, we can safely use it (if it’s supported by the JavaScript engines we are targeting). We
don’t have to wait until the next ECMAScript release.

https://github.com/tc39/notes

32 5 History and evolution of JavaScript

5.5.2 The details of the TC39 process (advanced)
ECMAScript features are designed via proposals that go through the so-called TC39 process.
That process comprises six stages:

• Stage 0 means a proposal has yet to enter the actual process. This is where most
proposals start.

• Then the proposal goes through the fivematurity stages 1, 2, 2.7, 3 and 4. If it reaches
stage 4, it is complete and ready for inclusion in the ECMAScript standard.

Artifacts associated with an ECMAScript proposal

The following artifacts are associated with an ECMAScript proposal:

• Proposal document: Describes the proposal to JavaScript programmers, with En-
glish prose and code examples. Usually the readme of a GitHub repository.

• Specification: Written in Ecmarkup, an HTML and Markdown dialect that is sup-
ported by a toolchain. That toolchain checks Ecmarkup and renders it toHTMLwith
features tailored to reading specifications (cross-references, highlighting of variable
occurrences, etc.).

– The HTML can also be printed to a PDF.
– If a proposal makes it to stage 4, its specification is integrated into the full
ECMAScript specification (which is also written in Ecmarkup).

• Tests: Written in JavaScript that check if an implementation conforms to the specifi-
cation.

– If a proposal makes it to stage 4, its tests are integrated into Test262, the official
ECMAScript conformance test suite.

• Implementations: The functionality of the proposal, implemented in engines and
transpilers (such as Babel and TypeScript).

Each stage has entrance criteria regarding the state of the artifacts:

Stage Proposal Specification Tests Implementations
0
1 draft
2 finished draft
2.7 finished
3 finished prototypes
4 2 implementations

Roles of the people that manage a proposal

• Author: A proposal is written by one or more authors.
• Champion: Each proposal has one or more TC39 delegates that guide the proposal

through the TC39 process. This is especially important if an author has no experi-
ence with the process.

https://tc39.es/ecmarkup/
https://github.com/tc39/test262

5.5 The TC39 process for proposed ECMAScript features 33

• Reviewer: Reviewers give feedback for the specification during stage 2 and must
sign off on it before the proposal can reach stage 2.7. They are appointed by TC39
(excluding the authors and champions of the proposal).

• Editor: Someone in charge of managing the ECMAScript specification. The current
editors are listed at the beginning of the ECMAScript specification.

The stages of a proposal
• Stage 0: ideation and exploration

– Not part of the usual advancement process. Any author can create a draft
proposal and assign it stage 0.

• Stage 1: designing a solution
– Entrance criteria:

* Pick champions
* Repository with proposal

– Status:
* Proposal is under consideration.

• Stage 2: refining the solution
– Entrance criteria:

* Proposal is complete.
* Draft of specification.

– Status:
* Proposal is likely (but not guaranteed) to be standardized.

• Stage 2.7: testing and validation
– Entrance criteria:

* Specification is complete and approved by reviewers and editors.
– Status:

* The specification is finished. It’s time to validate it through tests and spec-
compliant prototypes.

* No more changes, aside from issues discovered through validation.
• Stage 3: gaining implementation experience

– Entrance criteria:
* Tests are finished.

– Status:
* The proposal is ready to be implemented.
* No changes except if web incompatibilities are discovered.

• Stage 4: integration into draft specification and eventual inclusion in standard
– Entrance criteria:

* Two implementation that pass the tests
* Significant in-the-field experience with shipping implementations
* Pull request for TC39 repository, approved by editors

– Status:
* Proposed feature is complete:

https://tc39.es/ecma262/

34 5 History and evolution of JavaScript

· Its specification is ready to be included in the ECMAScript specifica-
tion.

· Its tests are ready to be included in the ECMAScript conformance test
suite Test262.

Figure 5.1 illustrates the TC39 process. Sources of this section:

Stage 0: ideation and exploration

Stage 1: designing a solution

Stage 2: refining the solution

Stage 2.7: testing and validation

Stage 3: gaining implementation experience

pick champions, draft proposal

finished proposal, draft specification

finished specification

finished tests, prototype implementations

Stage 4: integration into draft specification

two implementations

Figure 5.1: Each ECMAScript feature proposal goes through stages that are numbered from
0 to 4.

• “The TC39 Process” (official document by TC39)
• The TC39GitHub repository how-we-work, especially the document that explains the

work of a proposal champion.
• The colophon of the ECMAScript specification. A colophon is content at the end of a

book. It usually contains information about the book’s production.

5.6 How to not break the web while changing JavaScript
One idea that occasionally comes up is to clean up JavaScript by removing old features
and quirks. While the appeal of that idea is obvious, it has significant downsides.

Let’s assume we create a new version of JavaScript that is not backward compatible and
fixes all of its flaws. As a result, we’d encounter the following problems:

• JavaScript engines become bloated: they need to support both the old and the new
version. The same is true for tools such as IDEs and build tools.

https://tc39.es/process-document/
https://github.com/tc39/how-we-work
https://github.com/tc39/how-we-work/blob/main/champion.md
https://github.com/tc39/how-we-work/blob/main/champion.md
https://tc39.es/ecma262/#sec-colophon

5.7 FAQ: ECMAScript and TC39 35

• Programmers need to know, and be continually conscious of, the differences be-
tween the versions.

• We can either migrate all of an existing code base to the new version (which can be
a lot of work). Or we can mix versions and refactoring becomes harder because we
can’t move code between versions without changing it.

• We somehow have to specify per piece of code – be it a file or code embedded in a
web page – what version it is written in. Every conceivable solution has pros and
cons. For example, strict mode is a slightly cleaner version of ES5. One of the reasons
why it wasn’t as popular as it should have been: it was a hassle to opt in via a
directive at the beginning of a file or a function.

So what is the solution? This is how JavaScript is evolved:

• New versions are always completely backward compatible (but theremay occasion-
ally be minor, hardly noticeable clean-ups).

• Old features aren’t removed or fixed. Instead, better versions of them are intro-
duced. One example is declaring variables via let – which is an improved version
of var.

• If aspects of the language are changed, it is done inside new syntactic constructs.
That is, we opt in implicitly – for example:

– yield is only a keyword inside generators (which were introduced in ES6).
– All code inside modules and classes (both introduced in ES6) is implicitly in
strict mode.

5.7 FAQ: ECMAScript and TC39
5.7.1 Where can I look up which features were added in a given ECMA-

Script version?
There are several places where you can look up what’s new in each ECMAScript version:

• In this book, there is a chapter that lists what’s new in each ECMAScript version. It
also links to explanations.

• The TC39 repository has a table with finished proposals that states in which ECMA-
Script versions they were (or will be) introduced.

• Section “Introduction” of the ECMAScript language specification lists the new fea-
tures of each ECMAScript version.

• The ECMA-262 repository has a page with releases.

5.7.2 How is [my favorite proposed JavaScript feature] doing?
If you are wondering what stages various proposed features are in, consult the GitHub
repository proposals.

https://github.com/tc39/proposals/blob/main/finished-proposals.md
https://tc39.es/ecma262/#sec-intro
https://github.com/tc39/ecma262/releases
https://github.com/tc39/proposals
https://github.com/tc39/proposals

36 5 History and evolution of JavaScript

5.7.3 Why does stage 2.7 have such a peculiar number?
Stage 2.7 was added in late 2023, after stages 0, 1, 2, 3, 4 had already been in use for years.

• Q: Why not renumber the stages?
– A: Renumbering was not in the cards because it would have made old docu-
ments difficult to read.

• Q: Why not another number such as 2.5?
– The .7 reflects that stage 2.7 is closer to stage 3 than to stage 2.

• Q: How about 3a for the new stage and 3b for the old stage 3?
– A: If you read “stage 3” in an old document, it can be confusing as to whether
this refers to the new stage 3a or the new stage 3b.

Source: TC39 discussion on 2023-11-30

https://github.com/tc39/process-document/pull/37/commits
https://github.com/tc39/notes/blob/main/meetings/2023-11/november-30.md#continuation-of-the-new-stage-discussion

Chapter 6

New JavaScript features

6.1 New in ECMAScript 2024 . 37
6.2 New in ECMAScript 2023 . 39
6.3 New in ECMAScript 2022 . 40
6.4 New in ECMAScript 2021 . 41
6.5 New in ECMAScript 2020 . 42
6.6 New in ECMAScript 2019 . 43
6.7 New in ECMAScript 2018 . 44
6.8 New in ECMAScript 2017 . 45
6.9 New in ECMAScript 2016 . 45
6.10 Source of this chapter . 46

This chapter lists what’s new in recent ECMAScript versions – in reverse chronological or-
der. It ends before ES6 (ES2015): ES2016 was the first truly incremental release of ECMA-
Script – which is why ES6 has too many features to list here. If you want to get a feeling
for earlier releases:

• My book “Exploring ES6” describes what was added in ES6 (ES2015).
• My book “Speaking JavaScript” describes all of the features of ES5 – and is therefore

a useful time capsule.

6.1 New in ECMAScript 2024
• Grouping synchronous iterables:

Map.groupBy() groups the items of an iterable into Map entries whose keys are pro-
vided by a callback:

assert.deepEqual(

Map.groupBy([0, -5, 3, -4, 8, 9], x => Math.sign(x)),

new Map()

37

https://exploringjs.com/es6.html
https://exploringjs.com/es5/

38 6 New JavaScript features

.set(0, [0])

.set(-1, [-5,-4])

.set(1, [3,8,9])

);

There is also Object.groupBy() which produces an object instead of a Map:

assert.deepEqual(

Object.groupBy([0, -5, 3, -4, 8, 9], x => Math.sign(x)),

{

'0': [0],

'-1': [-5,-4],

'1': [3,8,9],

__proto__: null,

}

);

• Promise.withResolvers() provides a new way of creating Promises that we want
to resolve:

const { promise, resolve, reject } = Promise.withResolvers();

• The new regular expression flag /v (.unicodeSets) enables these features:

– Escapes for Unicode string properties (💫😵consists of three code points):

// Previously: Unicode code point property `Emoji` via /u

assert.equal(

/^\p{Emoji}$/u.test('💫😵'), false

);

// New: Unicode string property `RGI_Emoji` via /v

assert.equal(

/^\p{RGI_Emoji}$/v.test('💫😵'), true

);

– String literals via \q{} in character classes:

> /^[\q{💫😵}]$/v.test('💫😵')

true

> /^[\q{abc|def}]$/v.test('abc')

true

– Set operations for character classes:

> /^[\w--[a-g]]$/v.test('a')

false

> /^[\p{Number}--[0-9]]$/v.test('٣')
true

> /^[\p{RGI_Emoji}--\q{💫😵}]$/v.test('💫😵')

false

– Improvedmatchingwith /i if a Unicode property escape is negated via [^···]

• ArrayBuffers get two new features:

6.2 New in ECMAScript 2023 39

– They can be resized in place:

const buf = new ArrayBuffer(2, {maxByteLength: 4});

// `typedArray` starts at offset 2

const typedArray = new Uint8Array(buf, 2);

assert.equal(

typedArray.length, 0

);

buf.resize(4);

assert.equal(

typedArray.length, 2

);

– They get a method .transfer() for transferring them.

• SharedArrayBuffers can be resized, but they can only grow and never shrink. They
are not transferrable and therefore don’t get the method .transfer() that Array-
Buffers got.

• Two new methods help us ensure that strings are well-formed (w.r.t. UTF-16 code
units):

– String method .isWellFormed() checks if a JavaScript string is well-formed and
does not contain any lone surrogates.

– Stringmethod .toWellFormed() returns a copy of the receiver where each lone
surrogate is replaced with the code unit 0xFFFD (which represents the code
point with the same number, whose name is “replacement character”). The
result is therefore well-formed.

• Atomics.waitAsync() lets us wait asynchronously for a change to shared memory.
Its functionality is beyond the scope of this book. See the MDNWeb Docs for more
information.

6.2 New in ECMAScript 2023
• “Change Array by copy”: Arrays and Typed Arrays get new non-destructive meth-

ods that copy receivers before changing them:

– .toReversed() is the non-destructive version of .reverse():

const original = ['a', 'b', 'c'];

const reversed = original.toReversed();

assert.deepEqual(reversed, ['c', 'b', 'a']);

// The original is unchanged

assert.deepEqual(original, ['a', 'b', 'c']);

– .toSorted() is the non-destructive version of .sort():

const original = ['c', 'a', 'b'];

const sorted = original.toSorted();

assert.deepEqual(sorted, ['a', 'b', 'c']);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Atomics/waitAsync

40 6 New JavaScript features

// The original is unchanged

assert.deepEqual(original, ['c', 'a', 'b']);

– .toSpliced() is the non-destructive version of .splice():
const original = ['a', 'b', 'c', 'd'];

const spliced = original.toSpliced(1, 2, 'x');

assert.deepEqual(spliced, ['a', 'x', 'd']);

// The original is unchanged

assert.deepEqual(original, ['a', 'b', 'c', 'd']);

– .with() is the non-destructive version of setting a value with square brackets:
const original = ['a', 'b', 'c'];

const updated = original.with(1, 'x');

assert.deepEqual(updated, ['a', 'x', 'c']);

// The original is unchanged

assert.deepEqual(original, ['a', 'b', 'c']);

• “Array find from last”: Arrays and Typed Arrays get two new methods:
– .findLast() is similar to .find() but starts searching at the end of an Array:

> ['', 'a', 'b', ''].findLast(s => s.length > 0)

'b'

– .findLastIndex() is similar to .findIndex() but starts searching at the end of
an Array:

> ['', 'a', 'b', ''].findLastIndex(s => s.length > 0)

2

• Symbols as WeakMap keys: Before this feature, only objects could be used as keys
in WeakMaps. This feature also lets us use symbols – except for registered symbols
(created via Symbol.for()).

• “Hashbang grammar”: JavaScript now ignores the first line of a file if it starts with
a hash (#) and a bang (!). Some JavaScript runtimes, such as Node.js, have done this
for a long time. Now it is also part of the language proper. This is an example of a
“hashbang” line:

#!/usr/bin/env node

6.3 New in ECMAScript 2022
• New members of classes:

– Properties (public slots) can now be created via:
* Instance public fields
* Static public fields

– Private slots are new and can be created via:
* Private fields (instance private fields and static private fields)
* Private methods and accessors (non-static and static)

– Static initialization blocks

6.4 New in ECMAScript 2021 41

• Private slot checks (“ergonomic brand checks for private fields”): The following
expression checks if obj has a private slot #privateSlot:

#privateSlot in obj

• Top-level await in modules: We can now use await at the top levels of modules and
don’t have to enter async functions or methods anymore.

• error.cause: Error and its subclasses now let us specify which error caused the
current one:

new Error('Something went wrong', {cause: otherError})

• Method .at() of indexable values lets us read an element at a given index (like the
bracket operator []) and supports negative indices (unlike the bracket operator).

> ['a', 'b', 'c'].at(0)

'a'

> ['a', 'b', 'c'].at(-1)

'c'

The following “indexable” types have method .at():

– string

– Array

– All Typed Array classes: Uint8Array etc.

• RegExp match indices: If we add a flag to a regular expression, using it produces
match objects that record the start and end index of each group capture.

• Object.hasOwn(obj, propKey) provides a safe way to check if an object obj has an
own property with the key propKey.

6.4 New in ECMAScript 2021
• String.prototype.replaceAll() lets us replace all matches of a regular expression

or a string (.replace() only replaces the first occurrence of a string):

> 'abbbaab'.replaceAll('b', 'x')

'axxxaax'

• Promise.any() and AggregateError: Promise.any() returns a Promise that is ful-
filled as soon as the first Promise in an iterable of Promises is fulfilled. If there are
only rejections, they are put into an AggregateError which becomes the rejection
value.

We use Promise.any() when we are only interested in the first fulfilled Promise
among several.

• Logical assignment operators:

a ||= b

a &&= b

a ??= b

42 6 New JavaScript features

• Underscores (_) as separators in:

– Number literals: 123_456.789_012
– Bigint literals: 6_000_000_000_000_000_000_000_000n

• WeakRefs: This feature is beyond the scope of this book. Quoting its proposal states:

– [This proposal] encompasses two major new pieces of functionality:
* Creating weak references to objects with the WeakRef class
* Running user-defined finalizers after objects are garbage-collected, with
the FinalizationRegistry class

– Their correct use takes careful thought, and they are best avoided if possible.

• Array.prototype.sort has been stable since ES2019. In ES2021, “[it] wasmademore
precise, reducing the amount of cases that result in an implementation-defined sort
order” [source]. For more information, see the pull request for this improvement.

6.5 New in ECMAScript 2020
• New module features:

– Dynamic imports via import(): The normal import statement is static: We
can only use it at the top levels of modules and its module specifier is a fixed
string. import() changes that. It can be used anywhere (including conditional
statements) and we can compute its argument.

– import.meta contains metadata for the current module. Its first widely sup-
ported property is import.meta.url which contains a string with the URL of
the current module’s file.

– Namespace re-exporting: The following expression imports all exports ofmod-
ule 'mod' in a namespace object ns and exports that object.

export * as ns from 'mod';

• Optional chaining for property accesses and method calls. One example of optional
chaining is:

value?.prop

This expression evaluates to undefined if value is either undefined or null. Other-
wise, it evaluates to value.prop. This feature is especially useful in chains of prop-
erty reads when some of the properties may be missing.

• Nullish coalescing operator (??):

value ?? defaultValue

This expression is defaultValue if value is either undefined or null and value oth-
erwise. This operator lets us use a default value whenever something is missing.

Previously the Logical Or operator (||) was used in this case but it has downsides
here because it returns the default value whenever the left-hand side is falsy (which
isn’t always correct).

https://github.com/tc39/proposal-weakrefs
https://tc39.es/ecma262/#sec-intro
https://github.com/tc39/ecma262/pull/1585

6.6 New in ECMAScript 2019 43

• Bigints – arbitrary-precision integers: Bigints are a new primitive type. It supports
integer numbers that can be arbitrarily large (storage for them grows as necessary).

• String.prototype.matchAll(): This method throws if flag /g isn’t set and returns
an iterable with all match objects for a given string.

• Promise.allSettled() receives an iterable of Promises. It returns a Promise that is
fulfilled once all the input Promises are settled. The fulfillment value is an Array
with one object per input Promise – either one of:

– { status: 'fulfilled', value: «fulfillment value» }

– { status: 'rejected', reason: «rejection value» }

• globalThis provides a way to access the global object that works both on browsers
and server-side platforms such as Node.js and Deno.

• for-inmechanics: This feature is beyond the scope of this book. For more informa-
tion on it, see its proposal.

• Namespace re-exporting:

export * as ns from './internal.mjs';

6.6 New in ECMAScript 2019
• Array method .flatMap() works like .map() but lets the callback return Arrays of

zero or more values instead of single values. The returned Arrays are then concate-
nated and become the result of .flatMap(). Use cases include:

– Filtering and mapping at the same time
– Mapping single input values to multiple output values

• Array method .flat() converts nested Arrays into flat Arrays. Optionally, we can
tell it at which depth of nesting it should stop flattening.

• Object.fromEntries() creates an object from an iterable over entries. Each entry is
a two-element Array with a property key and a property value.

• Stringmethods: .trimStart() and .trimEnd()work like .trim() but removewhite-
space only at the start or only at the end of a string.

• Optional catch binding: We can now omit the parameter of a catch clause if we
don’t use it.

• Symbol.prototype.description is a getter for reading the description of a symbol.
Previously, the description was included in the result of .toString() but couldn’t
be accessed individually.

• .sort() for Arrays and Typed Arrays is now guaranteed to be stable: If elements
are considered equal by sorting, then sorting does not change the order of those
elements (relative to each other).

These ES2019 features are beyond the scope of this book:

• JSON superset: See 2ality blog post.

https://github.com/tc39/proposal-for-in-order
https://2ality.com/2019/01/json-superset.html

44 6 New JavaScript features

• Well-formed JSON.stringify(): See 2ality blog post.
• Function.prototype.toString() revision: See 2ality blog post.

6.7 New in ECMAScript 2018
• Asynchronous iteration is the asynchronous version of synchronous iteration. It is

based on Promises:
– With synchronous iterables, we can immediately access each item. With asyn-
chronous iterables, we have to await before we can access an item.

– With synchronous iterables, we use for-of loops. With asynchronous iter-
ables, we use for-await-of loops.

• Spreading into object literals: By using spreading (...) inside an object literal, we
can copy the properties of another object into the current one. One use case is to
create a shallow copy of an object obj:

const shallowCopy = {...obj};

• Rest properties (destructuring): When object-destructuring a value, we can now use
rest syntax (...) to get all previously unmentioned properties in an object.

const {a, ...remaining} = {a: 1, b: 2, c: 3};

assert.deepEqual(remaining, {b: 2, c: 3});

• Promise.prototype.finally() is related to the finally clause of a try-catch-finally
statement – similarly to how the Promisemethod .then() is related to the try clause
and .catch() is related to the catch clause.
On other words: The callback of .finally() is executed regardless of whether a
Promise is fulfilled or rejected.

• New Regular expression features:
– RegExp named capture groups: In addition to accessing groups by number, we
can now name them and access them by name:

const matchObj = '---756---'.match(/(?<digits>[0-9]+)/)

assert.equal(matchObj.groups.digits, '756');

– RegExp lookbehind assertions complement lookahead assertions:

* Positive lookbehind: (?<=X) matches if the current location is preceded
by 'X'.

* Negative lookbehind: (?<!X) matches if the current location is not pre-
ceded by '(?<!X)'.

– s (dotAll) flag for regular expressions. If this flag is active, the dot matches
line terminators (by default, it doesn’t).

– RegExp Unicode property escapes give us more power when matching sets of
Unicode code points – for example:

> /^\p{Lowercase_Letter}+$/u.test('aüπ')

true

https://2ality.com/2019/01/well-formed-stringify.html
https://2ality.com/2016/08/function-prototype-tostring.html

6.8 New in ECMAScript 2017 45

> /^\p{White_Space}+$/u.test('\n \t')

true

> /^\p{Script=Greek}+$/u.test('ΩΔΨ')

true

• Template literal revision allows text with backslashes in tagged templates that is
illegal in string literals – for example:

windowsPath`C:\uuu\xxx\111`

latex`\unicode`

6.8 New in ECMAScript 2017
• Async functions (async/await) let us use synchronous-looking syntax to write asyn-

chronous code.

• Object.values() returns an Array with the values of all enumerable string-keyed
properties of a given object.

• Object.entries() returns anArraywith the key-value pairs of all enumerable string-
keyed properties of a given object. Each pair is encoded as a two-element Array.

• String padding: The string methods .padStart() and .padEnd() insert padding text
until the receivers are long enough:

> '7'.padStart(3, '0')

'007'

> 'yes'.padEnd(6, '!')

'yes!!!'

• Trailing commas in function parameter lists and calls: Trailing commas have been
allowed in Arrays literals since ES3 and in Object literals since ES5. They are now
also allowed in function calls and method calls.

• Object.getOwnPropertyDescriptors() lets us define properties via an object with
property descriptors:

• The feature “Shared memory and atomics” is beyond the scope of this book. For
more information on it, see:

– The documentation on SharedArrayBuffer and Atomics on MDNWeb Docs
– The ECMAScript proposal “Shared memory and atomics”

6.9 New in ECMAScript 2016
• Array.prototype.includes() checks if an Array contains a given value.

• Exponentiation operator (**):

> 4 ** 2

16

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Atomics
https://github.com/tc39/proposal-ecmascript-sharedmem

46 6 New JavaScript features

6.10 Source of this chapter
ECMAScript feature lists were taken from the TC39 page on finished proposals.

https://github.com/tc39/proposals/blob/main/finished-proposals.md

Chapter 7

FAQ: JavaScript

7.1 What are good references for JavaScript? 47
7.2 How do I find out what JavaScript features are supported where? 47
7.3 Where can I look up what features are planned for JavaScript? 48
7.4 Why does JavaScript fail silently so often? 48
7.5 Why can’t we clean up JavaScript, by removing quirks and outdated features? 48
7.6 How can I quickly try out a piece of JavaScript code? 48

7.1 What are good references for JavaScript?
Please see “JavaScript references” (§8.3).

7.2 Howdo I findoutwhat JavaScript features are supported
where?

This book usually mentions if a feature is part of ECMAScript 5 (as required by older
browsers) or a newer version. Formore detailed information (including pre-ES5 versions),
there are several good compatibility tables available online:

• Mozilla’s MDNweb docs have tables for each feature that describe relevant ECMA-
Script versions and browser support.

• “Can I use…” documents what features (including JavaScript language features) are
supported by web browsers.

• ECMAScript compatibility tables for various engines
• Node.js compatibility tables

47

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://caniuse.com/
https://compat-table.github.io/compat-table/es6/
https://node.green

48 7 FAQ: JavaScript

7.3 Where can I lookupwhat features are planned for JavaScript?
Please see the following sources:

• “The TC39 process for proposed ECMAScript features” (§5.5)
• “FAQ: ECMAScript and TC39” (§5.7)

7.4 Why does JavaScript fail silently so often?
JavaScript often fails silently. Let’s look at two examples.
First example: If the operands of an operator don’t have the appropriate types, they are
converted as necessary.

> '3' * '5'

15

Second example: If an arithmetic computation fails, you get an error value, not an excep-
tion.

> 1 / 0

Infinity

The reason for the silent failures is historical: JavaScript did not have exceptions until
ECMAScript 3. Since then, its designers have tried to avoid silent failures.

7.5 Why can’t we clean up JavaScript, by removing quirks
and outdated features?

This question is answered in “How to not break the webwhile changing JavaScript” (§5.6).

7.6 How can I quickly try out a piece of JavaScript code?
“Trying out JavaScript code” (§10.1) explains how to do that.

Part II

First steps

49

Chapter 8

Using JavaScript: the big picture

8.1 What are you learning in this book? . 51
8.2 The structure of browsers and Node.js . 51
8.3 JavaScript references . 52
8.4 Further reading . 52

In this chapter, I’d like to paint the big picture: what are you learning in this book, and
how does it fit into the overall landscape of web development?

8.1 What are you learning in this book?
This book teaches the JavaScript language. It focuses on just the language, but offers oc-
casional glimpses at two platforms where JavaScript can be used:

• Web browser
• Node.js

Node.js is important for web development in three ways:

• You can use it to write server-side software in JavaScript.
• You can also use it to write software for the command line (think Unix shell, Win-

dows PowerShell, etc.). Many JavaScript-related tools are based on (and executed
via) Node.js.

• Node’s software registry, npm, has become the dominant way of installing tools
(such as compilers and build tools) and libraries – even for client-side development.

8.2 The structure of browsers and Node.js
The structures of the two JavaScript platforms web browser and Node.js are similar (figure
8.1):

51

52 8 Using JavaScript: the big picture

JavaScript engine Platform core

JS standard
library Platform API

Figure 8.1: The structure of the two JavaScript platformsweb browser andNode.js. The APIs
“standard library” and “platform API” are hosted on top of a foundational layer with a
JavaScript engine and a platform-specific “core”.

• The foundational layer consists of the JavaScript engine and platform-specific “core”
functionality.

• Two APIs are hosted on top of this foundation:
– The JavaScript standard library is part of JavaScript proper and runs on top of
the engine.

– The platformAPI are also available from JavaScript – it provides access to plat-
form-specific functionality. For example:
* In browsers, you need to use the platform-specific API if you want to do
anything related to the user interface: react to mouse clicks, play sounds,
etc.

* In Node.js, the platform-specific API lets you read and write files, down-
load data via HTTP, etc.

8.3 JavaScript references
If you have a question about JavaScript, I can recommend the following online resources:

• MDN Web Docs: cover various web technologies such as CSS, HTML, JavaScript,
and more. An excellent reference.

• Node.js Docs: document the Node.js API.
• ExploringJS.com: My other books cover various aspects of web development:

– “Deep JavaScript: Theory and techniques” describes JavaScript at a level of
detail that is beyond the scope of “Exploring JavaScript”.

– “Tackling TypeScript: Upgrading from JavaScript”
– “Shell scripting with Node.js”

8.4 Further reading
• “Next steps: overview of web development” provides a more comprehensive look

at web development.

https://developer.mozilla.org/en-US/
https://nodejs.org/docs/latest/api/
https://exploringjs.com
https://exploringjs.com/deep-js/
https://exploringjs.com/tackling-ts/
https://exploringjs.com/nodejs-shell-scripting/

Chapter 9

Syntax

9.1 An overview of JavaScript’s syntax . 54
9.1.1 Basic constructs . 54
9.1.2 Modules . 58
9.1.3 Classes . 58
9.1.4 Exception handling . 59
9.1.5 Legal variable and property names 59
9.1.6 Casing styles . 60
9.1.7 Capitalization of names . 60
9.1.8 More naming conventions . 60
9.1.9 Where to put semicolons? . 61

9.2 (Advanced) . 61
9.3 Hashbang lines (Unix shell scripts) . 61
9.4 Identifiers . 62

9.4.1 Valid identifiers (variable names, etc.) 62
9.4.2 Reserved words . 62

9.5 Statement vs. expression . 62
9.5.1 Statements . 63
9.5.2 Expressions . 63
9.5.3 What is allowed where? . 63

9.6 Ambiguous syntax . 64
9.6.1 Same syntax: function declaration and function expression 64
9.6.2 Same syntax: object literal and block 64
9.6.3 Disambiguation . 65

9.7 Semicolons . 65
9.7.1 Rule of thumb for semicolons . 65
9.7.2 Semicolons: control statements . 66

9.8 Automatic semicolon insertion (ASI) . 66
9.8.1 ASI triggered unexpectedly . 67
9.8.2 ASI unexpectedly not triggered . 67

9.9 Semicolons: best practices . 68

53

54 9 Syntax

9.10 Strict mode vs. sloppy mode . 68
9.10.1 Switching on strict mode . 68
9.10.2 Improvements in strict mode . 69

9.1 An overview of JavaScript’s syntax
This is a very first look at JavaScript’s syntax. Don’t worry if some things don’tmake sense,
yet. They will all be explained in more detail later in this book.

This overview is not exhaustive, either. It focuses on the essentials.

9.1.1 Basic constructs
Comments

// single-line comment

/*

Comment with

multiple lines

*/

Primitive (atomic) values

Booleans:

true

false

Numbers:

1.141

-123

The basic number type is used for both floating point numbers (doubles) and integers.

Bigints:

17n

-49n

The basic number type can only properly represent integers within a range of 53 bits plus
sign. Bigints can grow arbitrarily large in size.

Strings:

'abc'

"abc"

`String with interpolated values: ${256} and ${true}`

JavaScript has no extra type for characters. It uses strings to represent them.

9.1 An overview of JavaScript’s syntax 55

Assertions

An assertion describes what the result of a computation is expected to look like and throws
an exception if those expectations aren’t correct. For example, the following assertion
states that the result of the computation 7 plus 1 must be 8:

assert.equal(7 + 1, 8);

assert.equal() is a method call (the object is assert, the method is .equal()) with two
arguments: the actual result and the expected result. It is part of a Node.js assertion API
that is explained later in this book.

There is also assert.deepEqual() that compares objects deeply.

Logging to the console

Logging to the console of a browser or Node.js:

// Printing a value to standard out (another method call)

console.log('Hello!');

// Printing error information to standard error

console.error('Something went wrong!');

Operators

// Operators for booleans

assert.equal(true && false, false); // And

assert.equal(true || false, true); // Or

// Operators for numbers

assert.equal(3 + 4, 7);

assert.equal(5 - 1, 4);

assert.equal(3 * 4, 12);

assert.equal(10 / 4, 2.5);

// Operators for bigints

assert.equal(3n + 4n, 7n);

assert.equal(5n - 1n, 4n);

assert.equal(3n * 4n, 12n);

assert.equal(10n / 4n, 2n);

// Operators for strings

assert.equal('a' + 'b', 'ab');

assert.equal('I see ' + 3 + ' monkeys', 'I see 3 monkeys');

// Comparison operators

assert.equal(3 < 4, true);

assert.equal(3 <= 4, true);

assert.equal('abc' === 'abc', true);

assert.equal('abc' !== 'def', true);

56 9 Syntax

JavaScript also has a == comparison operator. I recommend to avoid it – why is explained
in “Recommendation: always use strict equality” (§15.4.3).

Declaring variables

const creates immutable variable bindings: Each variable must be initialized immediately
and we can’t assign a different value later. However, the value itself may be mutable and
we may be able to change its contents. In other words: const does not make values im-
mutable.

// Declaring and initializing x (immutable binding):

const x = 8;

// Would cause a TypeError:

// x = 9;

let creates mutable variable bindings:

// Declaring y (mutable binding):

let y;

// We can assign a different value to y:

y = 3 * 5;

// Declaring and initializing z:

let z = 3 * 5;

Ordinary function declarations

// add1() has the parameters a and b

function add1(a, b) {

return a + b;

}

// Calling function add1()

assert.equal(add1(5, 2), 7);

Arrow function expressions

Arrow function expressions are used especially as arguments of function calls andmethod
calls:

const add2 = (a, b) => { return a + b };

// Calling function add2()

assert.equal(add2(5, 2), 7);

// Equivalent to add2:

const add3 = (a, b) => a + b;

The previous code contains the following two arrow functions (the terms expression and
statement are explained later in this chapter):

9.1 An overview of JavaScript’s syntax 57

// An arrow function whose body is a code block

(a, b) => { return a + b }

// An arrow function whose body is an expression

(a, b) => a + b

Plain objects

// Creating a plain object via an object literal

const obj = {

first: 'Jane', // property

last: 'Doe', // property

getFullName() { // property (method)

return this.first + ' ' + this.last;

},

};

// Getting a property value

assert.equal(obj.first, 'Jane');

// Setting a property value

obj.first = 'Janey';

// Calling the method

assert.equal(obj.getFullName(), 'Janey Doe');

Arrays

// Creating an Array via an Array literal

const arr = ['a', 'b', 'c'];

assert.equal(arr.length, 3);

// Getting an Array element

assert.equal(arr[1], 'b');

// Setting an Array element

arr[1] = 'β';

// Adding an element to an Array:

arr.push('d');

assert.deepEqual(

arr, ['a', 'β', 'c', 'd']);

Control flow statements

Conditional statement:

if (x < 0) {

x = -x;

}

58 9 Syntax

for-of loop:

const arr = ['a', 'b'];

for (const element of arr) {

console.log(element);

}

Output:

a

b

9.1.2 Modules
Each module is a single file. Consider, for example, the following two files with modules
in them:

file-tools.mjs

main.mjs

The module in file-tools.mjs exports its function isTextFilePath():

export function isTextFilePath(filePath) {

return filePath.endsWith('.txt');

}

Themodule in main.mjs imports thewholemodule path and the function isTextFilePath():

// Import whole module as namespace object `path`

import * as path from 'node:path';

// Import a single export of module file-tools.mjs

import {isTextFilePath} from './file-tools.mjs';

9.1.3 Classes
class Person {

constructor(name) {

this.name = name;

}

describe() {

return `Person named ${this.name}`;

}

static logNames(persons) {

for (const person of persons) {

console.log(person.name);

}

}

}

class Employee extends Person {

constructor(name, title) {

super(name);

9.1 An overview of JavaScript’s syntax 59

this.title = title;

}

describe() {

return super.describe() +

` (${this.title})`;

}

}

const jane = new Employee('Jane', 'CTO');

assert.equal(

jane.describe(),

'Person named Jane (CTO)');

9.1.4 Exception handling
function throwsException() {

throw new Error('Problem!');

}

function catchesException() {

try {

throwsException();

} catch (err) {

assert.ok(err instanceof Error);

assert.equal(err.message, 'Problem!');

}

}

Note:
• try-finally and try-catch-finally are also supported.
• We can throw any value, but features such as stack traces are only supported by

Error and its subclasses.

9.1.5 Legal variable and property names
The grammatical category of variable names and property names is called identifier.
Identifiers are allowed to have the following characters:

• Unicode letters: A–Z, a–z (etc.)
• $, _
• Unicode digits: 0–9 (etc.)

– Variable names can’t start with a digit
Some words have special meaning in JavaScript and are called reserved. Examples include:
if, true, const.
Reserved words can’t be used as variable names:

const if = 123;

// SyntaxError: Unexpected token if

60 9 Syntax

But they are allowed as names of properties:

> const obj = { if: 123 };

> obj.if

123

9.1.6 Casing styles
Common casing styles for concatenating words are:

• Camel case: threeConcatenatedWords
• Underscore case (also called snake case): three_concatenated_words
• Dash case (also called kebab case): three-concatenated-words

9.1.7 Capitalization of names
In general, JavaScript uses camel case, except for constants.

Lowercase:

• Functions, variables: myFunction

• Methods: obj.myMethod

• CSS:

– CSS names: my-utility-class (dash case)
– Corresponding JavaScript names: myUtilityClass

• Module file names are usually dash-cased:

import * as theSpecialLibrary from './the-special-library.mjs';

Uppercase:

• Classes: MyClass

All-caps:

• Constants (as shared between modules etc.): MY_CONSTANT (underscore case)

9.1.8 More naming conventions
The following naming conventions are popular in JavaScript.

If the name of a parameter starts with an underscore (or is an underscore) it means that
this parameter is not used – for example:

arr.map((_x, i) => i)

If the name of a property of an object starts with an underscore then that property is con-
sidered private:

class ValueWrapper {

constructor(value) {

this._value = value;

9.2 (Advanced) 61

}

}

9.1.9 Where to put semicolons?
At the end of a statement:

const x = 123;

func();

But not if that statement ends with a curly brace:

while (false) {

// ···

} // no semicolon

function func() {

// ···

} // no semicolon

However, adding a semicolon after such a statement is not a syntax error – it is interpreted
as an empty statement:

// Function declaration followed by empty statement:

function func() {

// ···

};

9.2 (Advanced)
All remaining sections of this chapter are advanced.

9.3 Hashbang lines (Unix shell scripts)
In aUnix shell script, we can add a first line that startswith #! to tell Unixwhich executable
should be used to run the script. These two characters have several names, including hash-
bang, sharp-exclamation, sha-bang (“sha” as in “sharp”) and shebang. Otherwise, hashbang
lines are treated as comments by most shell scripting languages and JavaScript does so,
too. This is a common hashbang line for Node.js:

#!/usr/bin/env node

If we want to pass arguments to node, we have to use the env option -S (to be safe, some
Unixes don’t need it):

#!/usr/bin/env -S node --enable-source-maps --no-warnings=ExperimentalWarning

62 9 Syntax

9.4 Identifiers
9.4.1 Valid identifiers (variable names, etc.)
First character:

• Unicode letter (including accented characters such as é and ü and characters from
non-latin alphabets, such as α)

• $

• _

Subsequent characters:
• Legal first characters
• Unicode digits (including Eastern Arabic numerals)
• Some other Unicode marks and punctuations

Examples:
const ε = 0.0001;

const строка = '';

let _tmp = 0;

const $foo2 = true;

9.4.2 Reserved words
Reserved words can’t be variable names, but they can be property names.
All JavaScript keywords are reserved words:

await break case catch class const continue debugger default delete do

else export extends finally for function if import in instanceof let new

return static super switch this throw try typeof var void while with yield

The following tokens are also keywords, but currently not used in the language:
enum implements package protected interface private public

The following literals are reserved words:
true false null

Technically, these words are not reserved, but you should avoid them, too, because they
effectively are keywords:

Infinity NaN undefined async

You shouldn’t use the names of global variables (String, Math, etc.) for your own variables
and parameters, either.

9.5 Statement vs. expression
In this section, we explore how JavaScript distinguishes two kinds of syntactic constructs:
statements and expressions. Afterward, we’ll see that that can cause problems because the
same syntax can mean different things, depending on where it is used.

9.5 Statement vs. expression 63

We pretend there are only statements and expressions
For the sake of simplicity, we pretend that there are only statements and expres-
sions in JavaScript.

9.5.1 Statements
A statement is a piece of code that can be executed and performs some kind of action. For
example, if is a statement:

let myStr;

if (myBool) {

myStr = 'Yes';

} else {

myStr = 'No';

}

One more example of a statement: a function declaration.

function twice(x) {

return x + x;

}

9.5.2 Expressions
An expression is a piece of code that can be evaluated to produce a value. For example, the
code between the parentheses is an expression:

let myStr = (myBool ? 'Yes' : 'No');

The operator _?_:_ used between the parentheses is called the ternary operator. It is the
expression version of the if statement.

Let’s look at more examples of expressions. We enter expressions and the REPL evaluates
them for us:

> 'ab' + 'cd'

'abcd'

> Number('123')

123

> true || false

true

9.5.3 What is allowed where?
The current location within JavaScript source code determines which kind of syntactic
constructs you are allowed to use:

• The body of a function must be a sequence of statements:

64 9 Syntax

function max(x, y) {

if (x > y) {

return x;

} else {

return y;

}

}

• The arguments of a function call or a method call must be expressions:

console.log('ab' + 'cd', Number('123'));

However, expressions can be used as statements. Then they are called expression state-
ments. The opposite is not true: when the context requires an expression, you can’t use a
statement.

The following code demonstrates that any expression bar() can be either expression or
statement – it depends on the context:

function f() {

console.log(bar()); // bar() is expression

bar(); // bar(); is (expression) statement

}

9.6 Ambiguous syntax
JavaScript has several programming constructs that are syntactically ambiguous: the same
syntax is interpreted differently, depending on whether it is used in statement context or
in expression context. This section explores the phenomenon and the pitfalls it causes.

9.6.1 Same syntax: function declaration and function expression
A function declaration is a statement:

function id(x) {

return x;

}

A function expression is an expression (right-hand side of =):

const id = function me(x) {

return x;

};

9.6.2 Same syntax: object literal and block
In the following code, {} is an object literal: an expression that creates an empty object.

const obj = {};

This is an empty code block (a statement):

9.7 Semicolons 65

{

}

9.6.3 Disambiguation
The ambiguities are only a problem in statement context: If the JavaScript parser encoun-
ters ambiguous syntax, it doesn’t know if it’s a plain statement or an expression statement.
For example:

• If a statement starts with function: Is it a function declaration or a function expres-
sion?

• If a statement starts with {: Is it an object literal or a code block?

To resolve the ambiguity, statements starting with function or { are never interpreted as
expressions. If you want an expression statement to start with either one of these tokens,
you must wrap it in parentheses:

(function (x) { console.log(x) })('abc');

Output:

abc

In this code:

1. We first create a function via a function expression:

function (x) { console.log(x) }

2. Then we invoke that function: ('abc')

The code fragment shown in (1) is only interpreted as an expression because we wrap it
in parentheses. If we didn’t, we would get a syntax error because then JavaScript expects
a function declaration and complains about the missing function name. Additionally, you
can’t put a function call immediately after a function declaration.

Later in this book, we’ll see more examples of pitfalls caused by syntactic ambiguity:

• Assigning via object destructuring
• Returning an object literal from an arrow function

9.7 Semicolons
9.7.1 Rule of thumb for semicolons
Each statement is terminated by a semicolon:

const x = 3;

someFunction('abc');

i++;

except statements ending with blocks:

function foo() {

// ···

66 9 Syntax

}

if (y > 0) {

// ···

}

The following case is slightly tricky:

const func = () => {}; // semicolon!

The whole const declaration (a statement) ends with a semicolon, but inside it, there is
an arrow function expression. That is, it’s not the statement per se that ends with a curly
brace; it’s the embedded arrow function expression. That’s why there is a semicolon at the
end.

9.7.2 Semicolons: control statements
The body of a control statement is itself a statement. For example, this is the syntax of the
while loop:

while (condition)

statement

The body can be a single statement:

while (a > 0) a--;

But blocks are also statements and therefore legal bodies of control statements:

while (a > 0) {

a--;

}

If you want a loop to have an empty body, your first option is an empty statement (which
is just a semicolon):

while (processNextItem() > 0);

Your second option is an empty block:

while (processNextItem() > 0) {}

9.8 Automatic semicolon insertion (ASI)
While I recommend to always write semicolons, most of them are optional in JavaScript.
The mechanism that makes this possible is called automatic semicolon insertion (ASI). In a
way, it corrects syntax errors.

ASI works as follows. Parsing of a statement continues until there is either:

• A semicolon
• A line terminator followed by an illegal token

In otherwords, ASI can be seen as inserting semicolons at line breaks. The next subsections
cover the pitfalls of ASI.

9.8 Automatic semicolon insertion (ASI) 67

9.8.1 ASI triggered unexpectedly
The good news about ASI is that – if you don’t rely on it and always write semicolons –
there is only one pitfall that you need to be aware of. It is that JavaScript forbids line breaks
after some tokens. If you do insert a line break, a semicolon will be inserted, too.
The token where this is most practically relevant is return. Consider, for example, the
following code:

return

{

first: 'jane'

};

This code is parsed as:
return;

{

first: 'jane';

}

;

That is:
• Return statement without operand: return;
• Start of code block: {
• Expression statement 'jane'; with label first:
• End of code block: }
• Empty statement: ;

Why does JavaScript do this? It protects against accidentally returning a value in a line
after a return.

9.8.2 ASI unexpectedly not triggered
In some cases, ASI is not triggered when you think it should be. That makes life more
complicated for people who don’t like semicolons because they need to be aware of those
cases. The following are three examples. There are more.
Example 1: Unintended function call.

a = b + c

(d + e).print()

Parsed as:
a = b + c(d + e).print();

Example 2: Unintended division.
a = b

/hi/g.exec(c).map(d)

Parsed as:
a = b / hi / g.exec(c).map(d);

68 9 Syntax

Example 3: Unintended property access.
someFunction()

['ul', 'ol'].map(x => x + x)

Executed as:
const propKey = ('ul','ol'); // comma operator

assert.equal(propKey, 'ol');

someFunction()[propKey].map(x => x + x);

9.9 Semicolons: best practices
I recommend that you always write semicolons:

• I like the visual structure it gives code – you clearly see where a statement ends.
• There are less rules to keep in mind.
• The majority of JavaScript programmers use semicolons.

However, there are alsomany peoplewhodon’t like the added visual clutter of semicolons.
If you are one of them: Code without them is legal. I recommend that you use tools to help
you avoid mistakes. The following are two examples:

• The automatic code formatter Prettier can be configured to not use semicolons. It
then automatically fixes problems. For example, if it encounters a line that starts
with a square bracket, it prefixes that line with a semicolon.

• The static checker ESLint has a rule that you tell your preferred style (always semi-
colons or as few semicolons as possible) and that warns you about critical issues.

9.10 Strict mode vs. sloppy mode
Startingwith ECMAScript 5, JavaScript has twomodes inwhich JavaScript can be executed:

• Normal “sloppy” mode is the default in scripts (code fragments that are a precursor
to modules and supported by browsers).

• Strict mode is the default in modules and classes, and can be switched on in scripts
(how is explained later). In this mode, several pitfalls of normal mode are removed
and more exceptions are thrown.

You’ll rarely encounter sloppy mode in modern JavaScript code, which is almost always
located in modules. In this book, I assume that strict mode is always switched on.

9.10.1 Switching on strict mode
In script files and CommonJS modules, you switch on strict mode for a complete file, by
putting the following code in the first line:

'use strict';

The neat thing about this “directive” is that ECMAScript versions before 5 simply ignore
it: it’s an expression statement that does nothing.

https://prettier.io
https://eslint.org
https://eslint.org/docs/rules/semi

9.10 Strict mode vs. sloppy mode 69

You can also switch on strict mode for just a single function:
function functionInStrictMode() {

'use strict';

}

9.10.2 Improvements in strict mode
Let’s look at three things that strict mode does better than sloppy mode. Just in this one
section, all code fragments are executed in sloppy mode.

Sloppy mode pitfall: changing an undeclared variable creates a global variable
In non-strict mode, changing an undeclared variable creates a global variable.

function sloppyFunc() {

undeclaredVar1 = 123;

}

sloppyFunc();

// Created global variable `undeclaredVar1`:

assert.equal(undeclaredVar1, 123);

Strict mode does it better and throws a ReferenceError. That makes it easier to detect
typos.

function strictFunc() {

'use strict';

undeclaredVar2 = 123;

}

assert.throws(

() => strictFunc(),

{

name: 'ReferenceError',

message: 'undeclaredVar2 is not defined',

});

The assert.throws() states that its first argument, a function, throws a ReferenceError

when it is called.

Function declarations are block-scoped in strict mode, function-scoped in sloppy mode
In strictmode, a variable created via a function declaration only existswithin the innermost
enclosing block:

function strictFunc() {

'use strict';

{

function foo() { return 123 }

}

return foo(); // ReferenceError

}

assert.throws(

70 9 Syntax

() => strictFunc(),

{

name: 'ReferenceError',

message: 'foo is not defined',

});

In sloppy mode, function declarations are function-scoped:
function sloppyFunc() {

{

function foo() { return 123 }

}

return foo(); // works

}

assert.equal(sloppyFunc(), 123);

Sloppy mode doesn’t throw exceptions when changing immutable data
In strict mode, you get an exception if you try to change immutable data:

function strictFunc() {

'use strict';

true.prop = 1; // TypeError

}

assert.throws(

() => strictFunc(),

{

name: 'TypeError',

message: "Cannot create property 'prop' on boolean 'true'",

});

In sloppy mode, the assignment fails silently:
function sloppyFunc() {

true.prop = 1; // fails silently

return true.prop;

}

assert.equal(sloppyFunc(), undefined);

Further reading: sloppy mode
For more information on how sloppy mode differs from strict mode, see MDN.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

Chapter 10

Consoles: interactive JavaScript
command lines

10.1 Trying out JavaScript code . 71
10.1.1 Browser consoles . 71
10.1.2 The Node.js REPL . 72
10.1.3 Other options . 73

10.2 The console.* API: printing data and more 73
10.2.1 Printing values: console.log() (stdout) 73
10.2.2 Printing error information: console.error() (stderr) 74
10.2.3 Printing nested objects via JSON.stringify() 75

10.1 Trying out JavaScript code
You have many options for quickly running pieces of JavaScript code. The following sub-
sections describe a few of them.

10.1.1 Browser consoles
Web browsers have so-called consoles: interactive command lines to which you can print
text via console.log() and where you can run pieces of code. How to open the console
differs from browser to browser. Figure 10.1 shows the console of Google Chrome.
To find out how to open the console in yourweb browser, you can do aweb search for “con-
sole «name-of-your-browser»”. These are pages for a few commonly used web browsers:

• Apple Safari
• Google Chrome
• Microsoft Edge
• Mozilla Firefox

71

https://developer.apple.com/safari/tools/
https://developer.chrome.com/docs/devtools/console/
https://learn.microsoft.com/en-us/microsoft-edge/devtools-guide-chromium/console/
https://firefox-source-docs.mozilla.org/devtools-user/web_console/

72 10 Consoles: interactive JavaScript command lines

Figure 10.1: The console of the web browser “Google Chrome” is open (in the bottom half
of window) while visiting a web page.

10.1.2 The Node.js REPL

REPL stands for read-eval-print loop and basically means command line. To use it, you must
first start Node.js from an operating system command line, via the command node. Then
an interaction with it looks as depicted in figure 10.2: The text after > is input from the
user; everything else is output from Node.js.

Figure 10.2: Starting and using the Node.js REPL (interactive command line).

10.2 The console.* API: printing data and more 73

Reading: REPL interactions
I occasionally demonstrate JavaScript via REPL interactions. Then I also use
greater-than symbols (>) to mark input – for example:

> 3 + 5

8

10.1.3 Other options
Other options include:

• There are many web apps that let you experiment with JavaScript in web browsers
– for example, Babel’s REPL.

• There are also native apps and IDE plugins for running JavaScript.

Consoles often run in non-strict mode
In modern JavaScript, most code (e.g., modules) is executed in strict mode. How-
ever, consoles often run in non-strict mode. Therefore, you may occasionally get
slightly different results when using a console to execute code from this book.

10.2 The console.* API: printing data and more
In browsers, the console is something you can bring up that is normally hidden. For
Node.js, the console is the terminal that Node.js is currently running in.

The full console.*API is documented onMDNweb docs and on the Node.js website. It is
not part of the JavaScript language standard, but much functionality is supported by both
browsers and Node.js.

In this chapter, we only look at the following two methods for printing data (“printing”
means displaying in the console):

• console.log()

• console.error()

10.2.1 Printing values: console.log() (stdout)
There are two variants of this operation:

console.log(...values: Array<any>): void

console.log(pattern: string, ...values: Array<any>): void

Printing multiple values

The first variant prints (text representations of) values on the console:

https://babeljs.io/repl
https://developer.mozilla.org/en-US/docs/Web/API/console
https://nodejs.org/api/console.html

74 10 Consoles: interactive JavaScript command lines

console.log('abc', 123, true);

Output:

abc 123 true

At the end, console.log() always prints a newline. Therefore, if you call it with zero
arguments, it just prints a newline.

Printing a string with substitutions

The second variant performs string substitution:

console.log('Test: %s %j', 123, 'abc');

Output:

Test: 123 "abc"

These are some of the directives you can use for substitutions:

• %s converts the corresponding value to a string and inserts it.

console.log('%s %s', 'abc', 123);

Output:

abc 123

• %o inserts a string representation of an object.

console.log('%o', {foo: 123, bar: 'abc'});

Output:

{ foo: 123, bar: 'abc' }

• %j converts a value to a JSON string and inserts it.

console.log('%j', {foo: 123, bar: 'abc'});

Output:

{"foo":123,"bar":"abc"}

• %% inserts a single %.

console.log('%s%%', 99);

Output:

99%

10.2.2 Printing error information: console.error() (stderr)
console.error() works the same as console.log(), but what it logs is considered error
information. For Node.js, that means that the output goes to stderr instead of stdout on
Unix.

10.2 The console.* API: printing data and more 75

10.2.3 Printing nested objects via JSON.stringify()
JSON.stringify() is occasionally useful for printing nested objects:

console.log(JSON.stringify({first: 'Jane', last: 'Doe'}, null, 2));

Output:
{

"first": "Jane",

"last": "Doe"

}

76 10 Consoles: interactive JavaScript command lines

Chapter 11

Assertion API

11.1 Assertions in software development . 77
11.2 How assertions are used in this book . 77

11.2.1 Documenting results in code examples via assertions 78
11.2.2 Implementing test-driven exercises via assertions 78

11.3 Normal comparison vs. deep comparison 78
11.4 Quick reference: module assert . 79

11.4.1 Normal equality: assert.equal() 79
11.4.2 Deep equality: assert.deepEqual() 79
11.4.3 Expecting exceptions: assert.throws() 79
11.4.4 Always fail: assert.fail() . 80

11.1 Assertions in software development
In software development, assertions state facts about values or pieces of code that must
be true. If they aren’t, an exception is thrown. Node.js supports assertions via its built-in
module assert – for example:

import assert from 'node:assert/strict';

assert.equal(3 + 5, 8);

This assertion states that the expected result of 3 plus 5 is 8. The import statement uses the
recommended strict version of assert.

11.2 How assertions are used in this book
In this book, assertions are used in two ways: to document results in code examples and
to implement test-driven exercises.

77

https://nodejs.org/api/assert.html#assert_strict_mode
https://nodejs.org/api/assert.html#assert_strict_mode

78 11 Assertion API

11.2.1 Documenting results in code examples via assertions
In code examples, assertions express expected results. Take, for example, the following
function:

function id(x) {

return x;

}

id() returns its parameter. We can show it in action via an assertion:

assert.equal(id('abc'), 'abc');

In the examples, I usually omit the statement for importing assert.

The motivation behind using assertions is:

• We can specify precisely what is expected.
• Code examples can be tested automatically, which ensures that they really work.

11.2.2 Implementing test-driven exercises via assertions
The exercises for this book are test-driven, via the test framework Mocha. Checks inside
the tests are made via methods of assert.

The following is an example of such a test:

// For the exercise, we must implement the function hello().

// The test checks if we have done it properly.

test('First exercise', () => {

assert.equal(hello('world'), 'Hello world!');

assert.equal(hello('Jane'), 'Hello Jane!');

assert.equal(hello('John'), 'Hello John!');

assert.equal(hello(''), 'Hello !');

});

For more information, see “Getting started with exercises” (§12).

11.3 Normal comparison vs. deep comparison
The strict equal() uses === to compare values. Therefore, an object is only equal to itself –
even if another object has the same content (because === does not compare the contents of
objects, only their identities):

assert.notEqual({foo: 1}, {foo: 1});

deepEqual() is a better choice for comparing objects:

assert.deepEqual({foo: 1}, {foo: 1});

This method works for Arrays, too:

assert.notEqual(['a', 'b', 'c'], ['a', 'b', 'c']);

assert.deepEqual(['a', 'b', 'c'], ['a', 'b', 'c']);

11.4 Quick reference: module assert 79

11.4 Quick reference: module assert
For the full documentation, see the Node.js docs.

11.4.1 Normal equality: assert.equal()
• assert.equal(actual, expected, message?)

actual === expectedmust be true. If not, an AssertionError is thrown.

assert.equal(3+3, 6);

• assert.notEqual(actual, expected, message?)

actual !== expectedmust be true. If not, an AssertionError is thrown.

assert.notEqual(3+3, 22);

The optional last parameter message can be used to explainwhat is asserted. If the assertion
fails, the message is used to set up the AssertionError that is thrown.

let e;

try {

const x = 3;

assert.equal(x, 8, 'x must be equal to 8')

} catch (err) {

assert.equal(

String(err),

'AssertionError [ERR_ASSERTION]: x must be equal to 8');

}

11.4.2 Deep equality: assert.deepEqual()
• assert.deepEqual(actual, expected, message?)

actualmust be deeply equal to expected. If not, an AssertionError is thrown.

assert.deepEqual([1,2,3], [1,2,3]);

assert.deepEqual([], []);

// To .equal(), an object is only equal to itself:

assert.notEqual([], []);

• assert.notDeepEqual(actual, expected, message?)

actualmust not be deeply equal to expected. If it is, an AssertionError is thrown.

assert.notDeepEqual([1,2,3], [1,2]);

11.4.3 Expecting exceptions: assert.throws()
If we want to (or expect to) receive an exception, we need assert.throws(): This function
calls its first parameter, the function callback, and only succeeds if it throws an exception.
Additional parameters can be used to specify what that exception must look like.

https://nodejs.org/api/assert.html

80 11 Assertion API

• assert.throws(callback, message?): void

assert.throws(

() => {

null.prop;

}

);

• assert.throws(callback, errorClass, message?): void

assert.throws(

() => {

null.prop;

},

TypeError

);

• assert.throws(callback, errorRegExp, message?): void

assert.throws(

() => {

null.prop;

},

/^TypeError: Cannot read properties of null \(reading 'prop'\)$/

);

• assert.throws(callback, errorObject, message?): void

assert.throws(

() => {

null.prop;

},

{

name: 'TypeError',

message: "Cannot read properties of null (reading 'prop')",

}

);

11.4.4 Always fail: assert.fail()
• assert.fail(messageOrError?)

By default, it throws an AssertionErrorwhen it is called. That is occasionally useful
for unit testing. messageOrError can be:

– A string. That enables to override the default error message.
– An instance of Error (or a subclass). That enables us to throw a different value.

try {

functionThatShouldThrow();

assert.fail();

} catch (_) {

11.4 Quick reference: module assert 81

// Success

}

82 11 Assertion API

Chapter 12

Getting started with exercises

12.1 Exercises . 83
12.1.1 Installing the exercises . 83
12.1.2 Running exercises . 83

12.2 Unit tests in JavaScript . 84
12.2.1 A typical test . 84
12.2.2 Asynchronous tests in Mocha . 85

Throughoutmost chapters, there are boxes that point to exercises. These are a paid feature,
but a comprehensive preview is available. This chapter explains how to get started with
them.

12.1 Exercises
12.1.1 Installing the exercises
To install the exercises:

• Download and unzip exploring-js-code.zip

• Follow the instructions in README.txt

12.1.2 Running exercises
• Exercises are referred to by path in this book.

– For example: exercises/exercises/first_module_test.mjs
• Within each file:

– The first line contains the command for running the exercise.
– The following lines describe what you have to do.

83

84 12 Getting started with exercises

12.2 Unit tests in JavaScript
All exercises in this book are tests that are run via the test framework Mocha. This section
gives a brief introduction.

12.2.1 A typical test
Typical test code is split into two parts:

• Part 1: the code to be tested.
• Part 2: the tests for the code.

Take, for example, the following two files:

• id.mjs (code to be tested)
• id_test.mjs (tests)

Part 1: the code

The code itself resides in id.mjs:

export function id(x) {

return x;

}

The key thing here is: everything we want to test must be exported. Otherwise, the test
code can’t access it.

Part 2: the tests

Don’t worry about the exact details of tests
You don’t need to worry about the exact details of tests: They are always imple-
mented for you. Therefore, you only need to read them, but not write them.

The tests for the code reside in id_test.mjs:

// npm t demos/exercises/id_test.mjs

suite('id_test.mjs');

import assert from 'node:assert/strict'; // (A)

import {id} from './id.mjs'; // (B)

test('My test', () => { // (C)

assert.equal(id('abc'), 'abc'); // (D)

});

The core of this test file is line D – an assertion: assert.equal() specifies that the expected
result of id('abc') is 'abc'.

As for the other lines:

https://mochajs.org

12.2 Unit tests in JavaScript 85

• The comment at the very beginning shows the shell command for running the test.
• Line A: We import the Node.js assertion library (in strict assertion mode).
• Line B: We import the function to test.
• Line C: We define a test. This is done by calling the function test():

– First parameter: the name of the test.
– Second parameter: the test code, which is provided via an arrow function. The
parameter t gives us access to AVA’s testing API (assertions, etc.).

To run the test, we execute the following in a command line:
npm t demos/exercises/id_test.mjs

The t is an abbreviation for test. That is, the long version of this command is:
npm test demos/exercises/id_test.mjs

Exercise: Your first exercise
The following exercise gives you a first taste of what exercises are like:

• exercises/exercises/first_module_test.mjs

12.2.2 Asynchronous tests in Mocha

Reading
You may want to postpone reading this section until you get to the chapters on
asynchronous programming.

Writing tests for asynchronous code requires extra work: The test receives its results later
and has to signal to Mocha that it isn’t finished yet when it returns. The following subsec-
tions examine three ways of doing so.

Asynchronicity via callbacks

If the callback we pass to test() has a parameter (e.g., done), Mocha switches to callback-
based asynchronicity. When we are done with our asynchronous work, we have to call
done:

test('divideCallback', (done) => {

divideCallback(8, 4, (error, result) => {

if (error) {

done(error);

} else {

assert.strictEqual(result, 2);

done();

}

});

});

86 12 Getting started with exercises

This is what divideCallback() looks like:
function divideCallback(x, y, callback) {

if (y === 0) {

callback(new Error('Division by zero'));

} else {

callback(null, x / y);

}

}

Asynchronicity via Promises
If a test returns a Promise, Mocha switches to Promise-based asynchronicity. A test is
considered successful if the Promise is fulfilled and failed if the Promise is rejected or if a
settlement takes longer than a timeout.

test('dividePromise 1', () => {

return dividePromise(8, 4)

.then(result => {

assert.strictEqual(result, 2);

});

});

dividePromise() is implemented as follows:
function dividePromise(x, y) {

return new Promise((resolve, reject) => {

if (y === 0) {

reject(new Error('Division by zero'));

} else {

resolve(x / y);

}

});

}

Async functions as test “bodies”
Async functions always return Promises. Therefore, an async function is a convenient way
of implementing an asynchronous test. The following code is equivalent to the previous
example.

test('dividePromise 2', async () => {

const result = await dividePromise(8, 4);

assert.strictEqual(result, 2);

// No explicit return necessary!

});

We don’t need to explicitly return anything: The implicitly returned undefined is used to
fulfill the Promise returned by this async function. And if the test code throws an excep-
tion, then the async function takes care of rejecting the returned Promise.

Part III

Variables and values

87

Chapter 13

Variables and assignment

13.1 let . 90
13.2 const . 90

13.2.1 const and immutability . 90
13.2.2 const and loops . 91

13.3 Deciding between const and let . 91
13.4 The scope of a variable . 91

13.4.1 Shadowing variables . 92
13.5 (Advanced) . 93
13.6 Terminology: static vs. dynamic . 93

13.6.1 Static phenomenon: scopes of variables 93
13.6.2 Dynamic phenomenon: function calls 93

13.7 Global variables and the global object . 93
13.7.1 globalThis [ES2020] . 94

13.8 Declarations: scope and activation . 96
13.8.1 const and let: temporal dead zone 96
13.8.2 Function declarations and early activation 98
13.8.3 Class declarations are not activated early 99
13.8.4 var: hoisting (partial early activation) 99

13.9 Closures . 100
13.9.1 Bound variables vs. free variables 100
13.9.2 What is a closure? . 100
13.9.3 Example: A factory for incrementors 101
13.9.4 Use cases for closures . 102

These are JavaScript’s main ways of declaring variables:

• let declares mutable variables.
• const declares constants (immutable variables).

89

90 13 Variables and assignment

Before ES6, there was also var. But it has several quirks, so it’s best to avoid it in modern
JavaScript. You can read more about it in Speaking JavaScript.

13.1 let

Variables declared via let are mutable:
let i;

i = 0;

i = i + 1;

assert.equal(i, 1);

You can also declare and assign at the same time:
let i = 0;

13.2 const

Variables declared via const are immutable. You must always initialize immediately:
const i = 0; // must initialize

assert.throws(

() => { i = i + 1 },

{

name: 'TypeError',

message: 'Assignment to constant variable.',

}

);

13.2.1 const and immutability
In JavaScript, const only means that the binding (the association between variable name
and variable value) is immutable. The value itselfmay bemutable, like obj in the following
example.

const obj = { prop: 0 };

// Allowed: changing properties of `obj`

obj.prop = obj.prop + 1;

assert.equal(obj.prop, 1);

// Not allowed: assigning to `obj`

assert.throws(

() => { obj = {} },

{

name: 'TypeError',

message: 'Assignment to constant variable.',

}

);

http://exploringjs.com/es5/ch16.html

13.3 Deciding between const and let 91

13.2.2 const and loops
You can use const with for-of loops, where a fresh binding is created for each iteration:

const arr = ['hello', 'world'];

for (const elem of arr) {

console.log(elem);

}

Output:
hello

world

In plain for loops, you must use let, however:
const arr = ['hello', 'world'];

for (let i=0; i<arr.length; i++) {

const elem = arr[i];

console.log(elem);

}

13.3 Deciding between const and let

I recommend the following rules to decide between const and let:
• const indicates an immutable binding and that a variable never changes its value.

Prefer it.
• let indicates that the value of a variable changes. Use it only when you can’t use

const.

Exercise: const
exercises/variables-assignment/const_exrc.mjs

13.4 The scope of a variable
The scope of a variable is the region of a program where it can be accessed. Consider the
following code.

{ // // Scope A. Accessible: x

const x = 0;

assert.equal(x, 0);

{ // Scope B. Accessible: x, y

const y = 1;

assert.equal(x, 0);

assert.equal(y, 1);

{ // Scope C. Accessible: x, y, z

const z = 2;

assert.equal(x, 0);

92 13 Variables and assignment

assert.equal(y, 1);

assert.equal(z, 2);

}

}

}

// Outside. Not accessible: x, y, z

assert.throws(

() => console.log(x),

{

name: 'ReferenceError',

message: 'x is not defined',

}

);

• Scope A is the (direct) scope of x.
• Scopes B and C are inner scopes of scope A.
• Scope A is an outer scope of scope B and scope C.

Each variable is accessible in its direct scope and all scopes nested within that scope.
The variables declared via const and let are called block-scoped because their scopes are
always the innermost surrounding blocks.

13.4.1 Shadowing variables
You can’t declare the same variable twice at the same level:

assert.throws(

() => {

eval('let x = 1; let x = 2;');

},

{

name: 'SyntaxError',

message: "Identifier 'x' has already been declared",

});

Why eval()?
eval() delays parsing (and therefore the SyntaxError), until the callback of as-
sert.throws() is executed. If we didn’t use it, we’d already get an error when this
code is parsed and assert.throws() wouldn’t even be executed.

You can, however, nest a block and use the same variable name x that you used outside
the block:

const x = 1;

assert.equal(x, 1);

{

const x = 2;

assert.equal(x, 2);

13.5 (Advanced) 93

}

assert.equal(x, 1);

Inside the block, the inner x is the only accessible variable with that name. The inner x is
said to shadow the outer x. Once you leave the block, you can access the old value again.

13.5 (Advanced)
All remaining sections are advanced.

13.6 Terminology: static vs. dynamic
These two adjectives describe phenomena in programming languages:

• Staticmeans that something is related to source code and can be determinedwithout
executing code.

• Dynamicmeans at runtime.
Let’s look at examples for these two terms.

13.6.1 Static phenomenon: scopes of variables
Variable scopes are a static phenomenon. Consider the following code:

function f() {

const x = 3;

// ···

}

x is statically (or lexically) scoped. That is, its scope is fixed and doesn’t change at runtime.
Variable scopes form a static tree (via static nesting).

13.6.2 Dynamic phenomenon: function calls
Function calls are a dynamic phenomenon. Consider the following code:

function g(x) {}

function h(y) {

if (Math.random()) g(y); // (A)

}

Whether or not the function call in line A happens, can only be decided at runtime.
Function calls form a dynamic tree (via dynamic calls).

13.7 Global variables and the global object
JavaScript’s variable scopes are nested. They form a tree:

• The outermost scope is the root of the tree.
• The scopes directly contained in that scope are the children of the root.

94 13 Variables and assignment

• And so on.

The root is also called the global scope. In web browsers, the only location where one is
directly in that scope is at the top level of a script. The variables of the global scope are
called global variables and accessible everywhere. There are two kinds of global variables:

• Global declarative variables are normal variables.

– They can only be created while at the top level of a script, via const, let, and
class declarations.

• Global object variables are stored in properties of the so-called global object.

– They are created in the top level of a script, via var and function declarations.
– The global object can be accessed via the global variable globalThis. It can be
used to create, read, and delete global object variables.

– Other than that, global object variables work like normal variables.

The followingHTML fragment demonstrates globalThis and the two kinds of global vari-
ables.

<script>

const declarativeVariable = 'd';

var objectVariable = 'o';

</script>

<script>

// All scripts share the same top-level scope:

console.log(declarativeVariable); // 'd'

console.log(objectVariable); // 'o'

// Not all declarations create properties of the global object:

console.log(globalThis.declarativeVariable); // undefined

console.log(globalThis.objectVariable); // 'o'

</script>

Each ECMAScript module has its own scope. Therefore, variables that exist at the top level
of a module are not global. Figure 13.1 illustrates how the various scopes are related.

13.7.1 globalThis [ES2020]

The global variable globalThis is the new standard way of accessing the global object. It
got its name from the fact that it has the same value as this in global scope (script scope,
not module scope).

globalThis does not always directly point to the global object
For example, in browsers, there is an indirection. That indirection is normally not
noticable, but it is there and can be observed.

https://exploringjs.com/deep-js/ch_global-scope.html#window-proxy

13.7 Global variables and the global object 95

Object variables

Global scope

Module scope 1 ···

Declarative variables

Top level of scripts:

var, function declarations

const, let, class declarations

Module scope 2

Figure 13.1: The global scope is JavaScript’s outermost scope. It has two kinds of vari-
ables: object variables (managed via the global object) and normal declarative variables. Each
ECMAScript module has its own scope which is contained in the global scope.

Alternatives to globalThis

The following global variables let us access the global object on some platforms:
• window: The classic way of referring to the global object. But it doesn’t work in

Node.js and in Web Workers.
• self: Available in Web Workers and browsers in general. But it isn’t supported by

Node.js.
• global: Only available in Node.js.

Main browser thread Web Workers Node.js
globalThis ✔ ✔ ✔
window ✔
self ✔ ✔
global ✔

Use cases for globalThis

The global object is now considered a mistake that JavaScript can’t get rid of, due to back-
ward compatibility. It affects performance negatively and is generally confusing.
ECMAScript 6 introduced several features that make it easier to avoid the global object –
for example:

• const, let, and class declarations don’t create global object properties when used in
global scope.

• Each ECMAScript module has its own local scope.
It is usually better to access global object variables via variables and not via properties of
globalThis. The former has always worked the same on all JavaScript platforms.

96 13 Variables and assignment

Tutorials on the web occasionally access global variables globVar via window.globVar. But
the prefix “window.” is not necessary and I recommend to omit it:

window.encodeURIComponent(str); // no

encodeURIComponent(str); // yes

Therefore, there are relatively few use cases for globalThis – for example:
• Polyfills that add new features to old JavaScript engines.
• Feature detection, to find out what features a JavaScript engine supports.

13.8 Declarations: scope and activation
These are two key aspects of declarations:

• Scope: Where can a declared entity be seen? This is a static trait.
• Activation: When can I access an entity? This is a dynamic trait. Some entities can be

accessed as soon aswe enter their scopes. For others, we have towait until execution
reaches their declarations.

Table 13.1 summarizes how various declarations handle these aspects. import is described

Scope Activation Duplicates Global prop.
const Block decl. (TDZ) ✘ ✘
let Block decl. (TDZ) ✘ ✘
function Block (*) start ✔ ✔
class Block decl. (TDZ) ✘ ✘
import Module same as export ✘ ✘
var Function start, partially ✔ ✔

Table 13.1: Aspects of declarations:
• “Duplicates” describes if a declaration can be used twice with the same name (per

scope).
• “Global prop.” describes if a declaration adds a property to the global object, when

it is executed in the global scope of a script.
• TDZmeans temporal dead zone (which is explained later).

(*) Function declarations are normally block-scoped, but function-scoped in sloppy mode.

in “ECMAScript modules” (§29.5). The following sections describe the other constructs in
more detail.

13.8.1 const and let: temporal dead zone
For JavaScript, TC39 needed to decide what happens if you access a constant in its direct
scope, before its declaration:

{

console.log(x); // What happens here?

const x;

}

13.8 Declarations: scope and activation 97

Some possible approaches are:

1. The name is resolved in the scope surrounding the current scope.
2. You get undefined.
3. There is an error.

Approach 1 was rejected because there is no precedent in the language for this approach.
It would therefore not be intuitive to JavaScript programmers.

Approach 2 was rejected because then x wouldn’t be a constant – it would have different
values before and after its declaration.

let uses the same approach 3 as const, so that both work similarly and it’s easy to switch
between them.

The time between entering the scope of a variable and executing its declaration is called
the temporal dead zone (TDZ) of that variable:

• During this time, the variable is considered to be uninitialized (as if that were a
special value it has).

• If you access an uninitialized variable, you get a ReferenceError.
• Once you reach a variable declaration, the variable is set to either the value of the

initializer (specified via the assignment symbol) or undefined – if there is no initial-
izer.

The following code illustrates the temporal dead zone:

if (true) { // entering scope of `tmp`, TDZ starts

// `tmp` is uninitialized:

assert.throws(() => (tmp = 'abc'), ReferenceError);

assert.throws(() => console.log(tmp), ReferenceError);

let tmp; // TDZ ends

assert.equal(tmp, undefined);

}

The next example shows that the temporal dead zone is truly temporal (related to time):

if (true) { // entering scope of `myVar`, TDZ starts

const func = () => {

console.log(myVar); // executed later

};

// We are within the TDZ:

// Accessing `myVar` causes `ReferenceError`

let myVar = 3; // TDZ ends

func(); // OK, called outside TDZ

}

Even though func() is located before the declaration of myVar and uses that variable, we
can call func(). But we have to wait until the temporal dead zone of myVar is over.

98 13 Variables and assignment

13.8.2 Function declarations and early activation

More information on functions
In this section, we are using functions – before we had a chance to learn them
properly. Hopefully, everything still makes sense. Whenever it doesn’t, please see
“Callable values” (§27).

A function declaration is always executed when entering its scope, regardless of where it
is located within that scope. That enables you to call a function foo() before it is declared:

assert.equal(foo(), 123); // OK

function foo() { return 123; }

The early activation of foo()means that the previous code is equivalent to:
function foo() { return 123; }

assert.equal(foo(), 123);

If you declare a function via const or let, then it is not activated early. In the following
example, you can only use bar() after its declaration.

assert.throws(

() => bar(), // before declaration

ReferenceError);

const bar = () => { return 123; };

assert.equal(bar(), 123); // after declaration

Calling ahead without early activation
Even if a function g() is not activated early, it can be called by a preceding function f()

(in the same scope) if we adhere to the following rule: f()must be invoked after the dec-
laration of g().

const f = () => g();

const g = () => 123;

// We call f() after g() was declared:

assert.equal(f(), 123);

The functions of a module are usually invoked after its complete body is executed. There-
fore, in modules, you rarely need to worry about the order of functions.
Lastly, note how early activation automatically keeps the aforementioned rule: when en-
tering a scope, all function declarations are executed first, before any calls are made.

A pitfall of early activation
If you rely on early activation to call a function before its declaration, then you need to be
careful that it doesn’t access data that isn’t activated early.

13.8 Declarations: scope and activation 99

funcDecl();

const MY_STR = 'abc';

function funcDecl() {

assert.throws(

() => MY_STR,

ReferenceError);

}

The problem goes away if you make the call to funcDecl() after the declaration of MY_STR.

The pros and cons of early activation

We have seen that early activation has a pitfall and that you can get most of its benefits
without using it. Therefore, it is better to avoid early activation. But I don’t feel strongly
about this and, as mentioned before, often use function declarations because I like their
syntax.

13.8.3 Class declarations are not activated early
Even though they are similar to function declarations in some ways, class declarations are
not activated early:

assert.throws(

() => new MyClass(),

ReferenceError);

class MyClass {}

assert.equal(new MyClass() instanceof MyClass, true);

Why is that? Consider the following class declaration:

class MyClass extends Object {}

The operand of extends is an expression. Therefore, you can do things like this:

const identity = x => x;

class MyClass extends identity(Object) {}

Evaluating such an expression must be done at the location where it is mentioned. Any-
thing else would be confusing. That explains why class declarations are not activated
early.

13.8.4 var: hoisting (partial early activation)
var is an older way of declaring variables that predates const and let (which are preferred
now). Consider the following var declaration.

var x = 123;

This declaration has two parts:

100 13 Variables and assignment

• Declaration var x: The scope of a var-declared variable is the innermost surround-
ing function and not the innermost surrounding block, as for most other declara-
tions. Such a variable is already active at the beginning of its scope and initialized
with undefined.

• Assignment x = 123: The assignment is always executed in place.

The following code demonstrates the effects of var:

function f() {

// Partial early activation:

assert.equal(x, undefined);

if (true) {

var x = 123;

// The assignment is executed in place:

assert.equal(x, 123);

}

// Scope is function, not block:

assert.equal(x, 123);

}

13.9 Closures
Before we can explore closures, we need to learn about bound variables and free variables.

13.9.1 Bound variables vs. free variables
Per scope, there is a set of variables that are mentioned. Among these variables we distin-
guish:

• Bound variables are declared within the scope. They are parameters and local vari-
ables.

• Free variables are declared externally. They are also called non-local variables.

Consider the following code:

function func(x) {

const y = 123;

console.log(z);

}

In the body of func(), x and y are bound variables. z is a free variable.

13.9.2 What is a closure?
What is a closure then?

A closure is a function plus a connection to the variables that exist at its “birth
place”.

What is the point of keeping this connection? It provides the values for the free variables
of the function – for example:

13.9 Closures 101

function funcFactory(value) {

return () => {

return value;

};

}

const func = funcFactory('abc');

assert.equal(func(), 'abc'); // (A)

funcFactory returns a closure that is assigned to func. Because func has the connection to
the variables at its birth place, it can still access the free variable valuewhen it is called in
line A (even though it “escaped” its scope).

All functions in JavaScript are closures
Static scoping is supported via closures in JavaScript. Therefore, every function is
a closure.

13.9.3 Example: A factory for incrementors
The following function returns incrementors (a name that I just made up). An incrementor
is a function that internally stores a number. When it is called, it updates that number by
adding the argument to it and returns the new value.

function createInc(startValue) {

return (step) => { // (A)

startValue += step;

return startValue;

};

}

const inc = createInc(5);

assert.equal(inc(2), 7);

We can see that the function created in line A keeps its internal number in the free variable
startValue. This time, we don’t just read from the birth scope, we use it to store data that
we change and that persists across function calls.

We can create more storage slots in the birth scope, via local variables:

function createInc(startValue) {

let index = -1;

return (step) => {

startValue += step;

index++;

return [index, startValue];

};

}

const inc = createInc(5);

assert.deepEqual(inc(2), [0, 7]);

102 13 Variables and assignment

assert.deepEqual(inc(2), [1, 9]);

assert.deepEqual(inc(2), [2, 11]);

13.9.4 Use cases for closures
What are closures good for?

• For starters, they are simply an implementation of static scoping. As such, they
provide context data for callbacks.

• They can also be used by functions to store state that persists across function calls.
createInc() is an example of that.

• And they can provide private data for objects (produced via literals or classes). The
details of how that works are explained in Exploring ES6.

https://exploringjs.com/es6/ch_classes.html#_private-data-via-constructor-environments

Chapter 14

Values

14.1 What’s a type? . 103
14.2 JavaScript’s type hierarchy . 104
14.3 The types of the language specification 104
14.4 Primitive values vs. objects . 105

14.4.1 Primitive values (short: primitives) 105
14.4.2 Objects . 106

14.5 The operators typeof and instanceof: what’s the type of a value? 108
14.5.1 typeof . 108
14.5.2 instanceof . 109

14.6 Classes and constructor functions . 109
14.6.1 Constructor functions associated with primitive types 110

14.7 Converting between types . 110
14.7.1 Explicit conversion between types 111
14.7.2 Coercion (automatic conversion between types) 111

In this chapter, we’ll examine what kinds of values JavaScript has.

Supporting tool: ===
In this chapter, we’ll occasionally use the strict equality operator. a === b evalu-
ates to true if a and b are equal. What exactly that means is explained in “Strict
equality (=== and !==)” (§15.4.2).

14.1 What’s a type?
For this chapter, I consider types to be sets of values – for example, the type boolean is the
set { false, true }.

103

104 14 Values

14.2 JavaScript’s type hierarchy

(any)

(object)(primitive value)

boolean

number

string

symbol

undefined

null

Object

Array

Map

Set

Function

RegExp

Date

Figure 14.1: A partial hierarchy of JavaScript’s types. Missing are the classes for errors, the
classes associated with primitive types, and more. The diagram hints at the fact that not
all objects are instances of Object.

Figure 14.1 shows JavaScript’s type hierarchy. What do we learn from that diagram?

• JavaScript distinguishes two kinds of values: primitive values and objects. We’ll see
soon what the difference is.

• The diagram differentiates objects and instances of class Object. Each instance of
Object is also an object, but not vice versa. However, virtually all objects that you’ll
encounter in practice are instances of Object – for example, objects created via object
literals. More details on this topic are explained in “Not all objects are instances of
Object” (§31.7.3).

14.3 The types of the language specification
The ECMAScript specification only knows a total of eight types. The names of those types
are (I’m using TypeScript’s names, not the spec’s names):

• undefined with the only element undefined
• null with the only element null
• boolean with the elements false and true

• number the type of all numbers (e.g., -123, 3.141)
• bigint the type of all big integers (e.g., -123n)
• string the type of all strings (e.g., 'abc')
• symbol the type of all symbols (e.g., Symbol('My Symbol'))
• object the type of all objects (different from Object, the type of all instances of class

Object and its subclasses)

14.4 Primitive values vs. objects 105

14.4 Primitive values vs. objects
The specification makes an important distinction between values:

• Primitive values are the elements of the types undefined, null, boolean, number, big-
int, string, symbol.

• All other values are objects.

In contrast to Java (that inspired JavaScript here), primitive values are not second-class
citizens. The difference between them and objects is more subtle. In a nutshell:

• Primitive values: are atomic building blocks of data in JavaScript.
– They are passed by value: when primitive values are assigned to variables or
passed to functions, their contents are copied.

– They are compared by value: when comparing two primitive values, their con-
tents are compared.

• Objects: are compound pieces of data.
– They are passed by identity (my term): when objects are assigned to variables
or passed to functions, their identities (think pointers) are copied.

– They are compared by identity (my term): when comparing two objects, their
identities are compared.

Other than that, primitive values and objects are quite similar: they both have properties
(key-value entries) and can be used in the same locations.

Next, we’ll look at primitive values and objects in more depth.

14.4.1 Primitive values (short: primitives)
Primitives are immutable

You can’t change, add, or remove properties of primitives:

const str = 'abc';

assert.equal(str.length, 3);

assert.throws(

() => { str.length = 1 },

/^TypeError: Cannot assign to read only property 'length'/

);

Primitives are passed by value

Primitives are passed by value: variables (including parameters) store the contents of the
primitives. When assigning a primitive value to a variable or passing it as an argument to
a function, its content is copied.

const x = 123;

const y = x;

// `y` is the same as any other number 123

assert.equal(y, 123);

106 14 Values

Observing the difference between passing by value and passing by ref-
erence
Due to primitive values being immutable and compared by value (see next sub-
section), there is no way to observe the difference between passing by value and
passing by identity (as used for objects in JavaScript).

Primitives are compared by value
Primitives are compared by value: when comparing two primitive values, we compare their
contents.

assert.equal(123 === 123, true);

assert.equal('abc' === 'abc', true);

To see what’s so special about this way of comparing, read on and find out how objects are
compared.

14.4.2 Objects
Objects are covered in detail in “Objects” (§30) and the following chapter. Here, wemainly
focus on how they differ from primitive values.
Let’s first explore two common ways of creating objects:

• Object literal:
const obj = {

first: 'Jane',

last: 'Doe',

};

The object literal starts and ends with curly braces {}. It creates an object with two
properties. The first property has the key 'first' (a string) and the value 'Jane'.
The second property has the key 'last' and the value 'Doe'. For more information
on object literals, consult “Object literals: properties” (§30.3.1).

• Array literal:
const fruits = ['strawberry', 'apple'];

The Array literal starts and ends with square brackets []. It creates an Array with
two elements: 'strawberry' and 'apple'. For more information on Array literals,
consult “Creating, reading, writing Arrays”.

Objects are mutable by default
By default, you can freely change, add, and remove the properties of objects:

const obj = {};

obj.count = 2; // add a property

14.4 Primitive values vs. objects 107

assert.equal(obj.count, 2);

obj.count = 3; // change a property

assert.equal(obj.count, 3);

Objects are passed by identity
Objects are passed by identity (my term): variables (including parameters) store the identities
of objects.
The identity of an object is like a pointer (or a transparent reference) to the object’s actual
data on the heap (think shared main memory of a JavaScript engine).
When assigning an object to a variable or passing it as an argument to a function, its iden-
tity is copied. Each object literal creates a fresh object on the heap and returns its identity.

const a = {}; // fresh empty object

// Pass the identity in `a` to `b`:

const b = a;

// Now `a` and `b` point to the same object

// (they “share” that object):

assert.equal(a === b, true);

// Changing `a` also changes `b`:

a.name = 'Tessa';

assert.equal(b.name, 'Tessa');

JavaScript uses garbage collection to automatically manage memory:
let obj = { prop: 'value' };

obj = {};

Now the old value { prop: 'value' } of obj is garbage (not used anymore). JavaScript will
automatically garbage-collect it (remove it from memory), at some point in time (possibly
never if there is enough free memory).

Details: passing by identity
“Passing by identity” means that the identity of an object (a transparent reference)
is passed by value. This approach is also called “passing by sharing”.

Objects are compared by identity
Objects are compared by identity (my term): two variables are only equal if they contain the
same object identity. They are not equal if they refer to different objects with the same
content.

const obj = {}; // fresh empty object

assert.equal(obj === obj, true); // same identity

assert.equal({} === {}, false); // different identities, same content

https://en.wikipedia.org/wiki/Evaluation_strategy#Call_by_sharing

108 14 Values

14.5 The operators typeof and instanceof: what’s the type
of a value?

The two operators typeof and instanceof let you determine what type a given value x

has:
if (typeof x === 'string') ···

if (x instanceof Array) ···

How do they differ?
• typeof distinguishes the 7 types of the specification (minus one omission, plus one

addition).
• instanceof tests which class created a given value.

Rule of thumb: typeof is for primitive values; instanceof is for objects

14.5.1 typeof

x typeof x

undefined 'undefined'

null 'object'

Boolean 'boolean'

Number 'number'

Bigint 'bigint'

String 'string'

Symbol 'symbol'

Function 'function'

All other objects 'object'

Table 14.1: The results of the typeof operator.

Table 14.1 lists all results of typeof. They roughly correspond to the 7 types of the language
specification. Alas, there are two differences, and they are language quirks:

• typeof null returns 'object' and not 'null'. That’s a bug. Unfortunately, it can’t
be fixed. TC39 tried to do that, but it broke too much code on the web.

• typeof of a function should be 'object' (functions are objects). Introducing a sepa-
rate category for functions is confusing.

These are a few examples of using typeof:
> typeof undefined

'undefined'

> typeof 123n

'bigint'

> typeof 'abc'

14.6 Classes and constructor functions 109

'string'

> typeof {}

'object'

Exercises: Two exercises on typeof

• exercises/values/typeof_exrc.mjs

• Bonus: exercises/values/is_object_test.mjs

14.5.2 instanceof

This operator answers the question: has a value x been created by a class C?
x instanceof C

For example:
> (function() {}) instanceof Function

true

> ({}) instanceof Object

true

> [] instanceof Array

true

Primitive values are not instances of anything:
> 123 instanceof Number

false

> '' instanceof String

false

> '' instanceof Object

false

Exercise: instanceof
exercises/values/instanceof_exrc.mjs

14.6 Classes and constructor functions
JavaScript’s original factories for objects are constructor functions: ordinary functions that
return “instances” of themselves if you invoke them via the new operator.
ES6 introduced classes, which are mainly better syntax for constructor functions.
In this book, I’m using the terms constructor function and class interchangeably.
Classes can be seen as partitioning the single type object of the specification into subtypes
– they give us more types than the limited 7 ones of the specification. Each class is the type
of the objects that were created by it.

110 14 Values

14.6.1 Constructor functions associated with primitive types
Each primitive type (except for the spec-internal types for undefined and null) has an
associated constructor function (think class):

• The constructor function Boolean is associated with booleans.
• The constructor function Number is associated with numbers.
• The constructor function String is associated with strings.
• The constructor function Symbol is associated with symbols.

Each of these functions plays several roles – for example, Number:

• You can use it as a function and convert values to numbers:

assert.equal(Number('123'), 123);

• Number.prototypeprovides the properties for numbers – for example,method .toString():

assert.equal((123).toString, Number.prototype.toString);

• Number is a namespace/container object for tool functions for numbers – for example:

assert.equal(Number.isInteger(123), true);

• Lastly, you can also use Number as a class and create number objects. These objects
are different from real numbers and should be avoided.

assert.notEqual(new Number(123), 123);

assert.equal(new Number(123).valueOf(), 123);

Wrapping primitive values

The constructor functions related to primitive types are also called wrapper types because
they provide the canonical way of converting primitive values to objects. In the process,
primitive values are “wrapped” in objects.

const prim = true;

assert.equal(typeof prim, 'boolean');

assert.equal(prim instanceof Boolean, false);

const wrapped = Object(prim);

assert.equal(typeof wrapped, 'object');

assert.equal(wrapped instanceof Boolean, true);

assert.equal(wrapped.valueOf(), prim); // unwrap

Wrapping rarely matters in practice, but it is used internally in the language specification,
to give primitives properties.

14.7 Converting between types
There are two ways in which values are converted to other types in JavaScript:

• Explicit conversion: via functions such as String().

14.7 Converting between types 111

• Coercion (automatic conversion): happens when an operation receives operands/
parameters that it can’t work with.

14.7.1 Explicit conversion between types
The function associated with a primitive type explicitly converts values to that type:

> Boolean(0)

false

> Number('123')

123

> String(123)

'123'

You can also use Object() to convert values to objects:

> typeof Object(123)

'object'

The following table describes in more detail how this conversion works:

x Object(x)

undefined {}

null {}

boolean new Boolean(x)

number new Number(x)

bigint An instance of BigInt (new throws TypeError)
string new String(x)

symbol An instance of Symbol (new throws TypeError)
object x

14.7.2 Coercion (automatic conversion between types)
For many operations, JavaScript automatically converts the operands/parameters if their
types don’t fit. This kind of automatic conversion is called coercion.

For example, the multiplication operator coerces its operands to numbers:

> '7' * '3'

21

Many built-in functions coerce, too. For example, Number.parseInt() coerces its parameter
to a string before parsing it. That explains the following result:

> Number.parseInt(123.45)

123

The number 123.45 is converted to the string '123.45' before it is parsed. Parsing stops
before the first non-digit character, which is why the result is 123.

112 14 Values

Exercise: Converting values to primitives
exercises/values/conversion_exrc.mjs

Chapter 15

Operators

15.1 Making sense of operators . 113
15.1.1 Operators coerce their operands to appropriate types 113
15.1.2 Most operators only work with primitive values 114

15.2 The plus operator (+) . 114
15.3 Assignment operators . 115

15.3.1 The plain assignment operator . 115
15.3.2 Compound assignment operators 115

15.4 Equality: == vs. === . 116
15.4.1 Loose equality (== and !=) . 116
15.4.2 Strict equality (=== and !==) . 117
15.4.3 Recommendation: always use strict equality 118
15.4.4 Even stricter than ===: Object.is() 118

15.5 Ordering operators . 119
15.6 Various other operators . 120

15.6.1 Comma operator . 120
15.6.2 void operator . 120

15.1 Making sense of operators
JavaScript’s operators may seem quirky. With the following two rules, they are easier to
understand:

• Operators coerce their operands to appropriate types
• Most operators only work with primitive values

15.1.1 Operators coerce their operands to appropriate types
If an operator gets operands that don’t have the proper types, it rarely throws an exception.
Instead, it coerces (automatically converts) the operands so that it canworkwith them. Let’s

113

114 15 Operators

look at two examples.

First, the multiplication operator can only work with numbers. Therefore, it converts
strings to numbers before computing its result.

> '7' * '3'

21

Second, the square brackets operator ([]) for accessing the properties of an object can
only handle strings and symbols. All other values are coerced to string:

const obj = {};

obj['true'] = 123;

// Coerce true to the string 'true'

assert.equal(obj[true], 123);

15.1.2 Most operators only work with primitive values
Asmentioned before, most operators only work with primitive values. If an operand is an
object, it is usually coerced to a primitive value – for example:

> [1,2,3] + [4,5,6]

'1,2,34,5,6'

Why? The plus operator first coerces its operands to primitive values:

> String([1,2,3])

'1,2,3'

> String([4,5,6])

'4,5,6'

Next, it concatenates the two strings:

> '1,2,3' + '4,5,6'

'1,2,34,5,6'

15.2 The plus operator (+)
The plus operator works as follows in JavaScript:

• First, it converts both operands to primitive values. Then it switches to one of two
modes:

– String mode: If one of the two primitive values is a string, then it converts the
other one to a string, concatenates both strings, and returns the result.

– Number mode: Otherwise, It converts both operands to numbers, adds them,
and returns the result.

String mode lets us use + to assemble strings:

> 'There are ' + 3 + ' items'

'There are 3 items'

15.3 Assignment operators 115

Number modemeans that if neither operand is a string (or an object that becomes a string)
then everything is coerced to numbers:

> 4 + true

5

Number(true) is 1.

15.3 Assignment operators
15.3.1 The plain assignment operator
The plain assignment operator is used to change storage locations:

x = value; // assign to a previously declared variable

obj.propKey = value; // assign to a property

arr[index] = value; // assign to an Array element

Initializers in variable declarations can also be viewed as a form of assignment:
const x = value;

let y = value;

15.3.2 Compound assignment operators
JavaScript supports the following assignment operators:

• Arithmetic assignment operators: += -= *= /= %= [ES1]

– += can also be used for string concatenation
– Introduced later: **= [ES2016]

• Bitwise assignment operators: &= ^= |= [ES1]

• Bitwise shift assignment operators: <<= >>= >>>= [ES1]

• Logical assignment operators: ||= &&= ??= [ES2021]

Logical assignment operators [ES2021]

Logical assignment operators work differently from other compound assignment opera-
tors:

Assignment operator Equivalent to Only assigns if a is
a ||= b a || (a = b) Falsy
a &&= b a && (a = b) Truthy
a ??= b a ?? (a = b) Nullish

Why is a ||= b equivalent to the following expression?
a || (a = b)

Why not to this expression?
a = a || b

116 15 Operators

The former expression has the benefit of short-circuiting: The assignment is only evaluated
if a evaluates to false. Therefore, the assignment is only performed if it’s necessary. In
contrast, the latter expression always performs an assignment.

For more on ??=, see “The nullish coalescing assignment operator (??=)” (§16.4.5).

The remaining compound assignment operators

For operators op other than || && ??, the following two ways of assigning are equivalent:

myvar op= value

myvar = myvar op value

If, for example, op is +, then we get the operator += that works as follows.

let str = '';

str += '';

str += 'Hello!';

str += '';

assert.equal(str, 'Hello!');

15.4 Equality: == vs. ===
JavaScript has two kinds of equality operators: loose equality (==) and strict equality (===).
The recommendation is to always use the latter.

Other names for == and ===

• == is also called double equals. Its official name in the language specification
is abstract equality comparison.

• === is also called triple equals.

15.4.1 Loose equality (== and !=)
Loose equality is one of JavaScript’s quirks. It often coerces operands. Some of those
coercions make sense:

> '123' == 123

true

> false == 0

true

Others less so:

> '' == 0

true

Objects are coerced to primitives if (and only if!) the other operand is primitive:

https://tc39.es/ecma262/#sec-abstract-equality-comparison

15.4 Equality: == vs. === 117

> [1, 2, 3] == '1,2,3'

true

> ['1', '2', '3'] == '1,2,3'

true

If both operands are objects, they are only equal if they are the same object:

> [1, 2, 3] == ['1', '2', '3']

false

> [1, 2, 3] == [1, 2, 3]

false

> const arr = [1, 2, 3];

> arr == arr

true

Lastly, == considers undefined and null to be equal:

> undefined == null

true

15.4.2 Strict equality (=== and !==)
Strict equality never coerces. Two values are only equal if they have the same type. Let’s
revisit our previous interaction with the == operator and see what the === operator does:

> false === 0

false

> '123' === 123

false

An object is only equal to another value if that value is the same object:

> [1, 2, 3] === '1,2,3'

false

> ['1', '2', '3'] === '1,2,3'

false

> [1, 2, 3] === ['1', '2', '3']

false

> [1, 2, 3] === [1, 2, 3]

false

> const arr = [1, 2, 3];

> arr === arr

true

The === operator does not consider undefined and null to be equal:

> undefined === null

false

118 15 Operators

15.4.3 Recommendation: always use strict equality
I recommend to always use ===. It makes your code easier to understand and spares you
from having to think about the quirks of ==.

Let’s look at two use cases for == and what I recommend to do instead.

Use case for ==: comparing with a number or a string

== lets you check if a value x is a number or that number as a string – with a single com-
parison:

if (x == 123) {

// x is either 123 or '123'

}

I prefer either of the following two alternatives:

if (x === 123 || x === '123') ···

if (Number(x) === 123) ···

You can also convert x to a number when you first encounter it.

Use case for ==: comparing with undefined or null

Another use case for == is to check if a value x is either undefined or null:

if (x == null) {

// x is either null or undefined

}

The problem with this code is that you can’t be sure if someone meant to write it that way
or if they made a typo and meant === null.

I prefer either of the following two alternatives:

if (x === undefined || x === null) ···

if (!x) ···

A downside of the second alternative is that it accepts values other than undefined and
null, but it is a well-established pattern in JavaScript (to be explained in detail in “Truthi-
ness-based existence checks” (§17.3)).

The following three conditions are also roughly equivalent:

if (x != null) ···

if (x !== undefined && x !== null) ···

if (x) ···

15.4.4 Even stricter than ===: Object.is()
Method Object.is() compares two values:

> Object.is(123, 123)

true

15.5 Ordering operators 119

> Object.is(123, '123')

false

It is even stricter than ===. For example, it considers NaN, the error value for computations
involving numbers, to be equal to itself:

> Object.is(NaN, NaN)

true

> NaN === NaN

false

That is occasionally useful. For example, you can use it to implement an improved version
of the Array method .indexOf():

const myIndexOf = (arr, elem) => {

return arr.findIndex(x => Object.is(x, elem));

};

myIndexOf() finds NaN in an Array, while .indexOf() doesn’t:

> myIndexOf([0,NaN,2], NaN)

1

> [0,NaN,2].indexOf(NaN)

-1

The result -1means that .indexOf() couldn’t find its argument in the Array.

15.5 Ordering operators

Operator name
< less than
<= Less than or equal
> Greater than
>= Greater than or equal

Table 15.1: JavaScript’s ordering operators.

JavaScript’s ordering operators (table 15.1) work for both numbers and strings:

> 5 >= 2

true

> 'bar' < 'foo'

true

<= and >= are based on strict equality.

120 15 Operators

The ordering operators don’t work well for human languages
The ordering operators don’t work well for comparing text in a human language,
e.g., when capitalization or accents are involved. The details are explained in
“Comparing strings” (§22.6).

15.6 Various other operators
The following operators are covered elsewhere in this book:

• Operators for booleans, numbers, strings, objects
• The nullish coalescing operator (??) for default values

The next two subsections discuss two operators that are rarely used.

15.6.1 Comma operator
The comma operator has two operands, evaluates both of them and returns the second
one:

> 'a', 'b'

'b'

For more information on this operator, see Speaking JavaScript.

15.6.2 void operator
The void operator evaluates its operand and returns undefined:

> void (3 + 2)

undefined

For more information on this operator, see Speaking JavaScript.

http://exploringjs.com/es5/ch09.html#comma_operator
http://exploringjs.com/es5/ch09.html#void_operator

Part IV

Primitive values

121

Chapter 16

The non-values undefined and
null

16.1 undefined vs. null . 123
16.2 Occurrences of undefined and null . 124

16.2.1 Occurrences of undefined . 124
16.2.2 Occurrences of null . 124

16.3 Checking for undefined or null . 125
16.4 The nullish coalescing operator (??) for default values [ES2020] 125

16.4.1 Example: counting matches . 126
16.4.2 Example: specifying a default value for a property 126
16.4.3 Using destructuring for default values 126
16.4.4 Legacy approach: using logical Or (||) for default values 126
16.4.5 The nullish coalescing assignment operator (??=) [ES2021] 127

16.5 undefined and null don’t have properties 128
16.6 The history of undefined and null . 129

Many programming languages have one “non-value” called null. It indicates that a vari-
able does not currently point to an object – for example, when it hasn’t been initialized
yet.

In contrast, JavaScript has two of them: undefined and null.

16.1 undefined vs. null
Both values are very similar and often used interchangeably. How they differ is therefore
subtle. The language itself makes the following distinction:

123

124 16 The non-values undefined and null

• undefinedmeans “not initialized” (e.g., a variable) or “not existing” (e.g., a property
of an object).

• nullmeans “the intentional absence of any object value” (a quote from the language
specification).

Programmers may make the following distinction:
• undefined is the non-value used by the language (when something is uninitialized,

etc.).
• null means “explicitly switched off”. That is, it helps implement a type that com-

prises both meaningful values and a meta-value that stands for “no meaningful
value”. Such a type is called option type or maybe type in functional programming.

16.2 Occurrences of undefined and null

The following subsections describe where undefined and null appear in the language.
We’ll encounter several mechanisms that are explained in more detail later in this book.

16.2.1 Occurrences of undefined
Uninitialized variable myVar:

let myVar;

assert.equal(myVar, undefined);

Parameter x is not provided:
function func(x) {

return x;

}

assert.equal(func(), undefined);

Property .unknownProp is missing:
const obj = {};

assert.equal(obj.unknownProp, undefined);

If we don’t explicitly specify the result of a function via a return statement, JavaScript
returns undefined for us:

function func() {}

assert.equal(func(), undefined);

16.2.2 Occurrences of null
The prototype of an object is either an object or, at the end of a chain of prototypes, null.
Object.prototype does not have a prototype:

> Object.getPrototypeOf(Object.prototype)

null

If we match a regular expression (such as /a/) against a string (such as 'x'), we either get
an object with matching data (if matching was successful) or null (if matching failed):

https://tc39.es/ecma262/#sec-null-value
https://tc39.es/ecma262/#sec-null-value
https://en.wikipedia.org/wiki/Option_type

16.3 Checking for undefined or null 125

> /a/.exec('x')

null

The JSON data format does not support undefined, only null:

> JSON.stringify({a: undefined, b: null})

'{"b":null}'

16.3 Checking for undefined or null
Checking for either:

if (x === null) ···

if (x === undefined) ···

Does x have a value?

if (x !== undefined && x !== null) {

// ···

}

if (x) { // truthy?

// x is neither: undefined, null, false, 0, NaN, 0n, ''

}

Is x either undefined or null?

if (x === undefined || x === null) {

// ···

}

if (!x) { // falsy?

// x is: undefined, null, false, 0, NaN, 0n, ''

}

Truthymeans “is true if coerced to boolean”. Falsymeans “is false if coerced to boolean”.
Both concepts are explained properly in “Falsy and truthy values” (§17.2).

16.4 The nullish coalescing operator (??) for default values
[ES2020]

Sometimes we receive a value and only want to use it if it isn’t either null or undefined.
Otherwise, we’d like to use a default value, as a fallback. We can do that via the nullish
coalescing operator (??):

const valueToUse = receivedValue ?? defaultValue;

The following two expressions are equivalent:

a ?? b

a !== undefined && a !== null ? a : b

126 16 The non-values undefined and null

16.4.1 Example: counting matches
The following code shows a real-world example:

function countMatches(regex, str) {

const matchResult = str.match(regex); // null or Array

return (matchResult ?? []).length;

}

assert.equal(

countMatches(/a/g, 'ababa'), 3);

assert.equal(

countMatches(/b/g, 'ababa'), 2);

assert.equal(

countMatches(/x/g, 'ababa'), 0);

If there are one or more matches for regex inside str, then .match() returns an Array. If
there are no matches, it unfortunately returns null (and not the empty Array). We fix that
via the ?? operator.

We also could have used optional chaining:

return matchResult?.length ?? 0;

16.4.2 Example: specifying a default value for a property
function getTitle(fileDesc) {

return fileDesc.title ?? '(Untitled)';

}

const files = [

{path: 'index.html', title: 'Home'},

{path: 'tmp.html'},

];

assert.deepEqual(

files.map(f => getTitle(f)),

['Home', '(Untitled)']);

16.4.3 Using destructuring for default values
In some cases, destructuring can also be used for default values – for example:

function getTitle(fileDesc) {

const {title = '(Untitled)'} = fileDesc;

return title;

}

16.4.4 Legacy approach: using logical Or (||) for default values
Before ECMAScript 2020 and the nullish coalescing operator, logical Or was used for de-
fault values. That has a downside.

16.4 The nullish coalescing operator (??) for default values [ES2020] 127

|| works as expected for undefined and null:
> undefined || 'default'

'default'

> null || 'default'

'default'

But it also returns the default for all other falsy values – for example:
> false || 'default'

'default'

> 0 || 'default'

'default'

> 0n || 'default'

'default'

> '' || 'default'

'default'

Compare that to how ?? works:
> undefined ?? 'default'

'default'

> null ?? 'default'

'default'

> false ?? 'default'

false

> 0 ?? 'default'

0

> 0n ?? 'default'

0n

> '' ?? 'default'

''

16.4.5 The nullish coalescing assignment operator (??=) [ES2021]

??= is a logical assignment operator. The following two expressions are roughly equiva-
lent:

a ??= b

a ?? (a = b)

That means that ??= is short-circuiting: The assignment is only made if a is undefined or
null.

Example: using ??= to add missing properties

const books = [

{

isbn: '123',

},

{

128 16 The non-values undefined and null

title: 'ECMAScript Language Specification',

isbn: '456',

},

];

// Add property .title where it’s missing

for (const book of books) {

book.title ??= '(Untitled)';

}

assert.deepEqual(

books,

[

{

isbn: '123',

title: '(Untitled)',

},

{

title: 'ECMAScript Language Specification',

isbn: '456',

},

]);

16.5 undefined and null don’t have properties

undefined and null are the only two JavaScript values where we get an exception if we try
to read a property. To explore this phenomenon, let’s use the following function, which
reads (“gets”) property .foo and returns the result.

function getFoo(x) {

return x.foo;

}

If we apply getFoo() to various values, we can see that it only fails for undefined and null:

> getFoo(undefined)

TypeError: Cannot read properties of undefined (reading 'foo')

> getFoo(null)

TypeError: Cannot read properties of null (reading 'foo')

> getFoo(true)

undefined

> getFoo({})

undefined

16.6 The history of undefined and null 129

16.6 The history of undefined and null

In Java (which inspired many aspects of JavaScript), initialization values depend on the
static type of a variable:

• Variables with object types are initialized with null.
• Each primitive type has its own initialization value. For example, int variables are

initialized with 0.
In JavaScript, each variable can hold both object values and primitive values. Therefore, if
nullmeans “not an object”, JavaScript also needs an initialization value that means “nei-
ther an object nor a primitive value”. That initialization value is undefined.

130 16 The non-values undefined and null

Chapter 17

Booleans

17.1 Converting to boolean . 132
17.2 Falsy and truthy values . 132

17.2.1 Checking for truthiness or falsiness 133
17.3 Truthiness-based existence checks . 134

17.3.1 Pitfall: truthiness-based existence checks are imprecise 134
17.3.2 Use case: was a parameter provided? 134
17.3.3 Use case: does a property exist? 135

17.4 Conditional operator (? :) . 135
17.5 Binary logical operators: And (x && y), Or (x || y) 136

17.5.1 Value-preservation . 136
17.5.2 Short-circuiting . 136
17.5.3 Logical And (x && y) . 136
17.5.4 Logical Or (||) . 137

17.6 Logical Not (!) . 138

The primitive type boolean comprises two values – false and true:

> typeof false

'boolean'

> typeof true

'boolean'

131

132 17 Booleans

17.1 Converting to boolean

The meaning of “converting to [type]”
“Converting to [type]” is short for “Converting arbitrary values to values of type
[type]”.

These are three ways in which you can convert an arbitrary value x to a boolean.
• Boolean(x)

Most descriptive; recommended.
• x ? true : false

Uses the conditional operator (explained later in this chapter).
• !!x

Uses the logical Not operator (!). This operator coerces its operand to boolean. It is
applied a second time to get a non-negated result.

Table 17.1 describes how various values are converted to boolean.

x Boolean(x)

undefined false

null false

boolean x (no change)
number 0→false, NaN→false

Other numbers→true

bigint 0→false

Other numbers→true

string ''→false

Other strings→true

symbol true

object Always true

Table 17.1: Converting values to booleans.

17.2 Falsy and truthy values
When checking the condition of an if statement, a while loop, or a do-while loop, JavaScript
works differently than you may expect. Take, for example, the following condition:

if (value) {}

In many programming languages, this condition is equivalent to:
if (value === true) {}

However, in JavaScript, it is equivalent to:

17.2 Falsy and truthy values 133

if (Boolean(value) === true) {}

That is, JavaScript checks if value is true when converted to boolean. This kind of check
is so common that the following names were introduced:

• A value is called truthy if it is true when converted to boolean.
• A value is called falsy if it is false when converted to boolean.

Each value is either truthy or falsy. Consulting table 17.1, we can make an exhaustive list
of falsy values:

• undefined

• null

• Boolean: false
• Numbers: 0, NaN
• Bigint: 0n
• String: ''

All other values (including all objects) are truthy:

> Boolean('abc')

true

> Boolean([])

true

> Boolean({})

true

17.2.1 Checking for truthiness or falsiness
if (x) {

// x is truthy

}

if (!x) {

// x is falsy

}

if (x) {

// x is truthy

} else {

// x is falsy

}

const result = x ? 'truthy' : 'falsy';

The conditional operator that is used in the last line, is explained later in this chapter.

Exercise: Truthiness
exercises/booleans/truthiness_exrc.mjs

134 17 Booleans

17.3 Truthiness-based existence checks
In JavaScript, if you read something that doesn’t exist (e.g., a missing parameter or a miss-
ing property), you usually get undefined as a result. In these cases, an existence check
amounts to comparing a value with undefined. For example, the following code checks if
object obj has the property .prop:

if (obj.prop !== undefined) {

// obj has property .prop

}

Due to undefined being falsy, we can shorten this check to:

if (obj.prop) {

// obj has property .prop

}

17.3.1 Pitfall: truthiness-based existence checks are imprecise
Truthiness-based existence checks have one pitfall: they are not very precise. Consider
this previous example:

if (obj.prop) {

// obj has property .prop

}

The body of the if statement is skipped if:

• obj.prop is missing (in which case, JavaScript returns undefined).

However, it is also skipped if:

• obj.prop is undefined.
• obj.prop is any other falsy value (null, 0, '', etc.).

In practice, this rarely causes problems, but you have to be aware of this pitfall.

17.3.2 Use case: was a parameter provided?
A truthiness check is often used to determine if the caller of a function provided a param-
eter:

function func(x) {

if (!x) {

throw new Error('Missing parameter x');

}

// ···

}

On the plus side, this pattern is established and short. It correctly throws errors for unde-
fined and null.

On the minus side, there is the previously mentioned pitfall: the code also throws errors
for all other falsy values.

17.4 Conditional operator (? :) 135

An alternative is to check for undefined:
if (x === undefined) {

throw new Error('Missing parameter x');

}

17.3.3 Use case: does a property exist?
Truthiness checks are also often used to determine if a property exists:

function readFile(fileDesc) {

if (!fileDesc.path) {

throw new Error('Missing property: .path');

}

// ···

}

readFile({ path: 'foo.txt' }); // no error

This pattern is also established and has the usual caveat: it not only throws if the property
is missing, but also if it exists and has any of the falsy values.
If you truly want to check if the property exists, you have to use the in operator:

if (! ('path' in fileDesc)) {

throw new Error('Missing property: .path');

}

17.4 Conditional operator (? :)
The conditional operator is the expression version of the if statement. Its syntax is:

«condition» ? «thenExpression» : «elseExpression»

It is evaluated as follows:
• If condition is truthy, evaluate and return thenExpression.
• Otherwise, evaluate and return elseExpression.

The conditional operator is also called ternary operator because it has three operands.
Examples:

> true ? 'yes' : 'no'

'yes'

> false ? 'yes' : 'no'

'no'

> '' ? 'yes' : 'no'

'no'

The following code demonstrates that whichever of the two branches “then” and “else” is
chosen via the condition, only that branch is evaluated. The other branch isn’t.

const x = (true ? console.log('then') : console.log('else'));

Output:

136 17 Booleans

then

17.5 Binary logical operators: And (x && y), Or (x || y)
The binary logical operators && and || are value-preserving and short-circuiting.

17.5.1 Value-preservation
Value-preservationmeans that operands are interpreted as booleans but returnedunchanged:

> 12 || 'hello'

12

> 0 || 'hello'

'hello'

17.5.2 Short-circuiting
Short-circuiting means if the first operand already determines the result, then the second
operand is not evaluated. The only other operator that delays evaluating its operands is the
conditional operator. Usually, all operands are evaluated before performing an operation.
For example, logical And (&&) does not evaluate its second operand if the first one is falsy:

const x = false && console.log('hello');

// No output

If the first operand is truthy, console.log() is executed:
const x = true && console.log('hello');

Output:
hello

17.5.3 Logical And (x && y)
The expression a && b (“a And b”) is evaluated as follows:

1. Evaluate a.
2. Is the result falsy? Return it.
3. Otherwise, evaluate b and return the result.

In other words, the following two expressions are roughly equivalent:
a && b

!a ? a : b

Examples:
> false && true

false

> false && 'abc'

false

17.5 Binary logical operators: And (x && y), Or (x || y) 137

> true && false

false

> true && 'abc'

'abc'

> '' && 'abc'

''

17.5.4 Logical Or (||)
The expression a || b (“a Or b”) is evaluated as follows:

1. Evaluate a.
2. Is the result truthy? Return it.
3. Otherwise, evaluate b and return the result.

In other words, the following two expressions are roughly equivalent:

a || b

a ? a : b

Examples:

> true || false

true

> true || 'abc'

true

> false || true

true

> false || 'abc'

'abc'

> 'abc' || 'def'

'abc'

Legacy use case for logical Or (||): providing default values

ECMAScript 2020 introduced the nullish coalescing operator (??) for default values. Be-
fore that, logical Or was used for this purpose:

const valueToUse = receivedValue || defaultValue;

See “The nullish coalescing operator (??) for default values” (§16.4) for more information
on ?? and the downsides of || in this case.

Legacy exercise: Default values via the Or operator (||)
exercises/booleans/default_via_or_exrc.mjs

138 17 Booleans

17.6 Logical Not (!)
The expression !x (“Not x”) is evaluated as follows:

1. Evaluate x.
2. Is it truthy? Return false.
3. Otherwise, return true.

Examples:
> !false

true

> !true

false

> !0

true

> !123

false

> !''

true

> !'abc'

false

Chapter 18

Numbers

18.1 Numbers are used for both floating point numbers and integers 140
18.2 Number literals . 140

18.2.1 Integer literals . 140
18.2.2 Floating point literals . 141
18.2.3 Syntactic pitfall: properties of integer literals 141
18.2.4 Underscores (_) as separators in number literals [ES2021] 141

18.3 Arithmetic operators . 142
18.3.1 Binary arithmetic operators . 142
18.3.2 Unary plus (+) and negation (-) . 143
18.3.3 Incrementing (++) and decrementing (--) 143

18.4 Converting to number . 144
18.5 Error values . 145

18.5.1 Error value: NaN . 145
18.5.2 Error value: Infinity . 147

18.6 The precision of numbers: careful with decimal fractions 148
18.7 (Advanced) . 148
18.8 Background: floating point precision . 148

18.8.1 A simplified representation of floating point numbers 149
18.9 Integer numbers in JavaScript . 150

18.9.1 Converting to integer . 150
18.9.2 Ranges of integer numbers in JavaScript 151
18.9.3 Safe integers . 151

18.10Bitwise operators . 153
18.10.1 Internally, bitwise operators work with 32-bit integers 153
18.10.2 Bitwise Not . 153
18.10.3 Binary bitwise operators . 154
18.10.4 Bitwise shift operators . 154
18.10.5 b32(): displaying unsigned 32-bit integers in binary notation . . . 155

18.11Quick reference: numbers . 155
18.11.1 Global functions for numbers . 155

139

140 18 Numbers

18.11.2 Number.*: data properties . 155
18.11.3 Number.*: methods . 156
18.11.4 Number.prototype.* . 158
18.11.5 Sources . 159

JavaScript has two kinds of numeric values:
• Numbers are 64-bit floating point numbers and are also used for smaller integers

(within a range of plus/minus 53 bits).
• Bigints represent integers with an arbitrary precision.

This chapter covers numbers. Bigints are covered later in this book.

18.1 Numbers are used for both floating point numbers and
integers

The type number is used for both integers and floating point numbers in JavaScript:
98

123.45

However, all numbers are doubles, 64-bit floating point numbers implemented according
to the IEEE Standard for Floating-Point Arithmetic (IEEE 754).
Integer numbers are simply floating point numbers without a decimal fraction:

> 98 === 98.0

true

Note that, under the hood, most JavaScript engines are often able to use real integers, with
all associated performance and storage size benefits.

18.2 Number literals
Let’s examine literals for numbers.

18.2.1 Integer literals
Several integer literals let us express integers with various bases:

// Binary (base 2)

assert.equal(0b11, 3); // ES6

// Octal (base 8)

assert.equal(0o10, 8); // ES6

// Decimal (base 10)

assert.equal(35, 35);

18.2 Number literals 141

// Hexadecimal (base 16)

assert.equal(0xE7, 231);

18.2.2 Floating point literals
Floating point numbers can only be expressed in base 10.

Fractions:

> 35.0

35

Exponent: eNmeans ×10N

> 3e2

300

> 3e-2

0.03

> 0.3e2

30

18.2.3 Syntactic pitfall: properties of integer literals
Accessing a property of an integer literal entails a pitfall: If the integer literal is immedi-
ately followed by a dot, then that dot is interpreted as a decimal dot:

7.toString(); // syntax error

There are four ways to work around this pitfall:

7.0.toString()

(7).toString()

7..toString()

7 .toString() // space before dot

18.2.4 Underscores (_) as separators in number literals [ES2021]

Grouping digits to make long numbers more readable has a long tradition. For example:

• In 1825, London had 1,335,000 inhabitants.
• The distance between Earth and Sun is 149,600,000 km.

Since ES2021, we can use underscores as separators in number literals:

const inhabitantsOfLondon = 1_335_000;

const distanceEarthSunInKm = 149_600_000;

With other bases, grouping is important, too:

const fileSystemPermission = 0b111_111_000;

const bytes = 0b1111_10101011_11110000_00001101;

const words = 0xFAB_F00D;

We can also use the separator in fractions and exponents:

142 18 Numbers

const massOfElectronInKg = 9.109_383_56e-31;

const trillionInShortScale = 1e1_2;

Where can we put separators?

The locations of separators are restricted in two ways:

• We can only put underscores between two digits. Therefore, all of the following
number literals are illegal:

3_.141

3._141

1_e12

1e_12

_1464301 // valid variable name!

1464301_

0_b111111000

0b_111111000

• We can’t use more than one underscore in a row:

123__456 // two underscores – not allowed

The motivation behind these restrictions is to keep parsing simple and to avoid strange
edge cases.

Parsing numbers with separators

The following functions for parsing numbers do not support separators:

• Number()

• Number.parseInt()

• Number.parseFloat()

For example:

> Number('123_456')

NaN

> Number.parseInt('123_456')

123

The rationale is that numeric separators are for code. Other kinds of input should be pro-
cessed differently.

18.3 Arithmetic operators
18.3.1 Binary arithmetic operators
Table 18.1 lists JavaScript’s binary arithmetic operators.

18.3 Arithmetic operators 143

Operator Name Example
n + m Addition ES1 3 + 4→7

n - m Subtraction ES1 9 - 1→8

n * m Multiplication ES1 3 * 2.25→6.75

n / m Division ES1 5.625 / 5→1.125

n % m Remainder ES1 8 % 5→3

-8 % 5→-3

n ** m Exponentiation ES2016 4 ** 2→16

Table 18.1: Binary arithmetic operators.

% is a remainder operator
% is a remainder operator, not amodulo operator. Its result has the sign of the first operand:

> 5 % 3

2

> -5 % 3

-2

For more information on the difference between remainder and modulo, see the blog post
“Remainder operator vs. modulo operator (with JavaScript code)” on 2ality.

18.3.2 Unary plus (+) and negation (-)
Table 18.2 summarizes the two operators unary plus (+) and negation (-). Both operators

Operator Name Example
+n Unary plus ES1 +(-7)→-7

-n Unary negation ES1 -(-7)→7

Table 18.2: The operators unary plus (+) and negation (-).

coerce their operands to numbers:
> +'5'

5

> +'-12'

-12

> -'9'

-9

Thus, unary plus lets us convert arbitrary values to numbers.

18.3.3 Incrementing (++) and decrementing (--)
The incrementation operator ++ exists in a prefix version and a suffix version. In both
versions, it destructively adds one to its operand. Therefore, its operandmust be a storage
location that can be changed.
The decrementation operator -- works the same, but subtracts one from its operand. The
next two examples explain the difference between the prefix and the suffix version.
Table 18.3 summarizes the incrementation and decrementation operators. Next, we’ll look
at examples of these operators in use.
Prefix ++ and prefix -- change their operands and then return them.

let foo = 3;

assert.equal(++foo, 4);

assert.equal(foo, 4);

let bar = 3;

https://2ality.com/2019/08/remainder-vs-modulo.html

144 18 Numbers

Operator Name Example
v++ Increment ES1 let v=0; [v++, v]→[0, 1]

++v Increment ES1 let v=0; [++v, v]→[1, 1]

v-- Decrement ES1 let v=1; [v--, v]→[1, 0]

--v Decrement ES1 let v=1; [--v, v]→[0, 0]

Table 18.3: Incrementation operators and decrementation operators.

assert.equal(--bar, 2);

assert.equal(bar, 2);

Suffix ++ and suffix -- return their operands and then change them.

let foo = 3;

assert.equal(foo++, 3);

assert.equal(foo, 4);

let bar = 3;

assert.equal(bar--, 3);

assert.equal(bar, 2);

Operands: not just variables

We can also apply these operators to property values:

const obj = { a: 1 };

++obj.a;

assert.equal(obj.a, 2);

And to Array elements:

const arr = [4];

arr[0]++;

assert.deepEqual(arr, [5]);

Exercise: Number operators
exercises/numbers-math/is_odd_test.mjs

18.4 Converting to number
These are three ways of converting values to numbers:

• Number(value)

• +value

• parseFloat(value) (avoid; different than the other two!)

18.5 Error values 145

Recommendation: use the descriptive Number(). Table 18.4 summarizes how it works.
Examples:

x Number(x)

undefined NaN

null 0

boolean false→0, true→1

number x (no change)
bigint -1n→-1, 1n→1, etc.
string ''→0

Other→parsed number, ignoring leading/trailing whitespace
symbol Throws TypeError
object Configurable (e.g. via .valueOf())

Table 18.4: Converting values to numbers.

assert.equal(Number(123.45), 123.45);

assert.equal(Number(''), 0);

assert.equal(Number('\n 123.45 \t'), 123.45);

assert.equal(Number('xyz'), NaN);

assert.equal(Number(-123n), -123);

How objects are converted to numbers can be configured – for example, by overriding
.valueOf():

> Number({ valueOf() { return 123 } })

123

Exercise: Converting to number
exercises/numbers-math/parse_number_test.mjs

18.5 Error values
Two number values are returned when errors happen:

• NaN

• Infinity

18.5.1 Error value: NaN
NaN is an abbreviation of “not a number”. Ironically, JavaScript considers it to be a number:

> typeof NaN

'number'

146 18 Numbers

When is NaN returned?
NaN is returned if a number can’t be parsed:

> Number('$$$')

NaN

> Number(undefined)

NaN

NaN is returned if an operation can’t be performed:
> Math.log(-1)

NaN

> Math.sqrt(-1)

NaN

NaN is returned if an operand or argument is NaN (to propagate errors):
> NaN - 3

NaN

> 7 ** NaN

NaN

Checking for NaN

NaN is the only JavaScript value that is not strictly equal to itself:
const n = NaN;

assert.equal(n === n, false);

These are several ways of checking if a value x is NaN:
const x = NaN;

assert.equal(Number.isNaN(x), true); // preferred

assert.equal(Object.is(x, NaN), true);

assert.equal(x !== x, true);

In the last line, we use the comparison quirk to detect NaN.

Finding NaN in Arrays

Some Array methods can’t find NaN:
> [NaN].indexOf(NaN)

-1

Others can:
> [NaN].includes(NaN)

true

> [NaN].findIndex(x => Number.isNaN(x))

0

> [NaN].find(x => Number.isNaN(x))

NaN

18.5 Error values 147

Alas, there is no simple rule of thumb. We have to check for each method how it handles
NaN.

18.5.2 Error value: Infinity
When is the error value Infinity returned?

Infinity is returned if a number is too large:

> Math.pow(2, 1023)

8.98846567431158e+307

> Math.pow(2, 1024)

Infinity

Infinity is returned if there is a division by zero:

> 5 / 0

Infinity

> -5 / 0

-Infinity

Infinity as a default value

Infinity is larger than all other numbers (except NaN), making it a good default value:

function findMinimum(numbers) {

let min = Infinity;

for (const n of numbers) {

if (n < min) min = n;

}

return min;

}

assert.equal(findMinimum([5, -1, 2]), -1);

assert.equal(findMinimum([]), Infinity);

Checking for Infinity

These are two common ways of checking if a value x is Infinity:

const x = Infinity;

assert.equal(x === Infinity, true);

assert.equal(Number.isFinite(x), false);

Exercise: Comparing numbers
exercises/numbers-math/find_max_test.mjs

148 18 Numbers

18.6 The precision of numbers: careful with decimal frac-
tions

Internally, JavaScript floating point numbers are represented with base 2 (according to the
IEEE 754 standard). That means that decimal fractions (base 10) can’t always be repre-
sented precisely:

> 0.1 + 0.2

0.30000000000000004

> 1.3 * 3

3.9000000000000004

> 1.4 * 100000000000000

139999999999999.98

We therefore need to take rounding errors into consideration when performing arithmetic
in JavaScript.

Read on for an explanation of this phenomenon.

18.7 (Advanced)
All remaining sections of this chapter are advanced.

18.8 Background: floating point precision
In JavaScript, computations with numbers don’t always produce correct results – for ex-
ample:

> 0.1 + 0.2

0.30000000000000004

To understand why, we need to explore how JavaScript represents floating point numbers
internally. It uses three integers to do so, which take up a total of 64 bits of storage (double
precision):

Component Size Integer range
Sign 1 bit [0, 1]
Fraction 52 bits [0, 252−1]
Exponent 11 bits [−1023, 1024]

The floating point number represented by these integers is computed as follows:

(–1)sign × 0b1.fraction × 2exponent

This representation can’t encode a zero because its second component (involving the frac-
tion) always has a leading 1. Therefore, a zero is encoded via the special exponent −1023
and a fraction 0.

18.8 Background: floating point precision 149

18.8.1 A simplified representation of floating point numbers
To make further discussions easier, we simplify the previous representation:

• Instead of base 2 (binary), we use base 10 (decimal) because that’s what most people
are more familiar with.

• The fraction is a natural number that is interpreted as a fraction (digits after a point).
We switch to a mantissa, an integer that is interpreted as itself. As a consequence,
the exponent is used differently, but its fundamental role doesn’t change.

• As the mantissa is an integer (with its own sign), we don’t need a separate sign,
anymore.

The new representation works like this:

mantissa × 10exponent

Let’s try out this representation for a few floating point numbers.

• To encode the integer 123, we use the mantissa 123 and multiply it with 1 (100):
> 123 * (10 ** 0)

123

• To encode the integer −45, we use the mantissa −45 and, again, the exponent zero:
> -45 * (10 ** 0)

-45

• For the number 1.5, we imagine there being a point after the mantissa. We use the
negative exponent −1 to move that point one digit to the left:

> 15 * (10 ** -1)

1.5

• For the number 0.25, we move the point two digits to the left:
> 25 * (10 ** -2)

0.25

In other words: As soon as we have decimal digits, the exponent becomes negative. We
can also write such a number as a fraction:

• Numerator (above the horizontal fraction bar): the mantissa
• Denominator (below the horizontal fraction bar): a 10 with a positive exponent ≥ 1.

For example:
> 15 * (10 ** -1) === 15 / (10 ** 1)

true

> 25 * (10 ** -2) === 25 / (10 ** 2)

true

These fractions help with understanding why there are numbers that our encoding cannot
represent:

• 1/10 can be represented. It already has the required format: a power of 10 in the
denominator.

150 18 Numbers

• 1/2 can be represented as 5/10. We turned the 2 in the denominator into a power of
10 by multiplying the numerator and denominator by 5.

• 1/4 can be represented as 25/100. We turned the 4 in the denominator into a power
of 10 by multiplying the numerator and denominator by 25.

• 1/3 cannot be represented. There is no way to turn the denominator into a power
of 10. (The prime factors of 10 are 2 and 5. Therefore, any denominator that only
has these prime factors can be converted to a power of 10, by multiplying both the
numerator and denominator by enough twos and fives. If a denominator has a dif-
ferent prime factor, then there’s nothing we can do.)

To conclude our excursion, we switch back to base 2:

• 0.5 = 1/2 can be represented with base 2 because the denominator is already a
power of 2.

• 0.25 = 1/4 can be represented with base 2 because the denominator is already a
power of 2.

• 0.1 = 1/10 cannot be represented because the denominator cannot be converted to
a power of 2.

• 0.2 = 2/10 cannot be represented because the denominator cannot be converted to
a power of 2.

Now we can see why 0.1 + 0.2 doesn’t produce a correct result: internally, neither of the
two operands can be represented precisely.

The only way to compute precisely with decimal fractions is by internally switching to
base 10. For many programming languages, base 2 is the default and base 10 an option.
For example:

• Java has the class BigDecimal.
• Python has the module decimal.

There are plans to add something similar to JavaScript: the ECMAScript proposal “Deci-
mal”. Until that happens, we can use libraries such as big.js.

18.9 Integer numbers in JavaScript
Integer numbers are normal (floating point) numbers without decimal fractions:

> 1 === 1.0

true

> Number.isInteger(1.0)

true

In this section, we’ll look at a few tools for working with these pseudo-integers. JavaScript
also supports bigints, which are real integers.

18.9.1 Converting to integer
The recommended way of converting numbers to integers is to use one of the rounding
methods of the Math object:

https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html
https://docs.python.org/3/library/decimal.html
https://github.com/tc39/proposal-decimal
https://github.com/tc39/proposal-decimal
https://github.com/MikeMcl/big.js/

18.9 Integer numbers in JavaScript 151

• Math.floor(n): returns the largest integer i ≤ n

> Math.floor(2.1)

2

> Math.floor(2.9)

2

• Math.ceil(n): returns the smallest integer i ≥ n

> Math.ceil(2.1)

3

> Math.ceil(2.9)

3

• Math.round(n): returns the integer that is “closest” to nwith __.5 being rounded up
– for example:

> Math.round(2.4)

2

> Math.round(2.5)

3

• Math.trunc(n): removes any decimal fraction (after the point) that n has, therefore
turning it into an integer.

> Math.trunc(2.1)

2

> Math.trunc(2.9)

2

For more information on rounding, consult “Rounding” (§19.3).

18.9.2 Ranges of integer numbers in JavaScript
These are important ranges of integer numbers in JavaScript:

• Safe integers: can be represented “safely” by JavaScript (more on what that means
in the next subsection)

– Precision: 53 bits plus sign
– Range: (−253, 253)

• Array indices
– Precision: 32 bits, unsigned
– Range: [0, 232−1) (excluding the maximum length)
– Typed Arrays have a larger range of 53 bits (safe and unsigned)

• Bitwise operators (bitwise Or, etc.)
– Precision: 32 bits
– Range of unsigned right shift (>>>): unsigned, [0, 232)
– Range of all other bitwise operators: signed, [−231, 231)

18.9.3 Safe integers
This is the range of integer numbers that are safe in JavaScript (53 bits plus a sign):

152 18 Numbers

[–(253)+1, 253–1]

An integer is safe if it is represented by exactly one JavaScript number. Given that JavaScript
numbers are encoded as a fraction multiplied by 2 to the power of an exponent, higher in-
tegers can also be represented, but then there are gaps between them.

For example (18014398509481984 is 254):

> 18014398509481984

18014398509481984

> 18014398509481985

18014398509481984

> 18014398509481986

18014398509481984

> 18014398509481987

18014398509481988

The following properties of Number help determine if an integer is safe:

assert.equal(Number.MAX_SAFE_INTEGER, (2 ** 53) - 1);

assert.equal(Number.MIN_SAFE_INTEGER, -Number.MAX_SAFE_INTEGER);

assert.equal(Number.isSafeInteger(5), true);

assert.equal(Number.isSafeInteger('5'), false);

assert.equal(Number.isSafeInteger(5.1), false);

assert.equal(Number.isSafeInteger(Number.MAX_SAFE_INTEGER), true);

assert.equal(Number.isSafeInteger(Number.MAX_SAFE_INTEGER+1), false);

Exercise: Detecting safe integers
exercises/numbers-math/is_safe_integer_test.mjs

Safe computations

Let’s look at computations involving unsafe integers.

The following result is incorrect and unsafe, even though both of its operands are safe:

> 9007199254740990 + 3

9007199254740992

The following result is safe, but incorrect. The first operand is unsafe; the second operand
is safe:

> 9007199254740995 - 10

9007199254740986

Therefore, the result of an expression a op b is correct if and only if:

isSafeInteger(a) && isSafeInteger(b) && isSafeInteger(a op b)

That is, both operands and the result must be safe.

18.10 Bitwise operators 153

18.10 Bitwise operators
18.10.1 Internally, bitwise operators work with 32-bit integers
Internally, JavaScript’s bitwise operators work with 32-bit integers. They produce their
results in the following steps:

• Input (JavaScript numbers): The 1–2 operands are first converted to JavaScript num-
bers (64-bit floating point numbers) and then to 32-bit integers.

• Computation (32-bit integers): The actual operation processes 32-bit integers and
produces a 32-bit integer.

• Output (JavaScript number): Before returning the result, it is converted back to a
JavaScript number.

The types of operands and results
For each bitwise operator, this book mentions the types of its operands and its result. Each
type is always one of the following two:

Type Description Size Range
Int32 signed 32-bit integer 32 bits incl. sign [−231, 231)
Uint32 unsigned 32-bit integer 32 bits [0, 232)

Considering the previously mentioned steps, I recommend to pretend that bitwise oper-
ators internally work with unsigned 32-bit integers (step “computation”) and that Int32
and Uint32 only affect how JavaScript numbers are converted to and from integers (steps
“input” and “output”).

Displaying JavaScript numbers as unsigned 32-bit integers
While exploring the bitwise operators, it occasionally helps to display JavaScript numbers
as unsigned 32-bit integers in binary notation. That’s what b32() does (whose implemen-
tation is shown later):

assert.equal(

b32(-1),

'11111111111111111111111111111111');

assert.equal(

b32(1),

'00000000000000000000000000000001');

assert.equal(

b32(2 ** 31),

'10000000000000000000000000000000');

18.10.2 Bitwise Not
The bitwise Not operator (table 18.5) inverts each binary digit of its operand:

> b32(~0b100)

'11111111111111111111111111111011'

154 18 Numbers

Operation Name Type signature
~num Bitwise Not, ones’ complement Int32→Int32 ES1

Table 18.5: The bitwise Not operator.

This so-called ones’ complement is similar to a negative for some arithmetic operations. For
example, adding an integer to its ones’ complement is always -1:

> 4 + ~4

-1

> -11 + ~-11

-1

18.10.3 Binary bitwise operators

Operation Name Type signature
num1 & num2 Bitwise And Int32 × Int32→Int32 ES1
num1 ¦ num2 Bitwise Or Int32 × Int32→Int32 ES1
num1 ^ num2 Bitwise Xor Int32 × Int32→Int32 ES1

Table 18.6: Binary bitwise operators.

The binary bitwise operators (table 18.6) combine the bits of their operands to produce
their results:

> (0b1010 & 0b0011).toString(2).padStart(4, '0')

'0010'

> (0b1010 | 0b0011).toString(2).padStart(4, '0')

'1011'

> (0b1010 ^ 0b0011).toString(2).padStart(4, '0')

'1001'

18.10.4 Bitwise shift operators

Operation Name Type signature
num << count Left shift Int32 × Uint32→Int32 ES1
num >> count Signed right shift Int32 × Uint32→Int32 ES1
num >>> count Unsigned right shift Uint32 × Uint32→Uint32 ES1

Table 18.7: Bitwise shift operators.

The shift operators (table 18.7) move binary digits to the left or to the right:
> (0b10 << 1).toString(2)

'100'

>> preserves highest bit, >>> doesn’t:
> b32(0b10000000000000000000000000000010 >> 1)

'11000000000000000000000000000001'

> b32(0b10000000000000000000000000000010 >>> 1)

'01000000000000000000000000000001'

18.11 Quick reference: numbers 155

18.10.5 b32(): displaying unsigned 32-bit integers in binary notation
We have now used b32() a few times. The following code is an implementation of it:

/**

* Return a string representing n as a 32-bit unsigned integer,

* in binary notation.

*/

function b32(n) {

// >>> ensures highest bit isn’t interpreted as a sign

return (n >>> 0).toString(2).padStart(32, '0');

}

assert.equal(

b32(6),

'00000000000000000000000000000110');

n >>> 0means that we are shifting n zero bits to the right. Therefore, in principle, the >>>
operator does nothing, but it still coerces n to an unsigned 32-bit integer:

> 12 >>> 0

12

> -12 >>> 0

4294967284

> (2**32 + 1) >>> 0

1

18.11 Quick reference: numbers
18.11.1 Global functions for numbers
JavaScript has the following four global functions for numbers:

• isFinite()

• isNaN()

• parseFloat()

• parseInt()

However, it is better to use the corresponding methods of Number (Number.isFinite(),
etc.), which have fewer pitfalls. They were introduced with ES6 and are discussed below.

18.11.2 Number.*: data properties

• Number.EPSILON [ES6]

The difference between 1 and the next representable floating point number. In gen-
eral, a machine epsilon provides an upper bound for rounding errors in floating
point arithmetic.

– Approximately: 2.2204460492503130808472633361816 × 10-16

• Number.MAX_SAFE_INTEGER [ES6]

https://en.wikipedia.org/wiki/Machine_epsilon

156 18 Numbers

The largest integer that JavaScript can represent unambiguously (253−1).

• Number.MAX_VALUE [ES1]

The largest positive finite JavaScript number.

– Approximately: 1.7976931348623157 × 10308

• Number.MIN_SAFE_INTEGER [ES6]

The smallest integer that JavaScript can represent unambiguously (−253+1).

• Number.MIN_VALUE [ES1]

The smallest positive JavaScript number. Approximately 5 × 10−324.

• Number.NaN [ES1]

The same as the global variable NaN.

• Number.NEGATIVE_INFINITY [ES1]

The same as -Number.POSITIVE_INFINITY.

• Number.POSITIVE_INFINITY [ES1]

The same as the global variable Infinity.

18.11.3 Number.*: methods
• Number.isFinite(num) [ES6]

Returns true if num is an actual number (neither Infinity nor -Infinity nor NaN).
> Number.isFinite(Infinity)

false

> Number.isFinite(-Infinity)

false

> Number.isFinite(NaN)

false

> Number.isFinite(123)

true

• Number.isInteger(num) [ES6]

Returns true if num is a number and does not have a decimal fraction.
> Number.isInteger(-17)

true

> Number.isInteger(33)

true

> Number.isInteger(33.1)

false

> Number.isInteger('33')

18.11 Quick reference: numbers 157

false

> Number.isInteger(NaN)

false

> Number.isInteger(Infinity)

false

• Number.isNaN(num) [ES6]

Returns true if num is the value NaN:

> Number.isNaN(NaN)

true

> Number.isNaN(123)

false

> Number.isNaN('abc')

false

• Number.isSafeInteger(num) [ES6]

Returns true if num is a number and unambiguously represents an integer.

• Number.parseFloat(str) [ES6]

Coerces its parameter to string and parses it as a floating point number. For convert-
ing strings to numbers, Number() (which ignores leading and trailing whitespace)
is usually a better choice than Number.parseFloat() (which ignores leading white-
space and illegal trailing characters and can hide problems).

> Number.parseFloat(' 123.4#')

123.4

> Number(' 123.4#')

NaN

• Number.parseInt(str, radix=10) [ES6]

Coerces its parameter to string and parses it as an integer, ignoring leading white-
space and illegal trailing characters:

> Number.parseInt(' 123#')

123

The parameter radix specifies the base of the number to be parsed:

> Number.parseInt('101', 2)

5

> Number.parseInt('FF', 16)

255

Do not use this method to convert numbers to integers: coercing to string is ineffi-
cient. And stopping before the first non-digit is not a good algorithm for removing
the fraction of a number. Here is an example where it goes wrong:

> Number.parseInt(1e21, 10) // wrong

1

158 18 Numbers

It is better to use one of the rounding functions of Math to convert a number to an
integer:

> Math.trunc(1e21) // correct

1e+21

18.11.4 Number.prototype.*

(Number.prototype is where the methods of numbers are stored.)

• Number.prototype.toExponential(fractionDigits?) [ES3]

– Returns a string that represents the number via exponential notation.
– With fractionDigits, we can specify, how many digits should be shown of
the number that is multiplied with the exponent.
* The default is to show as many digits as necessary.

Example: number too small to get a positive exponent via .toString().

> 1234..toString()

'1234'

> 1234..toExponential() // 3 fraction digits

'1.234e+3'

> 1234..toExponential(5)

'1.23400e+3'

> 1234..toExponential(1)

'1.2e+3'

Example: fraction not small enough to get a negative exponent via .toString().

> 0.003.toString()

'0.003'

> 0.003.toExponential()

'3e-3'

• Number.prototype.toFixed(fractionDigits=0) [ES3]

Returns an exponent-free string representation of the number, rounded to frac-

tionDigits digits.

> 0.00000012.toString() // with exponent

'1.2e-7'

> 0.00000012.toFixed(10) // no exponent

'0.0000001200'

> 0.00000012.toFixed()

'0'

If the number is 1021 or greater, even .toFixed() uses an exponent:

> (10 ** 21).toFixed()

'1e+21'

18.11 Quick reference: numbers 159

• Number.prototype.toPrecision(precision?) [ES3]

– Works like .toString(), but precision specifies how many digits should be
shown overall.

– If precision is missing, .toString() is used.
> 1234..toPrecision(3) // requires exponential notation

'1.23e+3'

> 1234..toPrecision(4)

'1234'

> 1234..toPrecision(5)

'1234.0'

> 1.234.toPrecision(3)

'1.23'

• Number.prototype.toString(radix=10) [ES1]

Returns a string representation of the number.
By default, we get a base 10 numeral as a result:

> 123.456.toString()

'123.456'

If we want the numeral to have a different base, we can specify it via radix:
> 4..toString(2) // binary (base 2)

'100'

> 4.5.toString(2)

'100.1'

> 255..toString(16) // hexadecimal (base 16)

'ff'

> 255.66796875.toString(16)

'ff.ab'

> 1234567890..toString(36)

'kf12oi'

Number.parseInt() provides the inverse operation: it converts a string that contains
an integer (no fraction!) numeral with a given base, to a number.

> Number.parseInt('kf12oi', 36)

1234567890

18.11.5 Sources
• Wikipedia
• TypeScript’s built-in typings
• MDN web docs for JavaScript

https://github.com/microsoft/TypeScript/tree/main/src/lib/
https://developer.mozilla.org/en-US/docs/Web/JavaScript

160 18 Numbers

• ECMAScript language specification

https://tc39.es/ecma262/

Chapter 19

Math

19.1 Data properties . 161
19.2 Exponents, roots, logarithms . 162
19.3 Rounding . 163
19.4 Trigonometric Functions . 164
19.5 Various other functions . 166
19.6 Sources . 167

Math is an object with data properties and methods for processing numbers. You can see it
as a poor man’s module: It was created long before JavaScript had modules.

19.1 Data properties

• Math.E: number [ES1]

Euler’s number, base of the natural logarithms, approximately 2.7182818284590452354.

• Math.LN10: number [ES1]

The natural logarithm of 10, approximately 2.302585092994046.

• Math.LN2: number [ES1]

The natural logarithm of 2, approximately 0.6931471805599453.

• Math.LOG10E: number [ES1]

The logarithm of e to base 10, approximately 0.4342944819032518.

• Math.LOG2E: number [ES1]

The logarithm of e to base 2, approximately 1.4426950408889634.

161

162 19 Math

• Math.PI: number [ES1]

The mathematical constant π, ratio of a circle’s circumference to its diameter, ap-
proximately 3.1415926535897932.

• Math.SQRT1_2: number [ES1]

The square root of 1/2, approximately 0.7071067811865476.

• Math.SQRT2: number [ES1]

The square root of 2, approximately 1.4142135623730951.

19.2 Exponents, roots, logarithms

• Math.cbrt(x: number): number [ES6]

Returns the cube root of x.
> Math.cbrt(8)

2

• Math.exp(x: number): number [ES1]

Returns ex (e being Euler’s number). The inverse of Math.log().
> Math.exp(0)

1

> Math.exp(1) === Math.E

true

• Math.expm1(x: number): number [ES6]

Returns Math.exp(x)-1. The inverse of Math.log1p(). Very small numbers (fractions
close to 0) are represented with a higher precision. Therefore, this function returns
more precise values whenever .exp() returns values close to 1.

• Math.log(x: number): number [ES1]

Returns the natural logarithmof x (to base e, Euler’s number). The inverse of Math.exp().
> Math.log(1)

0

> Math.log(Math.E)

1

> Math.log(Math.E ** 2)

2

• Math.log1p(x: number): number [ES6]

Returns Math.log(1 + x). The inverse of Math.expm1(). Very small numbers (frac-
tions close to 0) are represented with a higher precision. Therefore, you can provide
this function with a more precise argument whenever the argument for .log() is
close to 1.

19.3 Rounding 163

• Math.log10(x: number): number [ES6]

Returns the logarithm of x to base 10. The inverse of 10 ** x.

> Math.log10(1)

0

> Math.log10(10)

1

> Math.log10(100)

2

• Math.log2(x: number): number [ES6]

Returns the logarithm of x to base 2. The inverse of 2 ** x.

> Math.log2(1)

0

> Math.log2(2)

1

> Math.log2(4)

2

• Math.pow(x: number, y: number): number [ES1]

Returns xy, x to the power of y. The same as x ** y.

> Math.pow(2, 3)

8

> Math.pow(25, 0.5)

5

• Math.sqrt(x: number): number [ES1]

Returns the square root of x. The inverse of x ** 2.

> Math.sqrt(9)

3

19.3 Rounding
Rounding means converting an arbitrary number to an integer (a number without a deci-
mal fraction). The following functions implement different approaches to rounding.

• Math.ceil(x: number): number [ES1]

Returns the smallest (closest to −∞) integer i with x ≤ i.

> Math.ceil(2.1)

3

> Math.ceil(2.9)

3

• Math.floor(x: number): number [ES1]

164 19 Math

Returns the largest (closest to +∞) integer i with i ≤ x.

> Math.floor(2.1)

2

> Math.floor(2.9)

2

• Math.round(x: number): number [ES1]

Returns the integer that is closest to x. If the decimal fraction of x is .5 then .round()

rounds up (to the integer closer to positive infinity):

> Math.round(2.4)

2

> Math.round(2.5)

3

• Math.trunc(x: number): number [ES6]

Removes the decimal fraction of x and returns the resulting integer.

> Math.trunc(2.1)

2

> Math.trunc(2.9)

2

Table 19.1 shows the results of the rounding functions for a few representative inputs.

-2.9 -2.5 -2.1 2.1 2.5 2.9

Math.floor -3 -3 -3 2 2 2

Math.ceil -2 -2 -2 3 3 3

Math.round -3 -2 -2 2 3 3

Math.trunc -2 -2 -2 2 2 2

Table 19.1: Rounding functions of Math. Note how things change with negative numbers
because “larger” always means “closer to positive infinity”.

19.4 Trigonometric Functions
All angles are specified in radians. Use the following two functions to convert between
degrees and radians.

function degreesToRadians(degrees) {

return degrees / 180 * Math.PI;

}

assert.equal(degreesToRadians(90), Math.PI/2);

function radiansToDegrees(radians) {

return radians / Math.PI * 180;

19.4 Trigonometric Functions 165

}

assert.equal(radiansToDegrees(Math.PI), 180);

• Math.acos(x: number): number [ES1]

Returns the arc cosine (inverse cosine) of x.
> Math.acos(0)

1.5707963267948966

> Math.acos(1)

0

• Math.acosh(x: number): number [ES6]

Returns the inverse hyperbolic cosine of x.

• Math.asin(x: number): number [ES1]

Returns the arc sine (inverse sine) of x.
> Math.asin(0)

0

> Math.asin(1)

1.5707963267948966

• Math.asinh(x: number): number [ES6]

Returns the inverse hyperbolic sine of x.

• Math.atan(x: number): number [ES1]

Returns the arc tangent (inverse tangent) of x.

• Math.atanh(x: number): number [ES6]

Returns the inverse hyperbolic tangent of x.

• Math.atan2(y: number, x: number): number [ES1]

Returns the arc tangent of the quotient y/x.

• Math.cos(x: number): number [ES1]

Returns the cosine of x.
> Math.cos(0)

1

> Math.cos(Math.PI)

-1

• Math.cosh(x: number): number [ES6]

Returns the hyperbolic cosine of x.

• Math.hypot(...values: Array<number>): number [ES6]

Returns the square root of the sum of the squares of values (Pythagoras’ theorem):

166 19 Math

> Math.hypot(3, 4)

5

• Math.sin(x: number): number [ES1]

Returns the sine of x.
> Math.sin(0)

0

> Math.sin(Math.PI / 2)

1

• Math.sinh(x: number): number [ES6]

Returns the hyperbolic sine of x.

• Math.tan(x: number): number [ES1]

Returns the tangent of x.
> Math.tan(0)

0

> Math.tan(1)

1.5574077246549023

• Math.tanh(x: number): number; [ES6]

Returns the hyperbolic tangent of x.

19.5 Various other functions
• Math.abs(x: number): number [ES1]

Returns the absolute value of x.
> Math.abs(3)

3

> Math.abs(-3)

3

> Math.abs(0)

0

• Math.clz32(x: number): number [ES6]

Counts the leading zero bits in the 32-bit integer x. Used in DSP algorithms.
> Math.clz32(0b01000000000000000000000000000000)

1

> Math.clz32(0b00100000000000000000000000000000)

2

> Math.clz32(2)

30

> Math.clz32(1)

31

19.6 Sources 167

• Math.max(...values: Array<number>): number [ES1]

Converts values to numbers and returns the largest one.
> Math.max(3, -5, 24)

24

• Math.min(...values: Array<number>): number [ES1]

Converts values to numbers and returns the smallest one.
> Math.min(3, -5, 24)

-5

• Math.random(): number [ES1]

Returns a pseudo-random number n where 0 ≤ n < 1.
/** Returns a random integer i with 0 <= i < max */

function getRandomInteger(max) {

return Math.floor(Math.random() * max);

}

• Math.sign(x: number): number [ES6]

Returns the sign of a number:
> Math.sign(-8)

-1

> Math.sign(0)

0

> Math.sign(3)

1

19.6 Sources
• Wikipedia
• TypeScript’s built-in typings
• MDN web docs for JavaScript
• ECMAScript language specification

https://github.com/microsoft/TypeScript/tree/main/src/lib/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://tc39.es/ecma262/

168 19 Math

Chapter 20

Bigints – arbitrary-precision
integers [ES2020] (advanced)

20.1 Why bigints? . 170
20.2 Bigints . 170

20.2.1 Going beyond 53 bits for integers 171
20.2.2 Example: using bigints . 171

20.3 Bigint literals . 172
20.3.1 Underscores (_) as separators in bigint literals [ES2021] 172

20.4 Reusing number operators for bigints (overloading) 172
20.4.1 Arithmetic operators . 173
20.4.2 Ordering operators . 173
20.4.3 Bitwise operators . 173
20.4.4 Loose equality (==) and inequality (!=) 175
20.4.5 Strict equality (===) and inequality (!==) 175

20.5 The wrapper constructor BigInt . 176
20.5.1 BigInt as a constructor and as a function 176
20.5.2 BigInt.prototype.*methods . 177
20.5.3 BigInt.*methods . 177
20.5.4 Casting and 64-bit integers . 178

20.6 Coercing bigints to other primitive types 178
20.7 TypedArrays and DataView operations for 64-bit values 178
20.8 Bigints and JSON . 178

20.8.1 Stringifying bigints . 179
20.8.2 Parsing bigints . 179

20.9 FAQ: Bigints . 179
20.9.1 How do I decide when to use numbers and when to use bigints? . . 179
20.9.2 Why not just increase the precision of numbers in the same manner

as is done for bigints? . 180

169

170 20 Bigints – arbitrary-precision integers [ES2020] (advanced)

In this chapter, we take a look at bigints, JavaScript’s integers whose storage space grows
and shrinks as needed.

20.1 Why bigints?
Before ECMAScript 2020, JavaScript handled integers as follows:

• There only was a single type for floating point numbers and integers: 64-bit floating
point numbers (IEEE 754 double precision).

• Under the hood, most JavaScript engines transparently supported integers: If a
number has no decimal digits and iswithin a certain range, it can internally be stored
as a genuine integer. This representation is called small integer and usually fits into
32 bits. For example, the range of small integers on the 64-bit version of the V8
engine is from −231 to 231−1 (source).

• JavaScript numbers could also represent integers beyond the small integer range,
as floating point numbers. Here, the safe range is plus/minus 53 bits. For more
information on this topic, see “Safe integers” (§18.9.3).

Sometimes, we need more than signed 53 bits – for example:

• X (formerly Twitter) uses 64-bit integers as IDs for posts (source). In JavaScript, these
IDs had to be stored in strings.

• Financial technology uses so-called big integers (integers with arbitrary precision)
to represent amounts of money. Internally, the amounts are multiplied so that the
decimal numbers disappear. For example, USD amounts are multiplied by 100 so
that the cents disappear.

20.2 Bigints
Bigint is a new primitive data type for integers. Bigints don’t have a fixed storage size in
bits; their sizes adapt to the integers they represent:

• Small integers are represented with fewer bits than large integers.
• There is no negative lower limit or positive upper limit for the integers that can be

represented.

A bigint literal is a sequence of one or more digits, suffixed with an n – for example:

123n

Operators such as - and * are overloaded and work with bigints:

> 123n * 456n

56088n

Bigints are primitive values. typeof returns a new result for them:

> typeof 123n

'bigint'

https://medium.com/fhinkel/v8-internals-how-small-is-a-small-integer-e0badc18b6da
https://developer.x.com/en/docs/twitter-ids

20.2 Bigints 171

20.2.1 Going beyond 53 bits for integers
JavaScript numbers are internally represented as a fraction multiplied by an exponent (see
“Background: floating point precision” (§18.8) for details). As a consequence, if we go
beyond the highest safe integer 253−1, there are still some integers that can be represented,
but with gaps between them:

> 2**53 - 2 // safe

9007199254740990

> 2**53 - 1 // safe

9007199254740991

> 2**53 // unsafe, same as next integer

9007199254740992

> 2**53 + 1

9007199254740992

> 2**53 + 2

9007199254740994

> 2**53 + 3

9007199254740996

> 2**53 + 4

9007199254740996

> 2**53 + 5

9007199254740996

Bigints enable us to go beyond 53 bits:

> 2n**53n

9007199254740992n

> 2n**53n + 1n

9007199254740993n

> 2n**53n + 2n

9007199254740994n

20.2.2 Example: using bigints
This is what using bigints looks like (code based on an example in the proposal):

/**

* Takes a bigint as an argument and returns a bigint

*/

function nthPrime(nth) {

if (typeof nth !== 'bigint') {

throw new TypeError();

}

function isPrime(p) {

for (let i = 2n; i < p; i++) {

if (p % i === 0n) return false;

}

return true;

172 20 Bigints – arbitrary-precision integers [ES2020] (advanced)

}

for (let i = 2n; ; i++) {

if (isPrime(i)) {

if (--nth === 0n) return i;

}

}

}

assert.deepEqual(

[1n, 2n, 3n, 4n, 5n].map(nth => nthPrime(nth)),

[2n, 3n, 5n, 7n, 11n]

);

20.3 Bigint literals
Like number literals, bigint literals support several bases:

• Decimal: 123n
• Hexadecimal: 0xFFn
• Binary: 0b1101n
• Octal: 0o777n

Negative bigints are produced by prefixing the unary minus operator: -0123n

20.3.1 Underscores (_) as separators in bigint literals [ES2021]

Just like in number literals, we can use underscores (_) as separators in bigint literals:
const massOfEarthInKg = 6_000_000_000_000_000_000_000_000n;

Bigints are often used to represent money in the financial technical sector. Separators can
help here, too:

const priceInCents = 123_000_00n; // 123 thousand dollars

As with number literals, two restrictions apply:
• We can only put an underscore between two digits.
• We can use at most one underscore in a row.

20.4 Reusing number operators for bigints (overloading)
With most operators, we are not allowed to mix bigints and numbers. If we do, exceptions
are thrown:

> 2n + 1

TypeError: Cannot mix BigInt and other types, use explicit conversions

The reason for this rule is that there is no general way of coercing a number and a bigint
to a common type: numbers can’t represent bigints beyond 53 bits, bigints can’t represent
fractions. Therefore, the exceptions warn us about typos that may lead to unexpected
results.

20.4 Reusing number operators for bigints (overloading) 173

For example, should the result of the following expression be 9007199254740993n or 9007199254740992?
2**53 + 1n

It is also not clear what the result of the following expression should be:
2n**53n * 3.3

20.4.1 Arithmetic operators
Binary +, binary -, *, ** work as expected:

> 7n * 3n

21n

It is OK to mix bigints and strings:
> 6n + ' apples'

'6 apples'

/, % round towards zero (like Math.trunc()):
> 1n / 2n

0n

Unary - works as expected:
> -(-64n)

64n

Unary + is not supported for bigints because much code relies on it coercing its operand
to number:

> +23n

TypeError: Cannot convert a BigInt value to a number

20.4.2 Ordering operators
Ordering operators <, >, >=, <= work as expected:

> 17n <= 17n

true

> 3n > -1n

true

Comparing bigints and numbers does not pose any risks. Therefore, we can mix bigints
and numbers:

> 3n > -1

true

20.4.3 Bitwise operators
Bitwise operators for numbers
Bitwise operators interpret numbers as 32-bit integers. These integers are either unsigned
or signed. If they are signed, the negative of an integer is its two’s complement (adding an

174 20 Bigints – arbitrary-precision integers [ES2020] (advanced)

integer to its two’s complement – while ignoring overflow – produces zero):
> 2**32-1 >> 0

-1

Due to these integers having a fixed size, their highest bits indicate their signs:
> 2**31 >> 0 // highest bit is 1

-2147483648

> 2**31 - 1 >> 0 // highest bit is 0

2147483647

Bitwise operators for bigints
For bigints, bitwise operators interpret a negative sign as an infinite two’s complement –
for example:

• -1 is ···111111 (ones extend infinitely to the left)
• -2 is ···111110
• -3 is ···111101
• -4 is ···111100

That is, a negative sign is more of an external flag and not represented as an actual bit.

Bitwise Not (~)
Bitwise Not (~) inverts all bits:

> ~0b10n

-3n

> ~0n

-1n

> ~-2n

1n

Binary bitwise operators (&, |, ^)
Applying binary bitwise operators to bigints works analogously to applying them to num-
bers:

> (0b1010n | 0b0111n).toString(2)

'1111'

> (0b1010n & 0b0111n).toString(2)

'10'

> (0b1010n | -1n).toString(2)

'-1'

> (0b1010n & -1n).toString(2)

'1010'

Bitwise signed shift operators (<< and >>)
The signed shift operators for bigints preserve the sign of a number:

20.4 Reusing number operators for bigints (overloading) 175

> 2n << 1n

4n

> -2n << 1n

-4n

> 2n >> 1n

1n

> -2n >> 1n

-1n

Recall that -1n is a sequence of ones that extends infinitely to the left. That’s why shifting
it left doesn’t change it:

> -1n >> 20n

-1n

Bitwise unsigned right shift operator (>>>)

There is no unsigned right shift operator for bigints:

> 2n >>> 1n

TypeError: BigInts have no unsigned right shift, use >> instead

Why? The idea behind unsigned right shifting is that a zero is shifted in “from the left”.
In other words, the assumption is that there is a finite amount of binary digits.

However, with bigints, there is no “left”, their binary digits extend infinitely. This is espe-
cially important with negative numbers.

Signed right shift works even with an infinite number of digits because the highest digit
is preserved. Therefore, it can be adapted to bigints.

20.4.4 Loose equality (==) and inequality (!=)
Loose equality (==) and inequality (!=) coerce values:

> 0n == false

true

> 1n == true

true

> 123n == 123

true

> 123n == '123'

true

20.4.5 Strict equality (===) and inequality (!==)
Strict equality (===) and inequality (!==) only consider values to be equal if they have the
same type:

176 20 Bigints – arbitrary-precision integers [ES2020] (advanced)

> 123n === 123

false

> 123n === 123n

true

20.5 The wrapper constructor BigInt
Analogously to numbers, bigints have the associated wrapper constructor BigInt.

20.5.1 BigInt as a constructor and as a function
• new BigInt(): throws a TypeError.
• BigInt(x) converts arbitrary values x to bigint. This works similarly to Number(),

with several differences which are summarized in table 20.1 and explained in more
detail in the following subsections.

x BigInt(x)

undefined Throws TypeError
null Throws TypeError
boolean false→0n, true→1n

number Example: 123→123n

Non-integer→throws RangeError
bigint x (no change)
string Example: '123'→123n

Unparsable→throws SyntaxError
symbol Throws TypeError
object Configurable (e.g. via .valueOf())

Table 20.1: Converting values to bigints.

Converting undefined and null

A TypeError is thrown if x is either undefined or null:
> BigInt(undefined)

TypeError: Cannot convert undefined to a BigInt

> BigInt(null)

TypeError: Cannot convert null to a BigInt

Converting strings
If a string does not represent an integer, BigInt() throws a SyntaxError (whereas Number()
returns the error value NaN):

> BigInt('abc')

SyntaxError: Cannot convert abc to a BigInt

The suffix 'n' is not allowed:

20.5 The wrapper constructor BigInt 177

> BigInt('123n')

SyntaxError: Cannot convert 123n to a BigInt

All bases of bigint literals are allowed:

> BigInt('123')

123n

> BigInt('0xFF')

255n

> BigInt('0b1101')

13n

> BigInt('0o777')

511n

Non-integer numbers produce exceptions

> BigInt(123.45)

RangeError: The number 123.45 cannot be converted to a BigInt because

it is not an integer

> BigInt(123)

123n

Converting objects

How objects are converted to bigints can be configured – for example, by overriding .val-

ueOf():

> BigInt({valueOf() {return 123n}})

123n

20.5.2 BigInt.prototype.*methods
BigInt.prototype holds the methods “inherited” by primitive bigints:

• BigInt.prototype.toLocaleString(locales?, options?)

• BigInt.prototype.toString(radix?)

• BigInt.prototype.valueOf()

20.5.3 BigInt.*methods
• BigInt.asIntN(width, theInt)

Casts theInt to width bits (signed). This influences how the value is represented internally.

• BigInt.asUintN(width, theInt)

Casts theInt to width bits (unsigned).

178 20 Bigints – arbitrary-precision integers [ES2020] (advanced)

20.5.4 Casting and 64-bit integers
Casting allows us to create integer values with a specific number of bits. If we want to
restrict ourselves to just 64-bit integers, we have to always cast:

const uint64a = BigInt.asUintN(64, 12345n);

const uint64b = BigInt.asUintN(64, 67890n);

const result = BigInt.asUintN(64, uint64a * uint64b);

20.6 Coercing bigints to other primitive types
This table show what happens if we convert bigints to other primitive types:

Convert to Explicit conversion Coercion (implicit conversion)
boolean Boolean(0n)→false !0n→true

Boolean(int)→true !int→false

number Number(7n)→7 (example) +int→TypeError (1)
string String(7n)→'7' (example) ''+7n→'7' (example)

Footnote:
• (1) Unary + is not supported for bigints, because much code relies on it coercing its

operand to number.

20.7 TypedArrays and DataView operations for 64-bit val-
ues

Thanks to bigints, Typed Arrays and DataViews can support 64-bit values:
• Typed Array constructors:

– BigInt64Array

– BigUint64Array

• DataView methods:
– DataView.prototype.getBigInt64()

– DataView.prototype.setBigInt64()

– DataView.prototype.getBigUint64()

– DataView.prototype.setBigUint64()

20.8 Bigints and JSON
The JSON standard is fixed and won’t change. The upside is that old JSON parsing code
will never be outdated. The downside is that JSON can’t be extended to contain bigints.
Stringifying bigints throws exceptions:

> JSON.stringify(123n)

TypeError: Do not know how to serialize a BigInt

> JSON.stringify([123n])

TypeError: Do not know how to serialize a BigInt

20.9 FAQ: Bigints 179

20.8.1 Stringifying bigints
Therefore, our best option is to store bigints in strings:

const bigintPrefix = '[[bigint]]';

function bigintReplacer(_key, value) {

if (typeof value === 'bigint') {

return bigintPrefix + value;

}

return value;

}

const data = { value: 9007199254740993n };

assert.equal(

JSON.stringify(data, bigintReplacer),

'{"value":"[[bigint]]9007199254740993"}'

);

20.8.2 Parsing bigints
The following code shows how to parse strings such as the one that we have produced in
the previous example.

function bigintReviver(_key, value) {

if (typeof value === 'string' && value.startsWith(bigintPrefix)) {

return BigInt(value.slice(bigintPrefix.length));

}

return value;

}

const str = '{"value":"[[bigint]]9007199254740993"}';

assert.deepEqual(

JSON.parse(str, bigintReviver),

{ value: 9007199254740993n }

);

20.9 FAQ: Bigints
20.9.1 How do I decide when to use numbers and when to use bigints?
My recommendations:

• Use numbers for up to 53 bits and for Array indices. Rationale: They already appear
everywhere and are handled efficiently by most engines (especially if they fit into
31 bits). Appearances include:

– Array.prototype.forEach()

– Array.prototype.entries()

• Use bigints for large numeric values: If your fraction-less values don’t fit into 53
bits, you have no choice but to move to bigints.

180 20 Bigints – arbitrary-precision integers [ES2020] (advanced)

All existing web APIs return and accept only numbers and will only upgrade to bigint on
a case-by-case basis.

20.9.2 Why not just increase the precision of numbers in the same man-
ner as is done for bigints?

One could conceivably split number into integer and double, but that would add many
new complexities to the language (several integer-only operators etc.). I’ve sketched the
consequences in a Gist.

Acknowledgements:
• Thanks to Daniel Ehrenberg for reviewing an earlier version of this content.
• Thanks to Dan Callahan for reviewing an earlier version of this content.

https://gist.github.com/rauschma/13d48d1c49615ce2396ce7c9e45d4cd1

Chapter 21

Unicode – a brief introduction
(advanced)

21.1 Code points vs. code units . 181
21.1.1 Code points . 182
21.1.2 Encoding Unicode code points: UTF-32, UTF-16, UTF-8 182

21.2 Encodings used in web development: UTF-16 and UTF-8 184
21.2.1 Source code internally: UTF-16 . 184
21.2.2 Strings: UTF-16 . 184
21.2.3 Source code in files: UTF-8 . 185

21.3 Grapheme clusters – the real characters 185
21.3.1 Grapheme clusters vs. glyphs . 185

Unicode is a standard for representing and managing text in most of the world’s writ-
ing systems. Virtually all modern software that works with text, supports Unicode. The
standard is maintained by the Unicode Consortium. A new version of the standard is pub-
lished every year (with new emojis, etc.). Unicode version 1.0.0 was published in October
1991.

21.1 Code points vs. code units
Two concepts are crucial for understanding Unicode:

• Code points are numbers that represent the atomic parts of Unicode text. Most of
them represent visible symbols but they can also have other meanings such as spec-
ifying an aspect of a symbol (the accent of a letter, the skin tone of an emoji, etc.).

• Code units are numbers that encode code points, to store or transmit Unicode text.
One or more code units encode a single code point. Each code unit has the same
size, which depends on the encoding format that is used. The most popular format,

181

182 21 Unicode – a brief introduction (advanced)

UTF-8, has 8-bit code units.

21.1.1 Code points
The first version of Unicode had 16-bit code points. Since then, the number of characters
has grown considerably and the size of code points was extended to 21 bits. These 21 bits
are partitioned in 17 planes, with 16 bits each:

• Plane 0: Basic Multilingual Plane (BMP), 0x0000–0xFFFF
– Contains characters for almost all modern languages (Latin characters, Asian
characters, etc.) and many symbols.

• Plane 1: Supplementary Multilingual Plane (SMP), 0x10000–0x1FFFF
– Supports historic writing systems (e.g., Egyptian hieroglyphs and cuneiform)
and additional modern writing systems.

– Supports emojis and many other symbols.
• Plane 2: Supplementary Ideographic Plane (SIP), 0x20000–0x2FFFF

– Contains additional CJK (Chinese, Japanese, Korean) ideographs.
• Plane 3–13: Unassigned
• Plane 14: Supplementary Special-Purpose Plane (SSP), 0xE0000–0xEFFFF

– Contains non-graphical characters such as tag characters and glyph variation
selectors.

• Plane 15–16: Supplementary Private Use Area (S PUA A/B), 0x0F0000–0x10FFFF
– Available for character assignment by parties outside the ISO and the Unicode
Consortium. Not standardized.

Planes 1-16 are called supplementary planes or astral planes.

Let’s check the code points of a few characters:

> 'A'.codePointAt(0).toString(16)

'41'

> 'ü'.codePointAt(0).toString(16)

'fc'

> 'π'.codePointAt(0).toString(16)

'3c0'

> '🙂'.codePointAt(0).toString(16)

'1f642'

The hexadecimal numbers of the code points tell us that the first three characters reside in
plane 0 (within 16 bits), while the emoji resides in plane 1.

21.1.2 Encoding Unicode code points: UTF-32, UTF-16, UTF-8
The main ways of encoding code points are three Unicode Transformation Formats (UTFs):
UTF-32, UTF-16, UTF-8. The number at the end of each format indicates the size (in bits)
of its code units.

UTF-32 (Unicode Transformation Format 32)

UTF-32 uses 32 bits to store code units, resulting in one code unit per code point. This
format is the only one with fixed-length encoding; all others use a varying number of code

21.1 Code points vs. code units 183

units to encode a single code point.

UTF-16 (Unicode Transformation Format 16)

UTF-16 uses 16-bit code units. It encodes code points as follows:

• The BMP (first 16 bits of Unicode) is stored in single code units.

• Astral planes: The BMP comprises 0x10_000 code points. Given that Unicode has a
total of 0x110_000 code points, we still need to encode the remaining 0x100_000 code
points (20 bits). The BMP has two ranges of unassigned code points that provide the
necessary storage:

– Most significant 10 bits (leading surrogate, high surrogate): 0xD800-0xDBFF
– Least significant 10 bits (trailing surrogate, low surrogate): 0xDC00-0xDFFF

As a consequence, each UTF-16 code unit is either:

• A BMP code point (a scalar)
• A leading surrogate
• A trailing surrogate

If a surrogate appears on its own, without its partner, it is called a lone surrogate.

This is how the bits of the code points are distributed among the surrogates:

0bhhhhhhhhhhllllllllll // code point - 0x10000

0b110110hhhhhhhhhh // 0xD800 + 0bhhhhhhhhhh

0b110111llllllllll // 0xDC00 + 0bllllllllll

As an example, consider code point 0x1F642 (🙂) that is represented by two UTF-16 code
units – 0xD83D and 0xDE42:

> '🙂'.codePointAt(0).toString(16)

'1f642'

> '🙂'.length

2

> '🙂'.split('')

['\uD83D', '\uDE42']

Let’s derive the code units from the code point:

> (0x1F642 - 0x10000).toString(2).padStart(20, '0')

'00001111011001000010'

> (0xD800 + 0b0000111101).toString(16)

'd83d'

> (0xDC00 + 0b1001000010).toString(16)

'de42'

In contrast, code point 0x03C0 (π) is part of the BMP and therefore represented by a single
UTF-16 code unit – 0x03C0:

> 'π'.length

1

184 21 Unicode – a brief introduction (advanced)

UTF-8 (Unicode Transformation Format 8)

UTF-8 has 8-bit code units. It uses 1–4 code units to encode a code point:

Code points Code units
0000–007F 0bbbbbbb (7 bits)
0080–07FF 110bbbbb, 10bbbbbb (5+6 bits)
0800–FFFF 1110bbbb, 10bbbbbb, 10bbbbbb (4+6+6 bits)
10000–1FFFFF 11110bbb, 10bbbbbb, 10bbbbbb, 10bbbbbb (3+6+6+6 bits)

Notes:

• The bit prefix of each code unit tells us:
– Is it first in a series of code units? If yes, how many code units will follow?
– Is it second or later in a series of code units?

• The character mappings in the 0000–007F range are the same as ASCII, which leads
to a degree of backward compatibility with older software.

Three examples:

Character Code point Code units
A 0x0041 01000001
π 0x03C0 11001111, 10000000
🙂 0x1F642 11110000, 10011111, 10011001, 10000010

21.2 Encodings used inwebdevelopment: UTF-16 andUTF-
8

The Unicode encoding formats that are used in web development are: UTF-16 and UTF-8.

21.2.1 Source code internally: UTF-16
The ECMAScript specification internally represents source code as UTF-16.

21.2.2 Strings: UTF-16
The characters in JavaScript strings are based on UTF-16 code units:

> const smiley = '🙂';

> smiley.length

2

> smiley === '\uD83D\uDE42' // code units

true

Formore information onUnicode and strings, consult “Atoms of text: code points, JavaScript
characters, grapheme clusters” (§22.7).

21.3 Grapheme clusters – the real characters 185

21.2.3 Source code in files: UTF-8
HTML and JavaScript are almost always encoded as UTF-8 these days.

For example, this is how HTML files usually start now:

<!doctype html>

<html>

<head>

<meta charset="UTF-8">

···

For HTML modules loaded in web browsers, the standard encoding is also UTF-8.

21.3 Grapheme clusters – the real characters
The concept of a character becomes remarkably complex once we consider the various
writing systems of the world. That’s why there are several different Unicode terms that all
mean “character” in some way: code point, grapheme cluster, glyph, etc.

In Unicode, a code point is an atomic part of text.

However, a grapheme cluster corresponds most closely to a symbol displayed on screen or
paper. It is defined as “a horizontally segmentable unit of text”. Therefore, official Unicode
documents also call it a user-perceived character. One or more code points are needed to
encode a grapheme cluster.

For example, theDevanagari kshi is encoded by 4 code points. We use Array.from() to split
a string into an Array with code points (for details, consult “Working with code points”
(§22.7.1)):

Flag emojis are also grapheme clusters and composed of two code points – for example,
the flag of Japan:

21.3.1 Grapheme clusters vs. glyphs
A symbol is an abstract concept and part of written language:

• It is represented in computer memory by a grapheme cluster – a sequence of one or
more numbers (code points).

• It is drawn on screen via glyphs. A glyph is an image and usually stored in a font.
More than one glyphmay be used to draw a single symbol – for example, the symbol
“é” may be drawn by combining the glyph “e” with the glyph “´”.

https://html.spec.whatwg.org/multipage/webappapis.html#fetch-a-single-module-script
https://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries
https://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries

186 21 Unicode – a brief introduction (advanced)

The distinction between a concept and its representation is subtle and can blur when talk-
ing about Unicode.

More information on grapheme clusters
For more information, consult “Let’s Stop Ascribing Meaning to Code Points” by
Manish Goregaokar.

https://manishearth.github.io/blog/2017/01/14/stop-ascribing-meaning-to-unicode-code-points/

Chapter 22

Strings

22.1 Cheat sheet: strings . 188
22.1.1 Working with strings . 188
22.1.2 JavaScript characters vs. code points vs. grapheme clusters 189
22.1.3 String methods . 189

22.2 Plain string literals . 190
22.2.1 Escaping . 191

22.3 Accessing JavaScript characters . 191
22.4 String concatenation . 192

22.4.1 String concatenation via + . 192
22.4.2 Concatenating via Arrays (.push() and .join()) 192

22.5 Converting to string . 193
22.5.1 Stringifying objects . 193
22.5.2 Customizing the stringification of objects 194
22.5.3 An alternate way of stringifying values 194

22.6 Comparing strings . 195
22.7 Atoms of text: code points, JavaScript characters, grapheme clusters 195

22.7.1 Working with code points . 196
22.7.2 Working with code units (char codes) 197
22.7.3 ASCII escapes . 197
22.7.4 Caveat: grapheme clusters . 197

22.8 Quick reference: Strings . 197
22.8.1 Converting to string . 197
22.8.2 Numeric values of text atoms . 198
22.8.3 String.prototype.*: finding and matching 198
22.8.4 String.prototype.*: extracting 200
22.8.5 String.prototype.*: combining 202
22.8.6 String.prototype.*: transforming 203
22.8.7 Sources of this quick reference . 206

187

188 22 Strings

22.1 Cheat sheet: strings
Strings are primitive values in JavaScript and immutable. That is, string-related operations
always produce new strings and never change existing strings.

22.1.1 Working with strings
Literals for strings:

const str1 = 'Don\'t say "goodbye"'; // string literal

const str2 = "Don't say \"goodbye\""; // string literals

assert.equal(

`As easy as ${123}!`, // template literal

'As easy as 123!',

);

Backslashes are used to:
• Escape literal delimiters (first 2 lines of previous example)
• Represent special characters:

– \\ represents a backslash
– \n represents a newline
– \r represents a carriage return
– \t represents a tab

Inside a String.raw tagged template (line A), backslashes are treated as normal characters:
assert.equal(

String.raw`\ \n\t`, // (A)

'\\ \\n\\t',

);

Convertings values to strings:
> String(undefined)

'undefined'

> String(null)

'null'

> String(123.45)

'123.45'

> String(true)

'true'

Copying parts of a string
// There is no type for characters;

// reading characters produces strings:

const str3 = 'abc';

assert.equal(

str3[2], 'c' // no negative indices allowed

);

assert.equal(

str3.at(-1), 'c' // negative indices allowed

22.1 Cheat sheet: strings 189

);

// Copying more than one character:

assert.equal(

'abc'.slice(0, 2), 'ab'

);

Concatenating strings:

assert.equal(

'I bought ' + 3 + ' apples',

'I bought 3 apples',

);

let str = '';

str += 'I bought ';

str += 3;

str += ' apples';

assert.equal(

str, 'I bought 3 apples',

);

22.1.2 JavaScript characters vs. code points vs. grapheme clusters
JavaScript characters are 16 bits in size. They are what is indexed in strings and what
.length counts.

Code points are the atomic parts of Unicode text. Most of them fit into one JavaScript
character, some of them occupy two (especially emojis):

assert.equal(

'A'.length, 1

);

assert.equal(

'🙂'.length, 2

);

Grapheme clusters (user-perceived characters) represent written symbols. Each one com-
prises one or more code points.

Due to these facts, we shouldn’t split text into JavaScript characters, we should split it into
grapheme clusters. For more information on how to handle text, see “Atoms of text: code
points, JavaScript characters, grapheme clusters” (§22.7).

22.1.3 String methods
This subsection gives a brief overview of the string API. There is a more comprehensive
quick reference at the end of this chapter.

Finding substrings:

190 22 Strings

> 'abca'.includes('a')

true

> 'abca'.startsWith('ab')

true

> 'abca'.endsWith('ca')

true

> 'abca'.indexOf('a')

0

> 'abca'.lastIndexOf('a')

3

Splitting and joining:

assert.deepEqual(

'a, b,c'.split(/, ?/),

['a', 'b', 'c']

);

assert.equal(

['a', 'b', 'c'].join(', '),

'a, b, c'

);

Padding and trimming:

> '7'.padStart(3, '0')

'007'

> 'yes'.padEnd(6, '!')

'yes!!!'

> '\t abc\n '.trim()

'abc'

> '\t abc\n '.trimStart()

'abc\n '

> '\t abc\n '.trimEnd()

'\t abc'

Repeating and changing case:

> '*'.repeat(5)

'*****'

> '= b2b ='.toUpperCase()

'= B2B ='

> 'ΑΒΓ'.toLowerCase()

'αβγ'

22.2 Plain string literals
Plain string literals are delimited by either single quotes or double quotes:

22.3 Accessing JavaScript characters 191

const str1 = 'abc';

const str2 = "abc";

assert.equal(str1, str2);

Single quotes are used more often because it makes it easier to mention HTML, where
double quotes are preferred.

The next chapter covers template literals, which give us:

• String interpolation
• Multiple lines
• Raw string literals (backslash has no special meaning)

22.2.1 Escaping
The backslash lets us create special characters:

• Unix line break: '\n'
• Windows line break: '\r\n'
• Tab: '\t'
• Backslash: '\\'

The backslash also lets us use the delimiter of a string literal inside that literal:

assert.equal(

'She said: "Let\'s go!"',

"She said: \"Let's go!\"");

22.3 Accessing JavaScript characters
JavaScript has no extra data type for characters – characters are always represented as
strings.

const str = 'abc';

// Reading a JavaScript character at a given index

assert.equal(str[1], 'b');

// Counting the JavaScript characters in a string:

assert.equal(str.length, 3);

The characters we see on screen are called grapheme clusters. Most of them are represented
by single JavaScript characters. However, there are also grapheme clusters (especially
emojis) that are represented by multiple JavaScript characters:

> '🙂'.length

2

How thatworks is explained in “Atoms of text: code points, JavaScript characters, grapheme
clusters” (§22.7).

192 22 Strings

22.4 String concatenation
22.4.1 String concatenation via +
If at least one operand is a string, the plus operator (+) converts any non-strings to strings
and concatenates the result:

assert.equal(3 + ' times ' + 4, '3 times 4');

The assignment operator += is useful if we want to assemble a string, piece by piece:
let str = ''; // must be `let`!

str += 'Say it';

str += ' one more';

str += ' time';

assert.equal(str, 'Say it one more time');

Concatenating via + is efficient
Using + to assemble strings is quite efficient because most JavaScript engines in-
ternally optimize it.

Exercise: Concatenating strings
exercises/strings/concat_string_array_test.mjs

22.4.2 Concatenating via Arrays (.push() and .join())
Occasionally, taking a detour via an Array can be useful for concatenating strings – espe-
cially if there is to be a separator between them (such as ', ' in line A):

function getPackingList(isAbroad = false, days = 1) {

const items = [];

items.push('tooth brush');

if (isAbroad) {

items.push('passport');

}

if (days > 3) {

items.push('water bottle');

}

return items.join(', '); // (A)

}

assert.equal(

getPackingList(),

'tooth brush'

);

assert.equal(

22.5 Converting to string 193

getPackingList(true, 7),

'tooth brush, passport, water bottle'

);

22.5 Converting to string
These are three ways of converting a value x to a string:

• String(x)

• ''+x

• x.toString() (does not work for undefined and null)
Recommendation: use the descriptive and safe String().
Examples:

assert.equal(String(undefined), 'undefined');

assert.equal(String(null), 'null');

assert.equal(String(false), 'false');

assert.equal(String(true), 'true');

assert.equal(String(123.45), '123.45');

Pitfall for booleans: If we convert a boolean to a string via String(), we generally can’t
convert it back via Boolean():

> String(false)

'false'

> Boolean('false')

true

The only string for which Boolean() returns false, is the empty string.

22.5.1 Stringifying objects
Plain objects have a default string representation that is not very useful:

> String({a: 1})

'[object Object]'

Arrays have a better string representation, but it still hides much information:
> String(['a', 'b'])

'a,b'

> String(['a', ['b']])

'a,b'

> String([1, 2])

'1,2'

> String(['1', '2'])

'1,2'

194 22 Strings

> String([true])

'true'

> String(['true'])

'true'

> String(true)

'true'

Stringifying functions, returns their source code:

> String(function f() {return 4})

'function f() {return 4}'

22.5.2 Customizing the stringification of objects
We can override the built-in way of stringifying objects by implementing the method
toString():

const obj = {

toString() {

return 'hello';

}

};

assert.equal(String(obj), 'hello');

22.5.3 An alternate way of stringifying values
The JSON data format is a text representation of JavaScript values. Therefore, JSON.strin
gify() can also be used to convert values to strings:

> JSON.stringify({a: 1})

'{"a":1}'

> JSON.stringify(['a', ['b']])

'["a",["b"]]'

The caveat is that JSON only supports null, booleans, numbers, strings, Arrays, and ob-
jects (which it always treats as if they were created by object literals).

Tip: The third parameter lets us switch on multiline output and specify how much to
indent – for example:

console.log(JSON.stringify({first: 'Jane', last: 'Doe'}, null, 2));

This statement produces the following output:

{

"first": "Jane",

"last": "Doe"

}

22.6 Comparing strings 195

22.6 Comparing strings
Strings can be compared via the following operators:

< <= > >=

There is one important caveat to consider: These operators compare based on the numeric
values of JavaScript characters. That means that the order that JavaScript uses for strings
is different from the one used in dictionaries and phone books:

> 'A' < 'B' // ok

true

> 'a' < 'B' // not ok

false

> 'ä' < 'b' // not ok

false

Properly comparing text is beyond the scope of this book. It is supported via the ECMA-
Script Internationalization API (Intl).

22.7 Atomsof text: codepoints, JavaScript characters, grapheme
clusters

Quick recap of “Unicode – a brief introduction” (§21):

• Code points are the atomic parts of Unicode text. Each code point is 21 bits in size.

• JavaScript strings implement Unicode via the encoding format UTF-16. It uses one
or two 16-bit code units to encode a single code point.

– Each JavaScript character (as indexed in strings) is a code unit. In the JavaScript
standard library, code units are also called char codes.

• Grapheme clusters (user-perceived characters) represent written symbols, as displayed
on screen or paper. One ormore code points are needed to encode a single grapheme
cluster.

The following code demonstrates that a single code point comprises one or two JavaScript
characters. We count the latter via .length:

// 3 code points, 3 JavaScript characters:

assert.equal('abc'.length, 3);

// 1 code point, 2 JavaScript characters:

assert.equal('🙂'.length, 2);

The following table summarizes the concepts we have just explored:

Entity Size Encoded via
JavaScript character (UTF-16 code unit) 16 bits –
Unicode code point 21 bits 1–2 code units
Unicode grapheme cluster 1+ code points

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl

196 22 Strings

22.7.1 Working with code points
Let’s explore JavaScript’s tools for working with code points.

A Unicode code point escape lets us specify a code point hexadecimally (1–5 digits). It pro-
duces one or two JavaScript characters.

> '\u{1F642}'

'🙂'

Unicode escape sequences
In the ECMAScript language specification, Unicode code point escapes and Unicode
code unit escapes (which we’ll encounter later) are called Unicode escape sequences.

String.fromCodePoint() converts a single code point to 1–2 JavaScript characters:

> String.fromCodePoint(0x1F642)

'🙂'

.codePointAt() converts 1–2 JavaScript characters to a single code point:

> '🙂'.codePointAt(0).toString(16)

'1f642'

We can iterate over a string, which visits code points (not JavaScript characters). Iteration
is described later in this book. One way of iterating is via a for-of loop:

const str = '🙂a';

assert.equal(str.length, 3);

for (const codePointChar of str) {

console.log(codePointChar);

}

Output:

🙂
a

Array.from() is also based on iteration and visits code points:

> Array.from('🙂a')

['🙂', 'a']

That makes it a good tool for counting code points:

> Array.from('🙂a').length

2

> '🙂a'.length

3

22.8 Quick reference: Strings 197

22.7.2 Working with code units (char codes)
Indices and lengths of strings are based on JavaScript characters (as represented byUTF-16
code units).

To specify a code unit hexadecimally, we can use a Unicode code unit escape with exactly
four hexadecimal digits:

> '\uD83D\uDE42'

'🙂'

And we can use String.fromCharCode(). Char code is the standard library’s name for code
unit:

> String.fromCharCode(0xD83D) + String.fromCharCode(0xDE42)

'🙂'

To get the char code of a character, use .charCodeAt():

> '🙂'.charCodeAt(0).toString(16)

'd83d'

22.7.3 ASCII escapes
If the code point of a character is below 256, we can refer to it via aASCII escapewith exactly
two hexadecimal digits:

> 'He\x6C\x6Co'

'Hello'

(The official name of ASCII escapes is Hexadecimal escape sequences – it was the first escape
that used hexadecimal numbers.)

22.7.4 Caveat: grapheme clusters
When working with text that may be written in any human language, it’s best to split at
the boundaries of grapheme clusters, not at the boundaries of code points.

TC39 is working on Intl.Segmenter, a proposal for the ECMAScript Internationalization
API to support Unicode segmentation (along grapheme cluster boundaries, word bound-
aries, sentence boundaries, etc.).

Until that proposal becomes a standard, we can use one of several libraries that are avail-
able (do a web search for “JavaScript grapheme”).

22.8 Quick reference: Strings
22.8.1 Converting to string
Table 22.1 describes how various values are converted to strings.

https://github.com/tc39/proposal-intl-segmenter

198 22 Strings

x String(x)

undefined 'undefined'

null 'null'

boolean false→'false', true→'true'

number Example: 123→'123'

bigint Example: 123n→'123'

string x (input, unchanged)
symbol Example: Symbol('abc')→'Symbol(abc)'

object Configurable via, e.g., toString()

Table 22.1: Converting values to strings.

22.8.2 Numeric values of text atoms
• Char code: number representing a JavaScript character. JavaScript’s name for Uni-

code code unit.
– Size: 16 bits, unsigned
– Convert number to string: String.fromCharCode() [ES1]

– Convert string to number: string method .charCodeAt() [ES1]

• Code point: number representing an atomic part of Unicode text.
– Size: 21 bits, unsigned (17 planes, 16 bits each)
– Convert number to string: String.fromCodePoint() [ES6]

– Convert string to number: string method .codePointAt() [ES6]

22.8.3 String.prototype.*: finding and matching

• String.prototype.startsWith(searchString, startPos=0) [ES6]

Returns true if searchString occurs in the string at index startPos. Returns false
otherwise.

> '.gitignore'.startsWith('.')

true

> 'abcde'.startsWith('bc', 1)

true

• String.prototype.endsWith(searchString, endPos=this.length) [ES6]

Returns true if the string would end with searchString if its length were endPos.
Returns false otherwise.

> 'poem.txt'.endsWith('.txt')

true

> 'abcde'.endsWith('cd', 4)

true

• String.prototype.includes(searchString, startPos=0) [ES6]

22.8 Quick reference: Strings 199

Returns true if the string contains the searchString and false otherwise. The search
starts at startPos.

> 'abc'.includes('b')

true

> 'abc'.includes('b', 2)

false

• String.prototype.indexOf(searchString, minIndex=0) [ES1]

Returns the lowest index at which searchString appears within the string or -1,
otherwise. Any returned index will be minIndex or higher.

> 'abab'.indexOf('a')

0

> 'abab'.indexOf('a', 1)

2

> 'abab'.indexOf('c')

-1

• String.prototype.lastIndexOf(searchString, maxIndex=Infinity) [ES1]

Returns the highest index at which searchString appears within the string or -1,
otherwise. Any returned index will be maxIndex or lower.

> 'abab'.lastIndexOf('ab', 2)

2

> 'abab'.lastIndexOf('ab', 1)

0

> 'abab'.lastIndexOf('ab')

2

• String.prototype.match(regExpOrString) [ES3]

– (1 of 2) regExpOrString is RegExp without /g or string.

match(

regExpOrString: string | RegExp

): null | RegExpMatchArray

If regExpOrString is a regular expression with flag /g not set, then .match()

returns the first match for regExpOrString within the string. Or null if there
is no match.

If regExpOrString is a string, it is used to create a regular expression (think pa-
rameter of new RegExp()) before performing the previously mentioned steps.

The result has the following type:

interface RegExpMatchArray extends Array<string> {

index: number;

input: string;

groups: undefined | {

[key: string]: string

200 22 Strings

};

}

Numbered capture groups become Array indices (which is why this type ex-
tends Array). Named capture groups](#named-capture-groups) (ES2018) be-
come properties of .groups. In this mode, .match() works like [RegExp.proto
type.exec().
Examples:

> 'ababb'.match(/a(b+)/)

{ 0: 'ab', 1: 'b', index: 0, input: 'ababb', groups: undefined }

> 'ababb'.match(/a(?<foo>b+)/)

{ 0: 'ab', 1: 'b', index: 0, input: 'ababb', groups: { foo: 'b' } }

> 'abab'.match(/x/)

null

– (2 of 2) regExpOrString is RegExp with /g.
match(

regExpOrString: RegExp

): null | Array<string>

If flag /g of regExpOrString is set, .match() returns either an Array with all
matches or null if there was no match.

> 'ababb'.match(/a(b+)/g)

['ab', 'abb']

> 'ababb'.match(/a(?<foo>b+)/g)

['ab', 'abb']

> 'abab'.match(/x/g)

null

• String.prototype.search(regExpOrString) [ES3]

Returns the index atwhich regExpOrString occurswithin the string. If regExpOrString
is a string, it is used to create a regular expression (think parameter of new RegExp()).

> 'a2b'.search(/[0-9]/)

1

> 'a2b'.search('[0-9]')

1

22.8.4 String.prototype.*: extracting

• String.prototype.slice(start=0, end=this.length) [ES3]

Returns the substring of the string that starts at (including) index start and ends at
(excluding) index end. If an index is negative, it is added to .length before it is used
(-1 becomes this.length-1, etc.).

> 'abc'.slice(1, 3)

'bc'

> 'abc'.slice(1)

22.8 Quick reference: Strings 201

'bc'

> 'abc'.slice(-2)

'bc'

• String.prototype.at(index: number) [ES2022]

– Returns the JavaScript character at index as a string.
– If the index is out of bounds, it returns undefined.
– If index is negative, it is added to .length before it is used (-1 becomes this

.length-1, etc.).

> 'abc'.at(0)

'a'

> 'abc'.at(-1)

'c'

• String.prototype.split(separator, limit?) [ES3]

Splits the string into an Array of substrings – the strings that occur between the
separators.

The separator can be a string:

> 'a : b : c'.split(':')

['a ', ' b ', ' c']

It can also be a regular expression:

> 'a : b : c'.split(/ *: */)

['a', 'b', 'c']

> 'a : b : c'.split(/(*):(*)/)

['a', ' ', ' ', 'b', ' ', ' ', 'c']

The last invocation demonstrates that captures made by groups in the regular ex-
pression become elements of the returned Array.

If we want the separators to be part of the returned string fragments, we can use a
regular expression with a lookbehind assertion:

> 'a : b : c'.split(/(?<=:)/)

['a :', ' b :', ' c']

Thanks to the lookbehind assertion, the regular expression used for splittingmatches
but doesn’t capture any characters (which would be taken away from the output
fragments).

Warning about .split(''): Using themethod thisway splits a string into JavaScript
characters. That doesn’t work well when dealing with astral code points (which are
encoded as two JavaScript characters). For example, emojis are astral:

> '🙂X🙂'.split('')

['\uD83D', '\uDE42', 'X', '\uD83D', '\uDE42']

Instead, it is better to use Array.from() (or spreading):

202 22 Strings

> Array.from('🙂X🙂')

['🙂', 'X', '🙂']

• String.prototype.substring(start, end=this.length) [ES1]

Use .slice() instead of this method. .substring() wasn’t implemented consis-
tently in older engines and doesn’t support negative indices.

22.8.5 String.prototype.*: combining

• String.prototype.concat(...strings) [ES3]

Returns the concatenation of the string and strings. 'a'.concat('b') is equivalent
to 'a'+'b'. The latter is much more popular.

> 'ab'.concat('cd', 'ef', 'gh')

'abcdefgh'

• String.prototype.padEnd(len, fillString=' ') [ES2017]

Appends (fragments of) fillString to the string until it has the desired length len.
If it already has or exceeds len, then it is returned without any changes.

> '#'.padEnd(2)

'# '

> 'abc'.padEnd(2)

'abc'

> '#'.padEnd(5, 'abc')

'#abca'

• String.prototype.padStart(len, fillString=' ') [ES2017]

Prepends (fragments of) fillString to the string until it has the desired length len.
If it already has or exceeds len, then it is returned without any changes.

> '#'.padStart(2)

' #'

> 'abc'.padStart(2)

'abc'

> '#'.padStart(5, 'abc')

'abca#'

• String.prototype.repeat(count=0) [ES6]

Returns the string, concatenated count times.

> '*'.repeat()

''

> '*'.repeat(3)

'***'

22.8 Quick reference: Strings 203

22.8.6 String.prototype.*: transforming

• String.prototype.replaceAll(searchValue, replaceValue) [ES2021]

What to do if you can’t use .replaceAll()
If .replaceAll() isn’t available on your targeted platform, you can use
.replace() instead. How is explained in “str.replace(searchValue, re-

placementValue) [ES3]”.

– (1 of 2) replaceValue is string.

replaceAll(

searchValue: string | RegExp,

replaceValue: string

): string

Replaces all matches of searchValue with replaceValue. If searchValue is a
regular expression without flag /g, a TypeError is thrown.

> 'x.x.'.replaceAll('.', '#') // interpreted literally

'x#x#'

> 'x.x.'.replaceAll(/./g, '#')

'####'

> 'x.x.'.replaceAll(/./, '#')

TypeError: String.prototype.replaceAll called with

a non-global RegExp argument

Special characters in replaceValue are:

* $$: becomes $
* $n: becomes the capture of numbered group n (alas, $0 stands for the
string '$0', it does not refer to the complete match)

* $&: becomes the complete match
* $`: becomes everything before the match
* $': becomes everything after the match

Examples:

> 'a 1995-12 b'.replaceAll(/([0-9]{4})-([0-9]{2})/g, '|$2|')

'a |12| b'

> 'a 1995-12 b'.replaceAll(/([0-9]{4})-([0-9]{2})/g, '|$&|')

'a |1995-12| b'

> 'a 1995-12 b'.replaceAll(/([0-9]{4})-([0-9]{2})/g, '|$`|')

'a |a | b'

Named capture groups (ES2018) are supported, too:

* $<name> becomes the capture of named group name

Example:

204 22 Strings

assert.equal(

'a 1995-12 b'.replaceAll(

/(?<year>[0-9]{4})-(?<month>[0-9]{2})/g, '|$<month>|'),

'a |12| b');

– (2 of 2) replaceValue is function.

replaceAll(

searchValue: string | RegExp,

replaceValue: (...args: Array<any>) => string

): string

If the second parameter is a function, occurrences are replaced with the strings
it returns. Its parameters args are:

* matched: string. The complete match
* g1: string|undefined. The capture of numbered group 1
* g2: string|undefined. The capture of numbered group 2
* (Etc.)
* offset: number. Where was the match found in the input string?
* input: string. The whole input string

const regexp = /([0-9]{4})-([0-9]{2})/g;

const replacer = (all, year, month) => '|' + all + '|';

assert.equal(

'a 1995-12 b'.replaceAll(regexp, replacer),

'a |1995-12| b');

Named capture groups (ES2018) are supported, too. If there are any, an argu-
ment is added at the endwith an object whose properties contain the captures:

const regexp = /(?<year>[0-9]{4})-(?<month>[0-9]{2})/g;

const replacer = (...args) => {

const groups=args.pop();

return '|' + groups.month + '|';

};

assert.equal(

'a 1995-12 b'.replaceAll(regexp, replacer),

'a |12| b');

• String.prototype.replace(searchValue, replaceValue) [ES3]

For more information on this method, see “str.replace(searchValue, replace-

mentValue) [ES3]”.

– (1 of 2) replaceValue is string or RegExp without /g.

replace(

searchValue: string | RegExp,

replaceValue: string

): string

Works similarly to .replaceAll(), but only replaces the first occurrence:

22.8 Quick reference: Strings 205

> 'x.x.'.replace('.', '#') // interpreted literally

'x#x.'

> 'x.x.'.replace(/./, '#')

'#.x.'

– (1 of 2) replaceValue is RegExp with /g.

replace(

searchValue: string | RegExp,

replaceValue: (...args: Array<any>) => string

): string

Works exactly like .replaceAll().

• String.prototype.toUpperCase() [ES1]

Returns a copy of the string in which all lowercase alphabetic characters are con-
verted to uppercase. How well that works for various alphabets, depends on the
JavaScript engine.

> '-a2b-'.toUpperCase()

'-A2B-'

> 'αβγ'.toUpperCase()

'ΑΒΓ'

• String.prototype.toLowerCase() [ES1]

Returns a copy of the string in which all uppercase alphabetic characters are con-
verted to lowercase. How well that works for various alphabets, depends on the
JavaScript engine.

> '-A2B-'.toLowerCase()

'-a2b-'

> 'ΑΒΓ'.toLowerCase()

'αβγ'

• String.prototype.trim() [ES5]

Returns a copy of the string in which all leading and trailing whitespace (spaces,
tabs, line terminators, etc.) is gone.

> '\r\n#\t '.trim()

'#'

> ' abc '.trim()

'abc'

• String.prototype.trimStart() [ES2019]

Similar to .trim() but only the beginning of the string is trimmed:

> ' abc '.trimStart()

'abc '

• String.prototype.trimEnd() [ES2019]

206 22 Strings

Similar to .trim() but only the end of the string is trimmed:
> ' abc '.trimEnd()

' abc'

• String.prototype.normalize(form = 'NFC') [ES6]

– Normalizes the string according to the Unicode Normalization Forms.
– Values of form: 'NFC', 'NFD', 'NFKC', 'NFKD'

• String.prototype.isWellFormed() [ES2024]

Returns true if a string is ill-formed and contains lone surrogates (see .toWellFormed()
for more information). Otherwise, it returns false.

> '🙂'.split('') // split into code units

['\uD83D', '\uDE42']

> '\uD83D\uDE42'.isWellFormed()

true

> '\uD83D\uDE42\uD83D'.isWellFormed() // lone surrogate 0xD83D

false

• String.prototype.toWellFormed() [ES2024]

Each JavaScript string character is a UTF-16 code unit. One code point is encoded
as either one UTF-16 code unit or two UTF-16 code unit. In the latter case, the two
code units are called leading surrogate and trailing surrogate. A surrogate without
its partner is called a lone surrogate. A string with one or more lone surrogates is
ill-formed.
.toWellFormed() converts an ill-formed string to a well-formed one by replacing
each lone surrogate with code point 0xFFFD (“replacement character”). That char-
acter is often displayed as a�(a black rhombus with a white question mark). It
is located in the Specials Unicode block of characters, at the very end of the Basic
Multilingual Plane. This is what Wikipedia says about the replacement character: “It
is used to indicate problems when a system is unable to render a stream of data to
correct symbols.”

assert.deepEqual(

'🙂'.split(''), // split into code units

['\uD83D', '\uDE42']

);

assert.deepEqual(

// 0xD83D is a lone surrogate

'\uD83D\uDE42\uD83D'.toWellFormed().split(''),

['\uD83D', '\uDE42', '\uFFFD']

);

22.8.7 Sources of this quick reference
• ECMAScript language specification
• TypeScript’s built-in typings
• MDN web docs for JavaScript

https://unicode.org/reports/tr15/
https://en.wikipedia.org/wiki/Specials_%28Unicode_block%29#Replacement_character
https://tc39.es/ecma262/
https://github.com/microsoft/TypeScript/tree/main/src/lib/
https://developer.mozilla.org/en-US/docs/Web/JavaScript

22.8 Quick reference: Strings 207

Exercise: Using string methods
exercises/strings/remove_extension_test.mjs

208 22 Strings

Chapter 23

Using template literals and tagged
templates [ES6]

23.1 Disambiguation: “template” . 209
23.2 Template literals . 210
23.3 Tagged templates . 211

23.3.1 Cooked vs. raw template strings (advanced) 211
23.4 Examples of tagged templates (as provided via libraries) 213

23.4.1 Tag function library: lit-html . 213
23.4.2 Tag function library: regex . 213
23.4.3 Tag function library: graphql-tag 214

23.5 Raw string literals . 214
23.6 (Advanced) . 215
23.7 Multiline template literals and indentation 215

23.7.1 Fix: template tag for dedenting . 215
23.7.2 Fix: .trim() . 216

23.8 Simple templating via template literals . 216
23.8.1 A more complex example . 217
23.8.2 Simple HTML-escaping . 218

Before we dig into the two features template literal and tagged template, let’s first examine
the multiple meanings of the term template.

23.1 Disambiguation: “template”
The following three things are significantly different despite all having template in their
names and despite all of them looking similar:

• A text template is a function from data to text. It is frequently used in web devel-

209

210 23 Using template literals and tagged templates [ES6]

opment and often defined via text files. For example, the following text defines a
template for the library Handlebars:

<div class="entry">

<h1>{{title}}</h1>

<div class="body">

{{body}}

</div>

</div>

This template has two blanks to be filled in: title and body. It is used like this:

// First step: retrieve the template text, e.g. from a text file.

const tmplFunc = Handlebars.compile(TMPL_TEXT); // compile string

const data = {title: 'My page', body: 'Welcome to my page!'};

const html = tmplFunc(data);

• A template literal is similar to a string literal, but has additional features – for example,
interpolation. It is delimited by backticks:

const num = 5;

assert.equal(`Count: ${num}!`, 'Count: 5!');

• Syntactically, a tagged template is a template literal that follows a function (or rather,
an expression that evaluates to a function). That leads to the function being called.
Its arguments are derived from the contents of the template literal.

const getArgs = (...args) => args;

assert.deepEqual(

getArgs`Count: ${5}!`,

[['Count: ', '!'], 5]);

Note that getArgs() receives both the text of the literal and the data interpolated via
${}.

23.2 Template literals
A template literal has two new features compared to a normal string literal.

First, it supports string interpolation: if we put a dynamically computed value inside a ${},
it is converted to a string and inserted into the string returned by the literal.

const MAX = 100;

function doSomeWork(x) {

if (x > MAX) {

throw new Error(`At most ${MAX} allowed: ${x}!`);

}

// ···

}

assert.throws(

() => doSomeWork(101),

{message: 'At most 100 allowed: 101!'});

https://handlebarsjs.com

23.3 Tagged templates 211

Second, template literals can span multiple lines:

const str = `this is

a text with

multiple lines`;

Template literals always produce strings.

23.3 Tagged templates
The expression in line A is a tagged template. It is equivalent to invoking tagFunc() with
the arguments listed in the Array in line B.

function tagFunc(...args) {

return args;

}

const setting = 'dark mode';

const value = true;

assert.deepEqual(

tagFunc`Setting ${setting} is ${value}!`, // (A)

[['Setting ', ' is ', '!'], 'dark mode', true] // (B)

);

The function tagFunc before the first backtick is called a tag function. Its arguments are:

• Template strings (first argument): an Array with the text fragments surrounding the
interpolations ${}.

– In the example: ['Setting ', ' is ', '!']

• Substitutions (remaining arguments): the interpolated values.

– In the example: 'dark mode' and true

The static (fixed) parts of the literal (the template strings) are kept separate from the dy-
namic parts (the substitutions).

A tag function can return arbitrary values.

23.3.1 Cooked vs. raw template strings (advanced)
So far, we have only seen the cooked interpretation of template strings. But tag functions
actually get two interpretations:

• A cooked interpretation where backslashes have special meaning. For example, \t
produces a tab character. This interpretation of the template strings is stored as an
Array in the first argument.

• A raw interpretation where backslashes do not have special meaning. For example,
\t produces two characters – a backslash and a t. This interpretation of the template
strings is stored in property .raw of the first argument (an Array).

212 23 Using template literals and tagged templates [ES6]

The raw interpretation enables raw string literals via String.raw (described later) and sim-
ilar applications.

The following tag function cookedRaw uses both interpretations:

function cookedRaw(templateStrings, ...substitutions) {

return {

cooked: Array.from(templateStrings), // copy only Array elements

raw: templateStrings.raw,

substitutions,

};

}

assert.deepEqual(

cookedRaw`\tab${'subst'}\newline\\`,

{

cooked: ['\tab', '\newline\\'],

raw: ['\\tab', '\\newline\\\\'],

substitutions: ['subst'],

});

Wecan also useUnicode code point escapes (\u{1F642}), Unicode code unit escapes (\u03A9),
and ASCII escapes (\x52) in tagged templates:

assert.deepEqual(

cookedRaw`\u{54}\u0065\x78t`,

{

cooked: ['Text'],

raw: ['\\u{54}\\u0065\\x78t'],

substitutions: [],

});

If the syntax of one of these escapes isn’t correct, the corresponding cooked template string
is undefined, while the raw version is still verbatim:

assert.deepEqual(

cookedRaw`\uu\xx ${1} after`,

{

cooked: [undefined, ' after'],

raw: ['\\uu\\xx ', ' after'],

substitutions: [1],

});

Incorrect escapes produce syntax errors in template literals and string literals. Before
ES2018, they even produced errors in tagged templates. Why was that changed? We can
now use tagged templates for text that was previously illegal – for example:

windowsPath`C:\uuu\xxx\111`

latex`\unicode`

23.4 Examples of tagged templates (as provided via libraries) 213

23.4 Examples of tagged templates (as provided via libraries)
Tagged templates are great for supporting small embedded languages (so-called domain-
specific languages). We’ll continue with a few examples.

23.4.1 Tag function library: lit-html
Lit is a library for building web components that uses tagged templates for HTML tem-
plating:

@customElement('my-element')

class MyElement extends LitElement {

// ···

render() {

return html`

${repeat(

this.items,

(item) => item.id,

(item, index) => html`${index}: ${item.name}`

)}

`;

}

}

repeat() is a custom function for looping. Its second parameter produces unique keys for
the values returned by the third parameter. Note the nested tagged template used by that
parameter.

23.4.2 Tag function library: regex
The library “regex” by Steven Levithan provides template tags that help with creating
regular expressions and enable advanced features. The following example demonstrates
how it works:

import {regex, partial} from 'regex';

const RE_YEAR = partial`(?<year>[0-9]{4})`;

const RE_MONTH = partial`(?<month>[0-9]{2})`;

const RE_DAY = partial`(?<day>[0-9]{2})`;

const RE_DATE = regex('g')`

${RE_YEAR} # 4 digits

-

${RE_MONTH} # 2 digits

-

${RE_DAY} # 2 digits

`;

https://lit.dev
https://github.com/slevithan/regex

214 23 Using template literals and tagged templates [ES6]

const match = RE_DATE.exec('2017-01-27');

assert.equal(match.groups.year, '2017');

The following flags are switched on by default:

• Flag /v

• Flag /x (emulated) enables insignificant whitespace and line comments via #.
• Flag /n (emulated) enables named capture only mode, which prevents the grouping

metacharacters (···) from capturing.

23.4.3 Tag function library: graphql-tag
The library graphql-tag lets us create GraphQL queries via tagged templates:

import gql from 'graphql-tag';

const query = gql`

{

user(id: 5) {

firstName

lastName

}

}

`;

Additionally, there are plugins for pre-compiling such queries in Babel, TypeScript, etc.

23.5 Raw string literals
Raw string literals are implemented via the tag function String.raw. They are string liter-
als where backslashes don’t do anything special (such as escaping characters, etc.):

assert.equal(String.raw`\back`, '\\back');

This helps whenever data contains backslashes – for example, strings with regular expres-
sions:

const regex1 = /^\./;

const regex2 = new RegExp('^\\.');

const regex3 = new RegExp(String.raw`^\.`);

All three regular expressions are equivalent. With a normal string literal, we have to write
the backslash twice, to escape it for that literal. With a raw string literal, we don’t have to
do that.

Raw string literals are also useful for specifying Windows filename paths:

const WIN_PATH = String.raw`C:\foo\bar`;

assert.equal(WIN_PATH, 'C:\\foo\\bar');

https://github.com/apollographql/graphql-tag

23.6 (Advanced) 215

23.6 (Advanced)
All remaining sections are advanced

23.7 Multiline template literals and indentation
If we put multiline text in template literals, two goals are in conflict: On one hand, the
template literal should be indented to fit inside the source code. On the other hand, the
lines of its content should start in the leftmost column.
For example:

function div(text) {

return `

<div>

${text}

</div>

`;

}

console.log('Output:');

console.log(

div('Hello!')

// Replace spaces with mid-dots:

.replace(/ /g, '·')

// Replace \n with #\n:

.replace(/\n/g, '#\n')

);

Due to the indentation, the template literal fits well into the source code. Alas, the output
is also indented. And we don’t want the return at the beginning and the return plus two
spaces at the end.

Output:

#

····<div>#

······Hello!#

····</div>#

··

There are two ways to fix this: via a tagged template or by trimming the result of the
template literal.

23.7.1 Fix: template tag for dedenting
The first fix is to use a custom template tag that removes the unwanted whitespace. It uses
the first line after the initial line break to determine in which column the text starts and
shortens the indentation everywhere. It also removes the line break at the very beginning
and the indentation at the very end. One such template tag is dedent by Desmond Brand:

import dedent from 'dedent';

function divDedented(text) {

https://github.com/dmnd/dedent

216 23 Using template literals and tagged templates [ES6]

return dedent`

<div>

${text}

</div>

`.replace(/\n/g, '#\n');

}

console.log('Output:');

console.log(divDedented('Hello!'));

This time, the output is not indented:

Output:

<div>#

Hello!#

</div>

23.7.2 Fix: .trim()
The second fix is quicker, but also dirtier:

function divDedented(text) {

return `

<div>

${text}

</div>

`.trim().replace(/\n/g, '#\n');

}

console.log('Output:');

console.log(divDedented('Hello!'));

The string method .trim() removes the superfluous whitespace at the beginning and at
the end, but the content itself must start in the leftmost column. The advantage of this
solution is that we don’t need a custom tag function. The downside is that it looks ugly.

The output is the same as with dedent:

Output:

<div>#

Hello!#

</div>

23.8 Simple templating via template literals
While template literals look like text templates, it is not immediately obvious how to use
them for (text) templating: A text template gets its data from an object, while a template
literal gets its data from variables. The solution is to use a template literal in the body of a
function whose parameter receives the templating data – for example:

const tmpl = (data) => `Hello ${data.name}!`;

assert.equal(tmpl({name: 'Jane'}), 'Hello Jane!');

23.8 Simple templating via template literals 217

23.8.1 A more complex example
As amore complex example, we’d like to take anArray of addresses andproduce anHTML
table. This is the Array:

const addresses = [

{ first: '<Jane>', last: 'Bond' },

{ first: 'Lars', last: '<Croft>' },

];

The function tmpl() that produces the HTML table looks as follows:
1 const tmpl = (addrs) => `

2 <table>

3 ${addrs.map(

4 (addr) => `

5 <tr>

6 <td>${escapeHtml(addr.first)}</td>

7 <td>${escapeHtml(addr.last)}</td>

8 </tr>

9 `.trim()

10).join('')}

11 </table>

12 `.trim();

This code contains two templating functions:
• The first one (line 1) takes addrs, an Array with addresses, and returns a string with

a table.
• The second one (line 4) takes addr, an object containing an address, and returns a

string with a table row. Note the .trim() at the end, which removes unnecessary
whitespace.

The first templating function produces its result by wrapping a table element around an
Array that it joins into a string (line 10). That Array is produced by mapping the second
templating function to each element of addrs (line 3). It therefore contains strings with
table rows.
The helper function escapeHtml() is used to escape special HTML characters (line 6 and
line 7). Its implementation is shown in the next subsection.
Let us call tmpl() with the addresses and log the result:

console.log(tmpl(addresses));

The output is:
<table>

<tr>

<td><Jane></td>

<td>Bond</td>

</tr><tr>

<td>Lars</td>

<td><Croft></td>

218 23 Using template literals and tagged templates [ES6]

</tr>

</table>

23.8.2 Simple HTML-escaping
The following function escapes plain text so that it is displayed verbatim in HTML:

function escapeHtml(str) {

return str

.replace(/&/g, '&') // first!

.replace(/>/g, '>')

.replace(/</g, '<')

.replace(/"/g, '"')

.replace(/'/g, ''')

.replace(/`/g, '`')

;

}

assert.equal(

escapeHtml('Rock & Roll'), 'Rock & Roll');

assert.equal(

escapeHtml('<blank>'), '<blank>');

Exercise: HTML templating
Exercise with bonus challenge: exercises/template-literals/templating_tes
t.mjs

Chapter 24

Symbols [ES6]

24.1 Symbols are primitives that are also like objects 219
24.1.1 Symbols are primitive values . 219
24.1.2 Symbols are also like objects . 220

24.2 The descriptions of symbols . 220
24.3 Use cases for symbols . 220

24.3.1 Symbols as values for constants 221
24.3.2 Symbols as unique property keys 222

24.4 Publicly known symbols . 223
24.5 Converting symbols . 224

24.1 Symbols are primitives that are also like objects
Symbols are primitive values that are created via the factory function Symbol():

const mySymbol = Symbol('mySymbol');

The parameter is optional and provides a description, which is mainly useful for debug-
ging.

24.1.1 Symbols are primitive values
Symbols are primitive values:

• They have to be categorized via typeof:

const sym = Symbol();

assert.equal(typeof sym, 'symbol');

• They can be property keys in objects:

219

220 24 Symbols [ES6]

const obj = {

[sym]: 123,

};

24.1.2 Symbols are also like objects
Even though symbols are primitives, they are also like objects in that each value created
by Symbol() is unique and not compared by value:

> Symbol() === Symbol()

false

Prior to symbols, objects were the best choice if we needed values that were unique (only
equal to themselves):

const string1 = 'abc';

const string2 = 'abc';

assert.equal(

string1 === string2, true); // not unique

const object1 = {};

const object2 = {};

assert.equal(

object1 === object2, false); // unique

const symbol1 = Symbol();

const symbol2 = Symbol();

assert.equal(

symbol1 === symbol2, false); // unique

24.2 The descriptions of symbols
The parameter we pass to the symbol factory function provides a description for the cre-
ated symbol:

const mySymbol = Symbol('mySymbol');

The description can be accessed in two ways.
First, it is part of the string returned by .toString():

assert.equal(mySymbol.toString(), 'Symbol(mySymbol)');

Second, since ES2019, we can retrieve the description via the property .description:
assert.equal(mySymbol.description, 'mySymbol');

24.3 Use cases for symbols
The main use cases for symbols, are:

• Values for constants

24.3 Use cases for symbols 221

• Unique property keys

24.3.1 Symbols as values for constants
Let’s assume you want to create constants representing the colors red, orange, yellow,
green, blue, and violet. One simple way of doing so would be to use strings:

const COLOR_BLUE = 'Blue';

On the plus side, logging that constant produces helpful output. On the minus side, there
is a risk of mistaking an unrelated value for a color because two strings with the same
content are considered equal:

const MOOD_BLUE = 'Blue';

assert.equal(COLOR_BLUE, MOOD_BLUE);

We can fix that problem via symbols:

const COLOR_BLUE = Symbol('Blue');

const MOOD_BLUE = Symbol('Blue');

assert.notEqual(COLOR_BLUE, MOOD_BLUE);

Let’s use symbol-valued constants to implement a function:

const COLOR_RED = Symbol('Red');

const COLOR_ORANGE = Symbol('Orange');

const COLOR_YELLOW = Symbol('Yellow');

const COLOR_GREEN = Symbol('Green');

const COLOR_BLUE = Symbol('Blue');

const COLOR_VIOLET = Symbol('Violet');

function getComplement(color) {

switch (color) {

case COLOR_RED:

return COLOR_GREEN;

case COLOR_ORANGE:

return COLOR_BLUE;

case COLOR_YELLOW:

return COLOR_VIOLET;

case COLOR_GREEN:

return COLOR_RED;

case COLOR_BLUE:

return COLOR_ORANGE;

case COLOR_VIOLET:

return COLOR_YELLOW;

default:

throw new Exception('Unknown color: '+color);

}

}

assert.equal(getComplement(COLOR_YELLOW), COLOR_VIOLET);

222 24 Symbols [ES6]

24.3.2 Symbols as unique property keys
The keys of properties (fields) in objects are used at two levels:

• The program operates at a base level. The keys at that level reflect the problem domain
– the area in which a program solves a problem – for example:

– If a program manages employees, the property keys may be about job titles,
salary categories, department IDs, etc.

– If the program is a chess app, the property keys may be about chess pieces,
chess boards, player colors, etc.

• ECMAScript and many libraries operate at a meta-level. They manage data and pro-
vide services that are not part of the problem domain – for example:

– The standard method .toString() is used by ECMAScript when creating a
string representation of an object (line A):

const point = {

x: 7,

y: 4,

toString() {

return `(${this.x}, ${this.y})`;

},

};

assert.equal(

String(point), '(7, 4)'); // (A)

.x and .y are base-level properties – they are used to solve the problem of
computing with points. .toString() is a meta-level property – it doesn’t have
anything to do with the problem domain.

– The standard ECMAScript method .toJSON()

const point = {

x: 7,

y: 4,

toJSON() {

return [this.x, this.y];

},

};

assert.equal(

JSON.stringify(point), '[7,4]');

.x and .y are base-level properties, .toJSON() is a meta-level property.

The base level and the meta-level of a program must be independent: Base-level property
keys should not be in conflict with meta-level property keys.

If we use names (strings) as property keys, we are facing two challenges:

• When a language is first created, it can use any meta-level names it wants. Base-
level code is forced to avoid those names. Later, however, when much base-level
code already exists, meta-level names can’t be chosen freely, anymore.

24.4 Publicly known symbols 223

• We could introduce naming rules to separate base level andmeta-level. For example,
Python brackets meta-level names with two underscores: __init__, __iter__, _-
_hash__, etc. However, the meta-level names of the language and the meta-level
names of libraries would still exist in the same namespace and can clash.

These are two examples of where the latter was an issue for JavaScript:
• In May 2018, the Array method .flatten() had to be renamed to .flat() because

the former name was already used by libraries (source).
• In November 2020, the Array method .item() had to be renamed to .at() because

the former name was already used by library (source).
Symbols, used as property keys, help us here: Each symbol is unique and a symbol key
never clashes with any other string or symbol key.

Example: a library with a meta-level method

As an example, let’s assume we are writing a library that treats objects differently if they
implement a special method. This is what defining a property key for such a method and
implementing it for an object would look like:

const specialMethod = Symbol('specialMethod');

const obj = {

_id: 'kf12oi',

[specialMethod]() { // (A)

return this._id;

}

};

assert.equal(obj[specialMethod](), 'kf12oi');

The square brackets in line A enable us to specify that the method must have the key
specialMethod. More details are explained in “Computed keys in object literals” (§30.7.2).

24.4 Publicly known symbols
Symbols that play special roles within ECMAScript are called publicly known symbols. Ex-
amples include:

• Symbol.iterator: makes an object iterable. It’s the key of a method that returns an
iterator. For more information on this topic, see “Synchronous iteration”.

• Symbol.hasInstance: customizes how instanceof works. If an object implements
a method with that key, it can be used at the right-hand side of that operator. For
example:

const PrimitiveNull = {

[Symbol.hasInstance](x) {

return x === null;

}

};

assert.equal(null instanceof PrimitiveNull, true);

https://github.com/tc39/proposal-flatMap/commit/093eacc7fe0906e70f7626bf6c7d6e9dfc53cce9
https://github.com/tc39/proposal-relative-indexing-method#web-incompatibility-history

224 24 Symbols [ES6]

• Symbol.toStringTag: influences the default .toString()method.
> String({})

'[object Object]'

> String({ [Symbol.toStringTag]: 'is no money' })

'[object is no money]'

Note: It’s usually better to override .toString().

Exercises: Publicly known symbols
• Symbol.toStringTag: exercises/symbols/to_string_tag_test.mjs
• Symbol.hasInstance: exercises/symbols/has_instance_test.mjs

24.5 Converting symbols
What happens if we convert a symbol sym to another primitive type? Table 24.1 has the
answers. One key pitfall with symbols is how often exceptions are thrown when convert-

Convert to Explicit conversion Coercion (implicit conv.)
boolean Boolean(sym)→OK !sym→OK
number Number(sym)→TypeError sym*2→TypeError

string String(sym)→OK ''+sym→TypeError

sym.toString()→OK `${sym}`→TypeError

Table 24.1: The results of converting symbols to other primitive types.

ing them to something else. What is the thinking behind that? First, conversion to number
never makes sense and should be warned about. Second, converting a symbol to a string
is indeed useful for diagnostic output. But it also makes sense to warn about accidentally
turning a symbol into a string (which is a different kind of property key):

const obj = {};

const sym = Symbol();

assert.throws(

() => { obj['__'+sym+'__'] = true },

{ message: 'Cannot convert a Symbol value to a string' });

The downside is that the exceptions make working with symbols more complicated. You
have to explicitly convert symbols when assembling strings via the plus operator:

> const mySymbol = Symbol('mySymbol');

> 'Symbol I used: ' + mySymbol

TypeError: Cannot convert a Symbol value to a string

> 'Symbol I used: ' + String(mySymbol)

'Symbol I used: Symbol(mySymbol)'

Part V

Control flow and data flow

225

Chapter 25

Control flow statements

25.1 Controlling loops: break and continue . 228
25.1.1 break . 228
25.1.2 break plus label: leaving any labeled statement 228
25.1.3 continue . 229

25.2 Conditions of control flow statements . 230
25.3 if statements [ES1] . 230

25.3.1 The syntax of if statements . 231
25.4 switch statements [ES3] . 231

25.4.1 A first example of a switch statement 231
25.4.2 Don’t forget to return or break! 232
25.4.3 Empty case clauses . 233
25.4.4 Checking for illegal values via a default clause 233

25.5 while loops [ES1] . 234
25.5.1 Examples of while loops . 234

25.6 do-while loops [ES3] . 234
25.7 for loops [ES1] . 235

25.7.1 Examples of for loops . 235
25.8 for-of loops [ES6] . 236

25.8.1 const: for-of vs. for . 236
25.8.2 Iterating over iterables . 236
25.8.3 Iterating over [index, element] pairs of Arrays 237

25.9 for-await-of loops [ES2018] . 237
25.10for-in loops (avoid) [ES1] . 237
25.11Recomendations for looping . 238

This chapter covers the following control flow statements:

227

228 25 Control flow statements

• if statement [ES1]
• switch statement [ES3]
• while loop [ES1]

• do-while loop [ES3]

• for loop [ES1]

• for-of loop [ES6]

• for-await-of loop [ES2018]

• for-in loop [ES1]

25.1 Controlling loops: break and continue

The two operators break and continue can be used to control loops and other statements
while we are inside them.

25.1.1 break

There are two versions of break: one with an operand and one without an operand. The
latter version works inside the following statements: while, do-while, for, for-of, for-
await-of, for-in and switch. It immediately leaves the current statement:

for (const x of ['a', 'b', 'c']) {

console.log(x);

if (x === 'b') break;

console.log('---')

}

Output:
a

b

25.1.2 break plus label: leaving any labeled statement
breakwith an operand works everywhere. Its operand is a label. Labels can be put in front
of any statement, including blocks. break my_label leaves the statement whose label is
my_label:

my_label: { // label

if (condition) break my_label; // labeled break

// ···

}

In the following example, the search can either:
• Fail: The loop finishes without finding a result. That is handled directly after the

loop (line B).
• Succeed: While looping, we find a result. Then we use break plus label (line A) to

skip the code that handles failure.

25.1 Controlling loops: break and continue 229

function findSuffix(stringArray, suffix) {

let result;

search_block: {

for (const str of stringArray) {

if (str.endsWith(suffix)) {

// Success:

result = str;

break search_block; // (A)

}

} // for

// Failure:

result = '(Untitled)'; // (B)

} // search_block

return { suffix, result };

// Same as: {suffix: suffix, result: result}

}

assert.deepEqual(

findSuffix(['notes.txt', 'index.html'], '.html'),

{ suffix: '.html', result: 'index.html' }

);

assert.deepEqual(

findSuffix(['notes.txt', 'index.html'], '.mjs'),

{ suffix: '.mjs', result: '(Untitled)' }

);

25.1.3 continue

continue only works inside while, do-while, for, for-of, for-await-of, and for-in. It im-
mediately leaves the current loop iteration and continues with the next one – for example:

const lines = [

'Normal line',

'# Comment',

'Another normal line',

];

for (const line of lines) {

if (line.startsWith('#')) continue;

console.log(line);

}

Output:

Normal line

Another normal line

230 25 Control flow statements

25.2 Conditions of control flow statements
if, while, and do-while have conditions that are, in principle, boolean. However, a con-
dition only has to be truthy (true if coerced to boolean) in order to be accepted. In other
words, the following two control flow statements are equivalent:

if (value) {}

if (Boolean(value) === true) {}

This is a list of all falsy values:

• undefined, null
• false

• 0, NaN
• 0n

• ''

All other values are truthy. For more information, see “Falsy and truthy values” (§17.2).

25.3 if statements [ES1]

These are two simple if statements: one with just a “then” branch and one with both a
“then” branch and an “else” branch:

if (cond) {

// then branch

}

if (cond) {

// then branch

} else {

// else branch

}

Instead of the block, else can also be followed by another if statement:

if (cond1) {

// ···

} else if (cond2) {

// ···

}

if (cond1) {

// ···

} else if (cond2) {

// ···

} else {

// ···

}

You can continue this chain with more else ifs.

25.4 switch statements [ES3] 231

25.3.1 The syntax of if statements
The general syntax of if statements is:

if («cond») «then_statement»

else «else_statement»

So far, the then_statement has always been a block, but we can use any statement. That
statement must be terminated with a semicolon:

if (true) console.log('Yes'); else console.log('No');

That means that else if is not its own construct; it’s simply an if statement whose else_-
statement is another if statement.

25.4 switch statements [ES3]

A switch statement looks as follows:
switch («switch_expression») {

«switch_body»

}

The body of switch consists of zero or more case clauses:
case «case_expression»:

«statements»

And, optionally, a default clause:
default:

«statements»

A switch is executed as follows:
• It evaluates the switch expression.
• It jumps to the first case clause whose expression has the same result as the switch

expression.
• Otherwise, if there is no such clause, it jumps to the default clause.
• Otherwise, if there is no default clause, it does nothing.

25.4.1 A first example of a switch statement
Let’s look at an example: The following function converts a number from 1–7 to the name
of a weekday.

function dayOfTheWeek(num) {

switch (num) {

case 1:

return 'Monday';

case 2:

return 'Tuesday';

case 3:

return 'Wednesday';

232 25 Control flow statements

case 4:

return 'Thursday';

case 5:

return 'Friday';

case 6:

return 'Saturday';

case 7:

return 'Sunday';

}

}

assert.equal(dayOfTheWeek(5), 'Friday');

25.4.2 Don’t forget to return or break!
At the end of a case clause, execution continues with the next case clause, unless we return
or break – for example:

function englishToFrench(english) {

let french;

switch (english) {

case 'hello':

french = 'bonjour';

case 'goodbye':

french = 'au revoir';

}

return french;

}

// The result should be 'bonjour'!

assert.equal(englishToFrench('hello'), 'au revoir');

That is, our implementation of dayOfTheWeek() only worked because we used return. We
can fix englishToFrench() by using break:

function englishToFrench(english) {

let french;

switch (english) {

case 'hello':

french = 'bonjour';

break;

case 'goodbye':

french = 'au revoir';

break;

}

return french;

}

assert.equal(englishToFrench('hello'), 'bonjour'); // ok

25.4 switch statements [ES3] 233

25.4.3 Empty case clauses

The statements of a case clause can be omitted, which effectively gives us multiple case
expressions per case clause:

function isWeekDay(name) {

switch (name) {

case 'Monday':

case 'Tuesday':

case 'Wednesday':

case 'Thursday':

case 'Friday':

return true;

case 'Saturday':

case 'Sunday':

return false;

}

}

assert.equal(isWeekDay('Wednesday'), true);

assert.equal(isWeekDay('Sunday'), false);

25.4.4 Checking for illegal values via a default clause

A default clause is jumped to if the switch expression has no other match. That makes it
useful for error checking:

function isWeekDay(name) {

switch (name) {

case 'Monday':

case 'Tuesday':

case 'Wednesday':

case 'Thursday':

case 'Friday':

return true;

case 'Saturday':

case 'Sunday':

return false;

default:

throw new Error('Illegal value: '+name);

}

}

assert.throws(

() => isWeekDay('January'),

{message: 'Illegal value: January'});

234 25 Control flow statements

Exercises: switch
• exercises/control-flow/number_to_month_test.mjs

• Bonus: exercises/control-flow/is_object_via_switch_test.mjs

25.5 while loops [ES1]

A while loop has the following syntax:

while («condition») {

«statements»

}

Before each loop iteration, while evaluates condition:

• If the result is falsy, the loop is finished.
• If the result is truthy, the while body is executed one more time.

25.5.1 Examples of while loops
The following code uses a while loop. In each loop iteration, it removes the first element
of arr via .shift() and logs it.

const arr = ['a', 'b', 'c'];

while (arr.length > 0) {

const elem = arr.shift(); // remove first element

console.log(elem);

}

Output:

a

b

c

If the condition always evaluates to true, then while is an infinite loop:

while (true) {

if (Math.random() === 0) break;

}

25.6 do-while loops [ES3]

The do-while loop works much like while, but it checks its condition after each loop itera-
tion, not before.

let input;

do {

input = prompt('Enter text:');

25.7 for loops [ES1] 235

console.log(input);

} while (input !== ':q');

do-while can also be viewed as a while loop that runs at least once.

prompt() is a global function that is available in web browsers. It prompts the user to input
text and returns it.

25.7 for loops [ES1]

A for loop has the following syntax:

for («initialization»; «condition»; «post_iteration») {

«statements»

}

The first line is the head of the loop and controls how often the body (the remainder of the
loop) is executed. It has three parts and each of them is optional:

• initialization: sets up variables, etc. for the loop. Variables declared here via let
or const only exist inside the loop.

• condition: This condition is checked before each loop iteration. If it is falsy, the loop
stops.

• post_iteration: This code is executed after each loop iteration.

A for loop is therefore roughly equivalent to the following while loop:

«initialization»

while («condition») {

«statements»

«post_iteration»

}

25.7.1 Examples of for loops
As an example, this is how to count from zero to two via a for loop:

for (let i=0; i<3; i++) {

console.log(i);

}

Output:

0

1

2

This is how to log the contents of an Array via a for loop:

const arr = ['a', 'b', 'c'];

for (let i=0; i<arr.length; i++) {

console.log(arr[i]);

}

https://developer.mozilla.org/en-US/docs/Web/API/Window/prompt

236 25 Control flow statements

Output:
a

b

c

If we omit all three parts of the head, we get an infinite loop:
for (;;) {

if (Math.random() === 0) break;

}

25.8 for-of loops [ES6]

A for-of loop iterates over any iterable – a data container that supports the iteration protocol.
Each iterated value is stored in a variable, as specified in the head:

for («iteration_variable» of «iterable») {

«statements»

}

The iteration variable is usually created via a variable declaration:
const iterable = ['hello', 'world'];

for (const elem of iterable) {

console.log(elem);

}

Output:
hello

world

But we can also use a (mutable) variable that already exists:
const iterable = ['hello', 'world'];

let elem;

for (elem of iterable) {

console.log(elem);

}

25.8.1 const: for-of vs. for
Note that in for-of loops we can use const. The iteration variable can still be different
for each iteration (it just can’t change during the iteration). Think of it as a new const

declaration being executed each time in a fresh scope.
In contrast, in for loops we must declare variables via let or var if their values change.

25.8.2 Iterating over iterables
As mentioned before, for-of works with any iterable object, not just with Arrays – for
example, with Sets:

25.9 for-await-of loops [ES2018] 237

const set = new Set(['hello', 'world']);

for (const elem of set) {

console.log(elem);

}

25.8.3 Iterating over [index, element] pairs of Arrays
Lastly, we can also use for-of to iterate over the [index, element] entries of Arrays:

const arr = ['a', 'b', 'c'];

for (const [index, element] of arr.entries()) {

console.log(`${index} -> ${element}`);

}

Output:

0 -> a

1 -> b

2 -> c

With [index, element], we are using destructuring to access Array elements.

Exercise: for-of
exercises/control-flow/array_to_string_test.mjs

25.9 for-await-of loops [ES2018]

for-await-of is like for-of, but itworkswith asynchronous iterables instead of synchronous
ones. And it can only be used inside async functions and async generators.

for await (const item of asyncIterable) {

// ···

}

for-await-of is described in detail in the chapter on asynchronous iteration.

25.10 for-in loops (avoid) [ES1]

The for-in loop visits all (own and inherited) enumerable property keys of an object.
When looping over an Array, it is rarely a good choice:

• It visits property keys, not values.
• As property keys, the indices of Array elements are strings, not numbers (more in-

formation on how Array elements work).
• It visits all enumerable property keys (both own and inherited ones), not just those

of Array elements.

The following code demonstrates these points:

238 25 Control flow statements

const arr = ['a', 'b', 'c'];

arr.propKey = 'property value';

for (const key in arr) {

console.log(key);

}

Output:
0

1

2

propKey

25.11 Recomendations for looping
• If you want to loop over an asynchronous iterable (in ES2018+), you must use for-

await-of.
• For looping over a synchronous iterable (in ES6+), you must use for-of. Note that

Arrays are iterables.
• For looping over an Array in ES5+, you can use the Array method .forEach().
• Before ES5, you can use a plain for loop to loop over an Array.
• Don’t use for-in to loop over an Array.

Chapter 26

Exception handling

26.1 Motivation: throwing and catching exceptions 240
26.2 throw . 241

26.2.1 What values should we throw? . 241
26.3 The try statement . 241

26.3.1 The try block . 242
26.3.2 The catch clause . 242
26.3.3 The finally clause . 243

26.4 Error and its subclasses . 243
26.4.1 Class Error . 244
26.4.2 The built-in subclasses of Error . 245
26.4.3 Subclassing Error . 245

26.5 Chaining errors . 246
26.5.1 Why would we want to chain errors? 246
26.5.2 Chaining errors via error.cause [ES2022] 246
26.5.3 An alternative to .cause: a custom error class 247

This chapter covers how JavaScript handles exceptions.

Why doesn’t JavaScript throw exceptions more often?
JavaScript didn’t support exceptions until ES3. That explains why they are used
sparingly by the language and its standard library.

239

240 26 Exception handling

26.1 Motivation: throwing and catching exceptions
Consider the following code. It reads profiles stored in files into an Array with instances
of class Profile:

function readProfiles(filePaths) {

const profiles = [];

for (const filePath of filePaths) {

try {

const profile = readOneProfile(filePath);

profiles.push(profile);

} catch (err) { // (A)

console.log('Error in: '+filePath, err);

}

}

}

function readOneProfile(filePath) {

const profile = new Profile();

const file = openFile(filePath);

// ··· (Read the data in `file` into `profile`)

return profile;

}

function openFile(filePath) {

if (!fs.existsSync(filePath)) {

throw new Error('Could not find file '+filePath); // (B)

}

// ··· (Open the file whose path is `filePath`)

}

Let’s examine what happens in line B: An error occurred, but the best place to handle the
problem is not the current location, it’s line A. There, we can skip the current file andmove
on to the next one.

Therefore:

• In line B, we use a throw statement to indicate that there was a problem.
• In line A, we use a try-catch statement to handle the problem.

When we throw, the following constructs are active:

readProfiles(···)

for (const filePath of filePaths)

try

readOneProfile(···)

openFile(···)

if (!fs.existsSync(filePath))

throw

One by one, throw exits the nested constructs, until it encounters a try statement. Execu-
tion continues in the catch clause of that try statement.

26.2 throw 241

26.2 throw

This is the syntax of the throw statement:

throw «value»;

26.2.1 What values should we throw?
Any value can be thrown in JavaScript. However, it’s best to use instances of Error or a
subclass because they support additional features such as stack traces and error chaining
(see “Error and its subclasses” (§26.4)).

That leaves us with the following options:

• Using class Error directly. That is less limiting in JavaScript than in a more static
language because we can add our own properties to instances:

const err = new Error('Could not find the file');

err.filePath = filePath;

throw err;

• Using one of the subclasses of Error.

• Subclassing Error (more details are explained later):

class MyError extends Error {

}

function func() {

throw new MyError('Problem!');

}

assert.throws(

() => func(),

MyError);

26.3 The try statement
The maximal version of the try statement looks as follows:

try {

«try_statements»

} catch (error) {

«catch_statements»

} finally {

«finally_statements»

}

We can combine these clauses as follows:

• try-catch

• try-finally

• try-catch-finally

242 26 Exception handling

26.3.1 The try block
The try block can be considered the body of the statement. This is where we execute the
regular code.

26.3.2 The catch clause
If an exception reaches the try block, then it is assigned to the parameter of the catch clause
and the code in that clause is executed. Next, execution normally continues after the try
statement. That may change if:

• There is a return, break, or throw inside the catch block.
• There is a finally clause (which is always executed before the try statement ends).

The following code demonstrates that the value that is thrown in line A is indeed caught
in line B.

const errorObject = new Error();

function func() {

throw errorObject; // (A)

}

try {

func();

} catch (err) { // (B)

assert.equal(err, errorObject);

}

Omitting the catch binding [ES2019]

We can omit the catch parameter if we are not interested in the value that was thrown:

try {

// ···

} catch {

// ···

}

Thatmay occasionally be useful. For example, Node.js has theAPI function assert.throws(func)
that checks whether an error is thrown inside func. It could be implemented as follows.

function throws(func) {

try {

func();

} catch {

return; // everything OK

}

throw new Error('Function didn’t throw an exception!');

}

However, a more complete implementation of this functionwould have a catch parameter
and would, for example, check that its type is as expected.

https://nodejs.org/api/assert.html#assert_assert_throws_fn_error_message

26.4 Error and its subclasses 243

26.3.3 The finally clause
The code inside the finally clause is always executed at the end of a try statement – no
matter what happens in the try block or the catch clause.

Let’s look at a common use case for finally: We have created a resource and want to
always destroy it when we are done with it, no matter what happens while working with
it. We would implement that as follows:

const resource = createResource();

try {

// Work with `resource`. Errors may be thrown.

} finally {

resource.destroy();

}

finally is always executed

The finally clause is always executed, even if an error is thrown (line A):

let finallyWasExecuted = false;

assert.throws(

() => {

try {

throw new Error(); // (A)

} finally {

finallyWasExecuted = true;

}

},

Error

);

assert.equal(finallyWasExecuted, true);

And even if there is a return statement (line A):

let finallyWasExecuted = false;

function func() {

try {

return; // (A)

} finally {

finallyWasExecuted = true;

}

}

func();

assert.equal(finallyWasExecuted, true);

26.4 Error and its subclasses
Error is the common superclass of all built-in error classes.

244 26 Exception handling

26.4.1 Class Error
This is what Error’s instance properties and constructor look like:

class Error {

// Instance properties

message: string;

cause?: any; // ES2022

stack: string; // non-standard but widely supported

constructor(

message: string = '',

options?: ErrorOptions // ES2022

);

}

interface ErrorOptions {

cause?: any; // ES2022

}

The constructor has two parameters:

• message specifies an error message.
• optionswas introduced in ECMAScript 2022. It contains an object where one prop-

erty is currently supported:
– .cause specifies which exception (if any) caused the current error.

The subsections after the next one explain the instance properties .message, .cause and
.stack in more detail.

Error.prototype.name

Each built-in error class E has a property E.prototype.name:

> Error.prototype.name

'Error'

> RangeError.prototype.name

'RangeError'

Therefore, there are two ways to get the name of the class of a built-in error object:

> new RangeError().name

'RangeError'

> new RangeError().constructor.name

'RangeError'

Error instance property .message

.message contains just the error message:

const err = new Error('Hello!');

assert.equal(String(err), 'Error: Hello!');

assert.equal(err.message, 'Hello!');

26.4 Error and its subclasses 245

If we omit the message then the empty string is used as a default value (inherited from
Error.prototype.message):
If we omit the message, it is the empty string:

assert.equal(new Error().message, '');

Error instance property .stack

The instance property .stack is not an ECMAScript feature, but it is widely supported by
JavaScript engines. It is usually a string, but its exact structure is not standardized and
varies between engines.
This is what it looks like on the JavaScript engine V8:

const err = new Error('Hello!');

assert.equal(

err.stack,

`

Error: Hello!

at main.mjs:1:13

`.trim());

Error instance property .cause [ES2022]

The instance property .cause is created via the options object in the second parameter of
new Error(). It specifies which other error caused the current one.

const err = new Error('msg', {cause: 'the cause'});

assert.equal(err.cause, 'the cause');

For information on how to use this property see “Chaining errors” (§26.5).

26.4.2 The built-in subclasses of Error
Error has the following subclasses – quoting the ECMAScript specification:

• AggregateError [ES2021] represents multiple errors at once. In the standard library,
only Promise.any() uses it.

• RangeError indicates a value that is not in the set or range of allowable values.
• ReferenceError indicates that an invalid reference value has been detected.
• SyntaxError indicates that a parsing error has occurred.
• TypeError is used to indicate an unsuccessful operation when none of the other Na-

tiveError objects are an appropriate indication of the failure cause.
• URIError indicates that one of the global URI handling functions was used in a way

that is incompatible with its definition.

26.4.3 Subclassing Error

Since ECMAScript 2022, the Error constructor accepts two parameters (see previous sub-
section). Therefore, we have two choices when subclassing it: We can either omit the con-
structor in our subclass or we can invoke super() like this:

https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard

246 26 Exception handling

class MyCustomError extends Error {

constructor(message, options) {

super(message, options);

// ···

}

}

26.5 Chaining errors
26.5.1 Why would we want to chain errors?
Sometimes, we catch errors that are thrown during a more deeply nested function call and
would like to attach more information to it:

function readFiles(filePaths) {

return filePaths.map(

(filePath) => {

try {

const text = readText(filePath);

const json = JSON.parse(text);

return processJson(json);

} catch (error) {

// (A)

}

});

}

The statements inside the try clause may throw all kinds of errors. In most cases, an error
won’t be aware of the path of the file that caused it. That’s why we would like to attach
that information in line A.

26.5.2 Chaining errors via error.cause [ES2022]

Since ECMAScript 2022, new Error() lets us specify what caused it:

function readFiles(filePaths) {

return filePaths.map(

(filePath) => {

try {

// ···

} catch (error) {

throw new Error(

`While processing ${filePath}`,

{cause: error}

);

}

});

}

26.5 Chaining errors 247

26.5.3 An alternative to .cause: a custom error class
The following custom error class supports chaining. It is forward compatible with .cause.

/**

* An error class that supports error chaining.

* If there is built-in support for .cause, it uses it.

* Otherwise, it creates this property itself.

*/

class CausedError extends Error {

constructor(message, options) {

super(message, options);

if (

(isObject(options) && 'cause' in options)

&& !('cause' in this)

) {

// .cause was specified but the superconstructor

// did not create an instance property.

const cause = options.cause;

this.cause = cause;

if ('stack' in cause) {

this.stack = this.stack + '\nCAUSE: ' + cause.stack;

}

}

}

}

function isObject(value) {

return value !== null && typeof value === 'object';

}

Exercise: Exception handling
exercises/exception-handling/call_function_test.mjs

248 26 Exception handling

Chapter 27

Callable values

27.1 Kinds of functions . 250
27.2 Ordinary functions . 250

27.2.1 Named function expressions (advanced) 250
27.2.2 Terminology: function definitions and function expressions 251
27.2.3 Parts of a function declaration . 252
27.2.4 Roles played by ordinary functions 252
27.2.5 Terminology: entity vs. syntax vs. role (advanced) 253

27.3 Specialized functions [ES6] . 253
27.3.1 Specialized functions are still functions 254
27.3.2 Arrow functions . 255
27.3.3 The special variable this in methods, ordinary functions and arrow

functions . 256
27.3.4 Recommendation: prefer specialized functions over ordinary func-

tions . 257
27.4 Summary: kinds of callable values . 258
27.5 Returning values from functions and methods 259
27.6 Parameter handling . 260

27.6.1 Terminology: parameters vs. arguments 260
27.6.2 Terminology: callback . 260
27.6.3 Too many or not enough arguments 260
27.6.4 Parameter default values [ES6] . 261
27.6.5 Rest parameters [ES6] . 261
27.6.6 Named parameters . 262
27.6.7 Simulating named parameters . 263
27.6.8 Spreading (...) into function calls [ES6] 263

27.7 Methods of functions: .call(), .apply(), .bind() 264
27.7.1 The function method .call() . 264
27.7.2 The function method .apply() . 265
27.7.3 The function method .bind() . 266

249

250 27 Callable values

In this chapter, we look at JavaScript values that can be invoked: functions, methods, and
classes.

27.1 Kinds of functions
JavaScript has two categories of functions:

• An ordinary function can play several roles:
– Real function
– Method
– Constructor function

• A specialized function can only play one of those roles – for example:
– An arrow function can only be a real function.
– A method can only be a method.
– A class can only be a constructor function.

Specialized functions were added to the language in ECMAScript 6.
Read on to find out what all of those things mean.

27.2 Ordinary functions
The following code shows two ways of doing (roughly) the same thing: creating an ordi-
nary function.

// Function declaration (a statement)

function ordinary1(a, b, c) {

// ···

}

// const plus anonymous (nameless) function expression

const ordinary2 = function (a, b, c) {

// ···

};

Inside a scope, function declarations are activated early (see “Declarations: scope and ac-
tivation” (§13.8)) and can be called before they are declared. That is occasionally useful.
Variable declarations, such as the one for ordinary2, are not activated early.

27.2.1 Named function expressions (advanced)
So far, we have only seen anonymous function expressions – which don’t have names:

const anonFuncExpr = function (a, b, c) {

// ···

};

27.2 Ordinary functions 251

But there are also named function expressions:
const namedFuncExpr = function myName(a, b, c) {

// `myName` is only accessible in here

};

myName is only accessible inside the body of the function. The function can use it to refer to
itself (for self-recursion, etc.) – independently of which variable it is assigned to:

const func = function funcExpr() { return funcExpr };

assert.equal(func(), func);

// The name `funcExpr` only exists inside the function body:

assert.throws(() => funcExpr(), ReferenceError);

Even if they are not assigned to variables, named function expressions have names (line
A):

function getNameOfCallback(callback) {

return callback.name;

}

assert.equal(

getNameOfCallback(function () {}), ''); // anonymous

assert.equal(

getNameOfCallback(function named() {}), 'named'); // (A)

Note that functions created via function declarations or variable declarations always have
names:

function funcDecl() {}

assert.equal(

getNameOfCallback(funcDecl), 'funcDecl');

const funcExpr = function () {};

assert.equal(

getNameOfCallback(funcExpr), 'funcExpr');

One benefit of functions having names is that those names show up in error stack traces.

27.2.2 Terminology: function definitions and function expressions
A function definition is syntax that creates functions:

• A function declaration (a statement)
• A function expression

Function declarations always produce ordinary functions. Function expressions produce
either ordinary functions or specialized functions:

• Ordinary function expressions (which we have already encountered):
– Anonymous function expressions
– Named function expressions

252 27 Callable values

• Specialized function expressions (which we’ll look at later):
– Arrow functions (which are always expressions)

While function declarations are still popular in JavaScript, function expressions are almost
always arrow functions in modern code.

27.2.3 Parts of a function declaration
Let’s examine the parts of a function declaration via the following example. Most of the
terms also apply to function expressions.

function add(x, y) {

return x + y;

}

• add is the name of the function declaration.
• add(x, y) is the head of the function declaration.
• x and y are the parameters.
• The curly braces ({ and }) and everything between them are the body of the function

declaration.
• The return statement explicitly returns a value from the function.

Trailing commas in parameter lists [ES2017]

JavaScript has always allowed and ignored trailing commas in Array literals. Since ES5,
they are also allowed in object literals. Since ES2017, we can add trailing commas to pa-
rameter lists (declarations and invocations):

// Declaration

function retrieveData(

contentText,

keyword,

{unique, ignoreCase, pageSize}, // trailing comma

) {

// ···

}

// Invocation

retrieveData(

'',

null,

{ignoreCase: true, pageSize: 10}, // trailing comma

);

27.2.4 Roles played by ordinary functions
Consider the following function declaration from the previous section:

function add(x, y) {

return x + y;

}

27.3 Specialized functions [ES6] 253

This function declaration creates an ordinary function whose name is add. As an ordinary
function, add() can play three roles:

• Real function: invoked via a function call.

assert.equal(add(2, 1), 3);

• Method: stored in a property, invoked via a method call.

const obj = { addAsMethod: add };

assert.equal(obj.addAsMethod(2, 4), 6); // (A)

In line A, obj is called the receiver of the method call.

• Constructor function: invoked via new.

const inst = new add();

assert.equal(inst instanceof add, true);

As an aside, the names of constructor functions (incl. classes) normally start with
capital letters.

27.2.5 Terminology: entity vs. syntax vs. role (advanced)
The distinction between the concepts syntax, entity, and role is subtle and often doesn’t
matter. But I’d like to sharpen your eye for it:

• An entity is a JavaScript feature as it “lives” in RAM. An ordinary function is an
entity.

– Entities include: ordinary functions, arrow functions, methods, and classes.

• Syntax is the code that we use to create entities. Function declarations and anony-
mous function expressions are syntax. They both create entities that are called ordi-
nary functions.

– Syntax includes: function declarations and anonymous function expressions.
The syntax that produces arrow functions is also called arrow functions. The
same is true for methods and classes.

• A role describes how we use entities. The entity ordinary function can play the role
real function, or the role method, or the role class. The entity arrow function can also
play the role real function.

– The roles of functions are: real function, method, and constructor function.

Many other programming languages only have a single entity that plays the role real func-
tion. Then they can use the name function for both role and entity.

27.3 Specialized functions [ES6]

Specialized functions are single-purpose versions of ordinary functions. Each one of them
specializes in a single role:

• The purpose of an arrow function is to be a real function:

254 27 Callable values

const arrow = () => {

return 123;

};

assert.equal(arrow(), 123);

• The purpose of a method is to be a method:

const obj = {

myMethod() {

return 'abc';

}

};

assert.equal(obj.myMethod(), 'abc');

• The purpose of a class is to be a constructor function:

class MyClass {

/* ··· */

}

const inst = new MyClass();

Apart from nicer syntax, each kind of specialized function also supports new features,
making them better at their jobs than ordinary functions.

• Arrow functions are explained soon.
• Methods are explained in the chapter on objects.
• Classes are explained in the chapter on classes.

Table 27.1 lists the capabilities of ordinary and specialized functions.

Function call Method call Constructor call
Ordinary function (this === undefined) ✔ ✔
Arrow function ✔ (lexical this) ✘
Method (this === undefined) ✔ ✘
Class ✘ ✘ ✔

Table 27.1: Capabilities of four kinds of functions. If a cell value is in parentheses, that
implies some kind of limitation. The special variable this is explained in “The special
variable this in methods, ordinary functions and arrow functions” (§27.3.3).

27.3.1 Specialized functions are still functions
It’s important to note that arrow functions, methods, and classes are still categorized as
functions:

> (() => {}) instanceof Function

true

> ({ method() {} }.method) instanceof Function

true

27.3 Specialized functions [ES6] 255

> (class SomeClass {}) instanceof Function

true

27.3.2 Arrow functions
Arrow functions were added to JavaScript for two reasons:

1. To provide a more concise way for creating functions.
2. They work better as real functions inside methods: Methods can refer to the object

that received amethod call via the special variable this. Arrow functions can access
the this of a surroundingmethod, ordinary functions can’t (because they have their
own this).

We’ll first examine the syntax of arrow functions and then how this works in various
functions.

The syntax of arrow functions

Let’s review the syntax of an anonymous function expression:

const f = function (x, y, z) { return 123 };

The (roughly) equivalent arrow function looks as follows. Arrow functions are expres-
sions.

const f = (x, y, z) => { return 123 };

Here, the body of the arrow function is a block. But it can also be an expression. The
following arrow function works exactly like the previous one.

const f = (x, y, z) => 123;

If an arrow function has only a single parameter and that parameter is an identifier (not a
destructuring pattern) then you can omit the parentheses around the parameter:

const id = x => x;

That is convenientwhen passing arrow functions as parameters to other functions ormeth-
ods:

> [1,2,3].map(x => x+1)

[2, 3, 4]

This previous example demonstrates one benefit of arrow functions – conciseness. If we
perform the same task with a function expression, our code is more verbose:

[1,2,3].map(function (x) { return x+1 });

Syntax pitfall: returning an object literal from an arrow function

If you want the expression body of an arrow function to be an object literal, you must put
the literal in parentheses:

const func1 = () => ({a: 1});

assert.deepEqual(func1(), { a: 1 });

256 27 Callable values

If you don’t, JavaScript thinks, the arrow function has a block body (that doesn’t return
anything):

const func2 = () => {a: 1};

assert.deepEqual(func2(), undefined);

{a: 1} is interpreted as a block with the label a: and the expression statement 1. Without
an explicit return statement, the block body returns undefined.

This pitfall is caused by syntactic ambiguity: object literals and code blocks have the same
syntax. We use the parentheses to tell JavaScript that the body is an expression (an object
literal) and not a statement (a block).

27.3.3 The special variable this in methods, ordinary functions and ar-
row functions

The special variable this is an object-oriented feature
We are taking a quick look at the special variable this here, in order to understand
why arrow functions are better real functions than ordinary functions.
But this feature only matters in object-oriented programming and is covered in
more depth in “Methods and the special variable this” (§30.5). Therefore, don’t
worry if you don’t fully understand it yet.

Inside methods, the special variable this lets us access the receiver – the object which re-
ceived the method call:

const obj = {

myMethod() {

assert.equal(this, obj);

}

};

obj.myMethod();

Ordinary functions can be methods and therefore also have the implicit parameter this:

const obj = {

myMethod: function () {

assert.equal(this, obj);

}

};

obj.myMethod();

this is even an implicit parameter when we use an ordinary function as a real function.
Then its value is undefined (if strict mode is active, which it almost always is):

function ordinaryFunc() {

assert.equal(this, undefined);

}

ordinaryFunc();

27.3 Specialized functions [ES6] 257

That means that an ordinary function, used as a real function, can’t access the this of a
surrounding method (line A). In contrast, arrow functions don’t have this as an implicit
parameter. They treat it like any other variable and can therefore access the this of a
surrounding method (line B):

const jill = {

name: 'Jill',

someMethod() {

function ordinaryFunc() {

assert.throws(

() => this.name, // (A)

/^TypeError: Cannot read properties of undefined \(reading 'name'\)$/);

}

ordinaryFunc();

const arrowFunc = () => {

assert.equal(this.name, 'Jill'); // (B)

};

arrowFunc();

},

};

jill.someMethod();

In this code, we can observe two ways of handling this:
• Dynamic this: In lineA,we try to access the this of .someMethod() froman ordinary

function. There, it is shadowed by the function’s own this, which is undefined (as
filled in by the function call). Given that ordinary functions receive their this via
(dynamic) function or method calls, their this is called dynamic.

• Lexical this: In line B, we again try to access the this of .someMethod(). This time,
we succeed because the arrow function does not have its own this. this is resolved
lexically, just like any other variable. That’s why the this of arrow functions is called
lexical.

27.3.4 Recommendation: prefer specialized functions over ordinary func-
tions

Normally, you should prefer specialized functions over ordinary functions, especially classes
and methods.
When it comes to real functions, the choice between an arrow function and an ordinary
function is less clear-cut, though:

• For anonymous inline function expressions, arrow functions are clear winners, due
to their compact syntax and them not having this as an implicit parameter:

const twiceOrdinary = [1, 2, 3].map(function (x) {return x * 2});

const twiceArrow = [1, 2, 3].map(x => x * 2);

• For stand-alone named function declarations, arrow functions still benefit from lex-
ical this. But function declarations (which produce ordinary functions) have nice

258 27 Callable values

syntax and early activation is also occasionally useful (see “Declarations: scope and
activation” (§13.8)). If this doesn’t appear in the body of an ordinary function, there
is no downside to using it as a real function. The static checking tool ESLint canwarn
us during development when we do this wrong via a built-in rule.

function timesOrdinary(x, y) {

return x * y;

}

const timesArrow = (x, y) => {

return x * y;

};

27.4 Summary: kinds of callable values

This section refers to upcoming content
This section mainly serves as a reference for the current and upcoming chapters.
Don’t worry if you don’t understand everything.

So far, all (real) functions and methods, that we have seen, were:

• Single-result
• Synchronous

Later chapters will cover other modes of programming:

• Iteration treats objects as containers of data (so-called iterables) and provides a stan-
dardized way for retrieving what is inside them. If a function or a method returns
an iterable, it returns multiple values.

• Asynchronous programming deals with handling a long-running computation. You
are notifiedwhen the computation is finished and can do something else in between.
The standard pattern for asynchronously delivering single results is called Promise.

These modes can be combined – for example, there are synchronous iterables and asyn-
chronous iterables.

Several new kinds of functions and methods help with some of the mode combinations:

• Async functions help implement functions that return Promises. There are also async
methods.

• Synchronous generator functions help implement functions that return synchronous
iterables. There are also synchronous generator methods.

• Asynchronous generator functions help implement functions that return asynchronous
iterables. There are also asynchronous generator methods.

That leaves us with 4 kinds (2 × 2) of functions and methods:

• Synchronous vs. asynchronous
• Generator vs. single-result

https://eslint.org/docs/rules/no-invalid-this

27.5 Returning values from functions and methods 259

Table 27.2 gives an overview of the syntax for creating these 4 kinds of functions andmeth-
ods.

Result #
Sync function Sync method
function f() {} { m() {} } value 1
f = function () {}

f = () => {}

Sync generator function Sync gen. method
function* f() {} { * m() {} } iterable 0+
f = function* () {}

Async function Async method
async function f() {} { async m() {} } Promise 1
f = async function () {}

f = async () => {}

Async generator function Async gen. method
async function* f() {} { async * m() {} } async iterable 0+
f = async function* () {}

Table 27.2: Syntax for creating functions and methods. The last column specifies how
many values are produced by an entity.

27.5 Returning values from functions and methods
(Everything mentioned in this section applies to both functions and methods.)

The return statement explicitly returns a value from a function:

function func() {

return 123;

}

assert.equal(func(), 123);

Another example:

function boolToYesNo(bool) {

if (bool) {

return 'Yes';

} else {

return 'No';

}

}

assert.equal(boolToYesNo(true), 'Yes');

assert.equal(boolToYesNo(false), 'No');

If, at the end of a function, you haven’t returned anything explicitly, JavaScript returns
undefined for you:

260 27 Callable values

function noReturn() {

// No explicit return

}

assert.equal(noReturn(), undefined);

27.6 Parameter handling
Once again, I am only mentioning functions in this section, but everything also applies to
methods.

27.6.1 Terminology: parameters vs. arguments
The term parameter and the term argument basically mean the same thing. If you want to,
you can make the following distinction:

• Parameters are part of a function definition. They are also called formal parameters
and formal arguments.

• Arguments are part of a function call. They are also called actual parameters and actual
arguments.

27.6.2 Terminology: callback
A callback or callback function is a function that is an argument of a function or method call.

The following is an example of a callback:

const myArray = ['a', 'b'];

const callback = (x) => console.log(x);

myArray.forEach(callback);

Output:

a

b

27.6.3 Too many or not enough arguments
JavaScript does not complain if a function call provides a different number of arguments
than expected by the function definition:

• Extra arguments are ignored.
• Missing parameters are set to undefined.

For example:

function foo(x, y) {

return [x, y];

}

// Too many arguments:

assert.deepEqual(foo('a', 'b', 'c'), ['a', 'b']);

27.6 Parameter handling 261

// The expected number of arguments:

assert.deepEqual(foo('a', 'b'), ['a', 'b']);

// Not enough arguments:

assert.deepEqual(foo('a'), ['a', undefined]);

27.6.4 Parameter default values [ES6]

Parameter default values specify the value to use if a parameter has not been provided –
for example:

function f(x, y=0) {

return [x, y];

}

assert.deepEqual(f(1), [1, 0]);

assert.deepEqual(f(), [undefined, 0]);

undefined also triggers the default value:

assert.deepEqual(

f(undefined, undefined),

[undefined, 0]);

27.6.5 Rest parameters [ES6]

A rest parameter is declared by prefixing an identifier with three dots (...). During a
function or method call, it receives an Array with all remaining arguments. If there are no
extra arguments at the end, it is an empty Array – for example:

function f(x, ...y) {

return [x, y];

}

assert.deepEqual(

f('a', 'b', 'c'), ['a', ['b', 'c']]

);

assert.deepEqual(

f(), [undefined, []]

);

There are two restrictions related to how we can use rest parameters:

• We cannot use more than one rest parameter per function definition.

assert.throws(

() => eval('function f(...x, ...y) {}'),

/^SyntaxError: Rest parameter must be last formal parameter$/

);

• A rest parameter must always come last. As a consequence, we can’t access the last
parameter like this:

262 27 Callable values

assert.throws(

() => eval('function f(...restParams, lastParam) {}'),

/^SyntaxError: Rest parameter must be last formal parameter$/

);

Enforcing a certain number of arguments via a rest parameter

You can use a rest parameter to enforce a certain number of arguments. Take, for example,
the following function:

function createPoint(x, y) {

return {x, y};

// same as {x: x, y: y}

}

This is how we force callers to always provide two arguments:

function createPoint(...args) {

if (args.length !== 2) {

throw new Error('Please provide exactly 2 arguments!');

}

const [x, y] = args; // (A)

return {x, y};

}

In line A, we access the elements of args via destructuring.

27.6.6 Named parameters
When someone calls a function, the arguments provided by the caller are assigned to the
parameters received by the callee. Two common ways of performing the mapping are:

1. Positional parameters: An argument is assigned to a parameter if they have the same
position. A function call with only positional arguments looks as follows.

selectEntries(3, 20, 2)

2. Named parameters: An argument is assigned to a parameter if they have the same
name. JavaScript doesn’t have named parameters, but you can simulate them. For
example, this is a function call with only (simulated) named arguments:

selectEntries({start: 3, end: 20, step: 2})

Named parameters have several benefits:

• They lead to more self-explanatory code because each argument has a descriptive
label. Just compare the two versions of selectEntries(): with the second one, it is
much easier to see what happens.

• The order of the arguments doesn’t matter (as long as the names are correct).

• Handling more than one optional parameter is more convenient: callers can easily
provide any subset of all optional parameters and don’t have to be aware of the

27.6 Parameter handling 263

ones they omit (with positional parameters, you have to fill in preceding optional
parameters, with undefined).

27.6.7 Simulating named parameters
JavaScript doesn’t have real named parameters. The official way of simulating them is via
object literals:

function selectEntries({start=0, end=-1, step=1}) {

return {start, end, step};

}

This function uses destructuring to access the properties of its single parameter. The pattern
it uses is an abbreviation for the following pattern:

{start: start=0, end: end=-1, step: step=1}

This destructuring pattern works for empty object literals:
> selectEntries({})

{ start: 0, end: -1, step: 1 }

But it does not work if you call the function without any parameters:
> selectEntries()

TypeError: Cannot read properties of undefined (reading 'start')

You can fix this by providing a default value for the whole pattern. This default value
works the same as default values for simpler parameter definitions: if the parameter is
missing, the default is used.

function selectEntries({start=0, end=-1, step=1} = {}) {

return {start, end, step};

}

assert.deepEqual(

selectEntries(),

{ start: 0, end: -1, step: 1 });

27.6.8 Spreading (...) into function calls [ES6]

If you put three dots (...) in front of the argument of a function call, then you spread it.
That means that the argument must be an iterable object and the iterated values all become
arguments. In other words, a single argument is expanded into multiple arguments – for
example:

function func(x, y) {

console.log(x);

console.log(y);

}

const someIterable = ['a', 'b'];

func(...someIterable);

// same as func('a', 'b')

Output:

264 27 Callable values

a

b

Spreading and rest parameters use the same syntax (...), but they serve opposite pur-
poses:

• Rest parameters are used when defining functions or methods. They collect argu-
ments into Arrays.

• Spread arguments are used when calling functions or methods. They turn iterable
objects into arguments.

Example: spreading into Math.max()

Math.max() returns the largest one of its zero or more arguments. Alas, it can’t be used for
Arrays, but spreading gives us a way out:

> Math.max(-1, 5, 11, 3)

11

> Math.max(...[-1, 5, 11, 3])

11

> Math.max(-1, ...[-5, 11], 3)

11

Example: spreading into Array.prototype.push()

Similarly, the Array method .push() destructively adds its zero or more parameters to
the end of its Array. JavaScript has no method for destructively appending an Array to
another one. Once again, we are saved by spreading:

const arr1 = ['a', 'b'];

const arr2 = ['c', 'd'];

arr1.push(...arr2);

assert.deepEqual(arr1, ['a', 'b', 'c', 'd']);

Exercises: Parameter handling
• Positional parameters: exercises/callables/positional_parameters_te

st.mjs

• Named parameters: exercises/callables/named_parameters_test.mjs

27.7 Methods of functions: .call(), .apply(), .bind()
Functions are objects and havemethods. In this section, we look at three of those methods:
.call(), .apply(), and .bind().

27.7.1 The function method .call()

Each function someFunc has the following method:

27.7 Methods of functions: .call(), .apply(), .bind() 265

someFunc.call(thisValue, arg1, arg2, arg3);

This method invocation is loosely equivalent to the following function call:
someFunc(arg1, arg2, arg3);

However, with .call(), we can also specify a value for the implicit parameter this. In
other words: .call()makes the implicit parameter this explicit.
The following code demonstrates the use of .call():

function func(x, y) {

return [this, x, y];

}

assert.deepEqual(

func.call('hello', 'a', 'b'),

['hello', 'a', 'b']);

As we have seen before, if we function-call an ordinary function, its this is undefined:
assert.deepEqual(

func('a', 'b'),

[undefined, 'a', 'b']);

Therefore, the previous function call is equivalent to:
assert.deepEqual(

func.call(undefined, 'a', 'b'),

[undefined, 'a', 'b']);

In arrow functions, the value for this provided via .call() (or other means) is ignored.

27.7.2 The function method .apply()

Each function someFunc has the following method:
someFunc.apply(thisValue, [arg1, arg2, arg3]);

This method invocation is loosely equivalent to the following function call (which uses
spreading):

someFunc(...[arg1, arg2, arg3]);

However, with .apply(), we can also specify a value for the implicit parameter this.
The following code demonstrates the use of .apply():

function func(x, y) {

return [this, x, y];

}

const args = ['a', 'b'];

assert.deepEqual(

func.apply('hello', args),

['hello', 'a', 'b']);

266 27 Callable values

27.7.3 The function method .bind()

.bind() is another method of function objects. This method is invoked as follows:
const boundFunc = someFunc.bind(thisValue, arg1, arg2);

.bind() returns a new function boundFunc(). Calling that function invokes someFunc()

with this set to thisValue and these parameters: arg1, arg2, followed by the parameters
of boundFunc().
That is, the following two function calls are equivalent:

boundFunc('a', 'b')

someFunc.call(thisValue, arg1, arg2, 'a', 'b')

An alternative to .bind()

Another way of pre-filling this and parameters is via an arrow function:
const boundFunc2 = (...args) =>

someFunc.call(thisValue, arg1, arg2, ...args);

An implementation of .bind()
Considering the previous section, .bind() can be implemented as a real function as fol-
lows:

function bind(func, thisValue, ...boundArgs) {

return (...args) =>

func.call(thisValue, ...boundArgs, ...args);

}

Example: binding a real function
Using .bind() for real functions is somewhat unintuitive because we have to provide a
value for this. Given that it is undefinedduring function calls, it is usually set to undefined
or null.
In the following example, we create add8(), a function that has one parameter, by binding
the first parameter of add() to 8.

function add(x, y) {

return x + y;

}

const add8 = add.bind(undefined, 8);

assert.equal(add8(1), 9);

Chapter 28

Evaluating code dynamically:
eval(), new Function() (advanced)

28.1 eval() . 267
28.2 new Function() . 268
28.3 Recommendations . 268

In this chapter, we’ll look at two ways of evaluating code dynamically: eval() and new

Function().

28.1 eval()

Given a string str with JavaScript code, eval(str) evaluates that code and returns the
result:

> eval('2 ** 4')

16

There are two ways of invoking eval():

• Directly, via a function call. Then the code in its argument is evaluated inside the
current scope.

• Indirectly, not via a function call. Then it evaluates its code in global scope.

“Not via a function call” means “anything that looks different than eval(···)”:

• eval.call(undefined, '···') (uses method .call() of functions)
• eval?.() () (uses optional chaining)
• (0, eval)('···') (uses the comma operator)
• globalThis.eval('···')

• const e = eval; e('···')

267

268 28 Evaluating code dynamically: eval(), new Function() (advanced)

• Etc.

The following code illustrates the difference:

globalThis.myVariable = 'global';

function func() {

const myVariable = 'local';

// Direct eval

assert.equal(eval('myVariable'), 'local');

// Indirect eval

assert.equal(eval.call(undefined, 'myVariable'), 'global');

}

Evaluating code in global context is safer because the code has access to fewer internals.

28.2 new Function()

new Function() creates a function object and is invoked as follows:

const func = new Function('«param_1»', ···, '«param_n»', '«func_body»');

The previous statement is equivalent to the next statement. Note that «param_1», etc., are
not inside string literals, anymore.

const func = function («param_1», ···, «param_n») {

«func_body»

};

In the next example, we create the same function twice, first via new Function(), then via
a function expression:

const times1 = new Function('a', 'b', 'return a * b');

const times2 = function (a, b) { return a * b };

new Function() creates non-strict mode functions
By default, functions created via new Function() are sloppy. If we want the func-
tion body to be in strict mode, we have to switch it on manually.

28.3 Recommendations
Avoid dynamic evaluation of code as much as you can:

• It’s a security risk because it may enable an attacker to execute arbitrary code with
the privileges of your code.

• It may be switched off – for example, in browsers, via a Content Security Policy.

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

28.3 Recommendations 269

Very often, JavaScript is dynamic enough so that you don’t need eval() or similar. In the
following example, what we are doing with eval() (line A) can be achieved just as well
without it (line B).

const obj = {a: 1, b: 2};

const propKey = 'b';

assert.equal(eval('obj.' + propKey), 2); // (A)

assert.equal(obj[propKey], 2); // (B)

If you have to dynamically evaluate code:
• Prefer new Function() over eval(): it always executes its code in global context and

a function provides a clean interface to the evaluated code.
• Prefer indirect eval over direct eval: evaluating code in global context is safer.

270 28 Evaluating code dynamically: eval(), new Function() (advanced)

Part VI

Modularity

271

Chapter 29

Modules [ES6]

29.1 Cheat sheet: modules . 274
29.1.1 Named exports, named imports, namespace imports 274
29.1.2 Dynamic imports . 275
29.1.3 Default exports and imports . 275
29.1.4 Kinds of module specifiers . 275

29.2 JavaScript source code formats . 276
29.2.1 Code before built-in modules was written in ECMAScript 5 276

29.3 Before we had modules, we had scripts 277
29.4 Module systems created prior to ES6 . 278

29.4.1 Server side: CommonJS modules 278
29.4.2 Client side: AMD (Asynchronous Module Definition) modules . . 279
29.4.3 Characteristics of JavaScript modules 280

29.5 ECMAScript modules . 280
29.5.1 ES modules: syntax, semantics, loader API 281

29.6 Named exports and imports . 281
29.6.1 Named exports . 281
29.6.2 Named imports . 281
29.6.3 Namespace imports . 282
29.6.4 Named exporting styles: inline versus clause (advanced) 282

29.7 Default exports and imports . 283
29.7.1 The two styles of default-exporting 284
29.7.2 The default export as a named export (advanced) 284

29.8 Re-exporting . 285
29.9 More details on exporting and importing 286

29.9.1 Imports are read-only views on exports 286
29.9.2 ESM’s transparent support for cyclic imports (advanced) 287

29.10npm packages . 287
29.10.1 Packages are installed inside a directory node_modules/ 288
29.10.2Why can npm be used to install frontend libraries? 289

29.11Naming modules . 289

273

274 29 Modules [ES6]

29.12Module specifiers . 290
29.12.1 Categories of module specifiers . 290
29.12.2 ES module specifiers in browsers 290
29.12.3 ES module specifiers on Node.js 291

29.13import.meta – metadata for the current module [ES2020] 292
29.13.1 import.meta.url . 292
29.13.2 import.meta.url and class URL . 292
29.13.3 import.meta.url on Node.js . 292

29.14Loading modules dynamically via import() [ES2020] (advanced) 294
29.14.1 The limitations of static import statements 294
29.14.2 Dynamic imports via the import() operator 294
29.14.3 Use cases for import() . 296

29.15Top-level await in modules [ES2022] (advanced) 297
29.15.1 Use cases for top-level await . 297
29.15.2 How does top-level await work under the hood? 298
29.15.3 The pros and cons of top-level await 298

29.16Polyfills: emulating native web platform features (advanced) 299
29.16.1 Sources of this section . 300

29.1 Cheat sheet: modules
29.1.1 Named exports, named imports, namespace imports
If we put export in front of a named entity inside a module, it becomes a named export of
that module. All other entities are private to the module.

//===== lib1.mjs =====

// Named exports

export const one = 1, two = 2;

export function myFunc() {

return 3;

}

//===== main1a.mjs =====

// Named imports

import {one, myFunc as f} from './lib1.mjs';

assert.equal(one, 1);

assert.equal(f(), 3);

// Namespace import

import * as lib1 from './lib1.mjs';

assert.equal(lib1.one, 1);

assert.equal(lib1.myFunc(), 3);

The string after from is called a module specifier. It identifies from which module we want
to import.

29.1 Cheat sheet: modules 275

29.1.2 Dynamic imports
So far, all imports we have seen were static, with the following constraints:

• They have to appear at the top level of a module.
• The module specifier is fixed.

Dynamic imports via import() [ES2020] don’t have those constraints:

//===== main1b.mjs =====

function importLibrary(moduleSpecifier) {

return import(moduleSpecifier)

.then((lib1) => {

assert.equal(lib1.one, 1);

assert.equal(lib1.myFunc(), 3);

});

}

await importLibrary('./lib1.mjs');

29.1.3 Default exports and imports
A default export is mainly used when a module only contains a single entity (even though
it can be combined with named exports).

//===== lib2a.mjs =====

export default function getHello() {

return 'hello';

}

A default export is the exception to the rule that function declarations always have names:
In the previous example, we can omit the name getHello.

//===== lib2b.mjs =====

export default 123; // (A) instead of `const`

There can be at most one default export. That’s why const or let can’t be default-exported
(line A).

//===== main2.mjs =====

import lib2a from './lib2a.mjs';

assert.equal(lib2a(), 'hello');

import lib2b from './lib2b.mjs';

assert.equal(lib2b, 123);

29.1.4 Kinds of module specifiers
There are three kinds of module specifiers:

• Absolute specifiers are full URLs – for example:

'https://www.unpkg.com/browse/yargs@17.3.1/browser.mjs'

'file:///opt/nodejs/config.mjs'

276 29 Modules [ES6]

Absolute specifiers are mostly used to access libraries that are directly hosted on the
web.

• Relative specifiers are relative URLs (starting with '/', './' or '../') – for example:

'./sibling-module.js'

'../module-in-parent-dir.mjs'

'../../dir/other-module.js'

Relative specifiers are mostly used to access other modules within the same code
base.

• Bare specifiers are paths (without protocol and domain) that start with neither slashes
nor dots. They begin with the names of packages (as installed via a package manager
such npm). Those names can optionally be followed by subpaths:

'some-package'

'some-package/sync'

'some-package/util/files/path-tools.js'

Bare specifiers can also refer to packages with scoped names:

'@some-scope/scoped-name'

'@some-scope/scoped-name/async'

'@some-scope/scoped-name/dir/some-module.mjs'

Each bare specifier refers to exactly onemodule inside a package; if it has no subpath,
it refers to the designated “main” module of its package.

29.2 JavaScript source code formats
The current landscape of JavaScript modules is quite diverse: ES6 brought built-in mod-
ules, but the source code formats that came before them, are still around, too. Understand-
ing the latter helps understand the former, so let’s investigate. The next sections describe
the following ways of delivering JavaScript source code:

• Scripts are code fragments that browsers run in global scope. They are precursors of
modules.

• CommonJS modules are a module format that is mainly used on servers (e.g., via
Node.js).

• AMD modules are a module format that is mainly used in browsers.
• ECMAScript modules are JavaScript’s built-in module format. It supersedes all pre-

vious formats.

Table 29.1 gives an overview of these code formats. Note that for CommonJS modules
and ECMAScript modules, two filename extensions are commonly used. Which one is
appropriate depends on how we want to use a file. Details are given later in this chapter.

29.2.1 Code before built-in modules was written in ECMAScript 5
Before we get to built-in modules (which were introduced with ES6), all code that we’ll
see, will be written in ES5. Among other things:

29.3 Before we had modules, we had scripts 277

Runs on Loaded Filename ext.
Script browsers async .js

CommonJS module servers sync .js .cjs

AMDmodule browsers async .js

ECMAScript module browsers and servers async .js .mjs

Table 29.1: Ways of delivering JavaScript source code.

• ES5 did not have const and let, only var.
• ES5 did not have arrow functions, only function expressions.

29.3 Before we had modules, we had scripts
Initially, browsers only had scripts – pieces of code that were executed in global scope. As
an example, consider an HTML file that loads script files via the following HTML:

<script src="other-module1.js"></script>

<script src="other-module2.js"></script>

<script src="my-module.js"></script>

The main file is my-module.js, where we simulate a module:

var myModule = (function () { // Open IIFE

// Imports (via global variables)

var importedFunc1 = otherModule1.importedFunc1;

var importedFunc2 = otherModule2.importedFunc2;

// Body

function internalFunc() {

// ···

}

function exportedFunc() {

importedFunc1();

importedFunc2();

internalFunc();

}

// Exports (assigned to global variable `myModule`)

return {

exportedFunc: exportedFunc,

};

})(); // Close IIFE

myModule is a global variable that is assigned the result of immediately invoking a function
expression. The function expression starts in the first line. It is invoked in the last line.

Thisway ofwrapping a code fragment is called immediately invoked function expression (IIFE,
coined by Ben Alman). What do we gain from an IIFE? var is not block-scoped (like const

278 29 Modules [ES6]

and let), it is function-scoped: the only way to create new scopes for var-declared vari-
ables is via functions or methods (with const and let, we can use either functions, meth-
ods, or blocks {}). Therefore, the IIFE in the example hides all of the following variables
from global scope and minimizes name clashes: importedFunc1, importedFunc2, inter-
nalFunc, exportedFunc.
Note that we are using an IIFE in a particular manner: at the end, we pick what wewant to
export and return it via an object literal. That is called the revealing module pattern (coined
by Christian Heilmann).
This way of simulating modules, has several issues:

• Libraries in script files export and import functionality via global variables, which
risks name clashes.

• Dependencies are not stated explicitly, and there is no built-in way for a script to
load the scripts it depends on. Therefore, the web page has to load not just the
scripts that are needed by the page but also the dependencies of those scripts, the
dependencies’ dependencies, etc. And it has to do so in the right order!

29.4 Module systems created prior to ES6
Prior to ECMAScript 6, JavaScript did not have built-in modules. Therefore, the flexible
syntax of the language was used to implement custom module systems within the lan-
guage. Two popular ones are:

• CommonJS (targeting the server side)
• AMD (Asynchronous Module Definition, targeting the client side)

29.4.1 Server side: CommonJS modules
The original CommonJS standard for modules was created for server and desktop plat-
forms. It was the foundation of the original Node.js module system, where it achieved
enormous popularity. Contributing to that popularity were the npm package manager for
Node and tools that enabled using Node modules on the client side (browserify, webpack,
and others).
From now on, CommonJS module means the Node.js version of this standard (which has a
few additional features). This is an example of a CommonJS module:

// Imports

var importedFunc1 = require('./other-module1.js').importedFunc1;

var importedFunc2 = require('./other-module2.js').importedFunc2;

// Body

function internalFunc() {

// ···

}

function exportedFunc() {

importedFunc1();

importedFunc2();

internalFunc();

29.4 Module systems created prior to ES6 279

}

// Exports

module.exports = {

exportedFunc: exportedFunc,

};

CommonJS can be characterized as follows:

• Designed for servers.
• Modules are meant to be loaded synchronously (the importer waits while the im-

ported module is loaded and executed).
• Compact syntax.

29.4.2 Client side: AMD (Asynchronous Module Definition) modules
The AMDmodule format was created to be easier to use in browsers than the CommonJS
format. Its most popular implementation is RequireJS. The following is an example of an
AMD module.

define(['./other-module1.js', './other-module2.js'],

function (otherModule1, otherModule2) {

var importedFunc1 = otherModule1.importedFunc1;

var importedFunc2 = otherModule2.importedFunc2;

function internalFunc() {

// ···

}

function exportedFunc() {

importedFunc1();

importedFunc2();

internalFunc();

}

return {

exportedFunc: exportedFunc,

};

});

AMD can be characterized as follows:

• Designed for browsers.
• Modules are meant to be loaded asynchronously. That’s a crucial requirement for

browsers, where code can’t wait until a module has finished downloading. It has to
be notified once the module is available.

• The syntax is slightly more complicated.

On the plus side, AMDmodules can be executed directly. In contrast, CommonJSmodules
must either be compiled before deployment or custom source code must be generated and
evaluated dynamically (think eval()). That isn’t always permitted on the web.

https://requirejs.org

280 29 Modules [ES6]

29.4.3 Characteristics of JavaScript modules
Looking at CommonJS andAMD, similarities between JavaScriptmodule systems emerge:

• There is one module per file.
• Such a file is basically a piece of code that is executed:

– Local scope: The code is executed in a local “module scope”. Therefore, by
default, all of the variables, functions, and classes declared in it are internal
and not global.

– Exports: If we want any declared entity to be exported, we must explicitly
mark it as an export.

– Imports: Eachmodule can import exported entities fromothermodules. Those
other modules are identified via module specifiers (usually paths, occasionally
full URLs).

• Modules are singletons: Even if a module is imported multiple times, only a single
“instance” of it exists.

• No global variables are used. Instead, module specifiers serve as global IDs.

29.5 ECMAScript modules
ECMAScript modules (ES modules or ESM) were introduced with ES6. They continue the
tradition of JavaScript modules and have all of their aforementioned characteristics. Ad-
ditionally:

• With CommonJS, ES modules share the compact syntax and support for cyclic de-
pendencies.

• With AMD, ES modules share being designed for asynchronous loading.

ES modules also have new benefits:

• The syntax is even more compact than CommonJS’s.
• Modules have static structures (which can’t be changed at runtime). That helps with

static checking, optimized access of imports, dead code elimination, and more.
• Support for cyclic imports is completely transparent.

This is an example of ES module syntax:

import {importedFunc1} from './other-module1.mjs';

import {importedFunc2} from './other-module2.mjs';

function internalFunc() {

···

}

export function exportedFunc() {

importedFunc1();

importedFunc2();

internalFunc();

}

From now on, “module” means “ECMAScript module”.

29.6 Named exports and imports 281

29.5.1 ES modules: syntax, semantics, loader API
The full standard of ES modules comprises the following parts:

1. Syntax (how code is written): What is a module? How are imports and exports
declared? Etc.

2. Semantics (how code is executed): How are variable bindings exported? How are
imports connected with exports? Etc.

3. A programmatic loader API for configuring module loading.

Parts 1 and 2 were introduced with ES6. Work on part 3 is ongoing.

29.6 Named exports and imports
29.6.1 Named exports
Each module can have zero or more named exports.

As an example, consider the following two files:

lib/my-math.mjs

main.mjs

Module my-math.mjs has two named exports: square and LIGHTSPEED.

// Not exported, private to module

function times(a, b) {

return a * b;

}

export function square(x) {

return times(x, x);

}

export const LIGHTSPEED = 299792458;

To export something, we put the keyword export in front of a declaration. Entities that are
not exported are private to a module and can’t be accessed from outside.

29.6.2 Named imports
Module main.mjs has a single named import, square:

import {square} from './lib/my-math.mjs';

assert.equal(square(3), 9);

It can also rename its import:

import {square as sq} from './lib/my-math.mjs';

assert.equal(sq(3), 9);

Syntactic pitfall: named importing is not destructuring

Both named importing and destructuring look similar:

282 29 Modules [ES6]

import {foo} from './bar.mjs'; // import

const {foo} = require('./bar.mjs'); // destructuring

But they are quite different:

• Imports remain connected with their exports.

• We can destructure again inside a destructuring pattern, but the {} in an import
statement can’t be nested.

• The syntax for renaming is different:

import {foo as f} from './bar.mjs'; // importing

const {foo: f} = require('./bar.mjs'); // destructuring

Rationale: Destructuring is reminiscent of an object literal (including nesting), while
importing evokes the idea of renaming.

Exercise: Named exports
exercises/modules/export_named_test.mjs

29.6.3 Namespace imports
Namespace imports are an alternative to named imports. If we namespace-import amodule,
it becomes an object whose properties are the named exports. This is what main.mjs looks
like if we use a namespace import:

import * as myMath from './lib/my-math.mjs';

assert.equal(myMath.square(3), 9);

assert.deepEqual(

Object.keys(myMath), ['LIGHTSPEED', 'square']);

29.6.4 Named exporting styles: inline versus clause (advanced)
The named export style we have seen so far was inline: We exported entities by prefixing
them with the keyword export.

But we can also use separate export clauses. For example, this is what lib/my-math.mjs
looks like with an export clause:

function times(a, b) {

return a * b;

}

function square(x) {

return times(x, x);

}

const LIGHTSPEED = 299792458;

export { square, LIGHTSPEED }; // semicolon!

29.7 Default exports and imports 283

With an export clause, we can rename before exporting and use different names internally:

function times(a, b) {

return a * b;

}

function sq(x) {

return times(x, x);

}

const LS = 299792458;

export {

sq as square,

LS as LIGHTSPEED, // trailing comma is optional

};

29.7 Default exports and imports
Eachmodule can have at most one default export. The idea is that the module is the default-
exported value.

Avoid mixing named exports and default exports
Amodule can have both named exports and a default export, but it’s usually better
to stick to one export style per module.

As an example for default exports, consider the following two files:

my-func.mjs

main.mjs

Module my-func.mjs has a default export:

const GREETING = 'Hello!';

export default function () {

return GREETING;

}

Module main.mjs default-imports the exported function:

import myFunc from './my-func.mjs';

assert.equal(myFunc(), 'Hello!');

Note the syntactic difference: the curly braces around named imports indicate that we are
reaching into the module, while a default import is the module.

284 29 Modules [ES6]

What are use cases for default exports?
The most common use case for a default export is a module that contains a single
function or a single class.

29.7.1 The two styles of default-exporting
There are two styles of doing default exports.

First, we can label existing declarations with export default:

export default function myFunc() {} // no semicolon!

export default class MyClass {} // no semicolon!

Second, we can directly default-export values. This style of export default is much like
a declaration.

export default myFunc; // defined elsewhere

export default MyClass; // defined previously

export default Math.sqrt(2); // result of invocation is default-exported

export default 'abc' + 'def';

export default { no: false, yes: true };

Why are there two default export styles?

The reason is that export default can’t be used to label const: constmay define multiple
values, but export default needs exactly one value. Consider the following hypothetical
code:

// Not legal JavaScript!

export default const foo = 1, bar = 2, baz = 3;

With this code, we don’t know which one of the three values is the default export.

Exercise: Default exports
exercises/modules/export_default_test.mjs

29.7.2 The default export as a named export (advanced)
Internally, a default export is simply a named export whose name is default. As an exam-
ple, consider the previous module my-func.mjs with a default export:

const GREETING = 'Hello!';

export default function () {

return GREETING;

}

The following module my-func2.mjs is equivalent to that module:

29.8 Re-exporting 285

const GREETING = 'Hello!';

function greet() {

return GREETING;

}

export {

greet as default,

};

For importing, we can use a normal default import:
import myFunc from './my-func2.mjs';

assert.equal(myFunc(), 'Hello!');

Or we can use a named import:
import {default as myFunc} from './my-func2.mjs';

assert.equal(myFunc(), 'Hello!');

The default export is also available via property .default of namespace imports:
import * as mf from './my-func2.mjs';

assert.equal(mf.default(), 'Hello!');

Isn’t default illegal as a variable name?
default can’t be a variable name, but it can be an export name and it can be a
property name:

const obj = {

default: 123,

};

assert.equal(obj.default, 123);

29.8 Re-exporting
A module library.mjs can export one or more exports of another module internal.mjs

as if it had made them itself. That is called re-exporting.
//===== internal.mjs =====

export function internalFunc() {}

export const INTERNAL_DEF = 'hello';

export default 123;

//===== library.mjs =====

// Named re-export [ES6]

export {internalFunc as func, INTERNAL_DEF as DEF} from './internal.mjs';

// Wildcard re-export [ES6]

export * from './internal.mjs';

// Namespace re-export [ES2020]

export * as ns from './internal.mjs';

286 29 Modules [ES6]

• The wildcard re-export turns all exports of module internal.mjs into exports of
library.mjs, except the default export.

• The namespace re-export turns all exports of module internal.mjs into an object
that becomes the named export ns of library.mjs. Because internal.mjs has a de-
fault export, ns has a property .default.

The following code demonstrates the two bullet points above:

//===== main.mjs =====

import * as library from './library.mjs';

assert.deepEqual(

Object.keys(library),

['DEF', 'INTERNAL_DEF', 'func', 'internalFunc', 'ns']

);

assert.deepEqual(

Object.keys(library.ns),

['INTERNAL_DEF', 'default', 'internalFunc']

);

29.9 More details on exporting and importing
29.9.1 Imports are read-only views on exports
So far, we have used imports and exports intuitively, and everything seems to haveworked
as expected. But now it is time to take a closer look at how imports and exports are really
related.

Consider the following two modules:

counter.mjs

main.mjs

counter.mjs exports a (mutable!) variable and a function:

export let counter = 3;

export function incCounter() {

counter++;

}

main.mjs name-imports both exports. When we use incCounter(), we discover that the
connection to counter is live – we can always access the live state of that variable:

import { counter, incCounter } from './counter.mjs';

// The imported value `counter` is live

assert.equal(counter, 3);

incCounter();

assert.equal(counter, 4);

Note that while the connection is live and we can read counter, we cannot change this
variable (e.g., via counter++).

29.10 npm packages 287

There are two benefits to handling imports this way:
• It is easier to split modules because previously shared variables can become exports.
• This behavior is crucial for supporting transparent cyclic imports. Read on for more

information.

29.9.2 ESM’s transparent support for cyclic imports (advanced)
ESM supports cyclic imports transparently. To understand how that is achieved, consider
the following example: figure 29.1 shows a directed graph of modules importing other
modules. P importing M is the cycle in this case. After parsing, these modules are set up

M

N O

P Q R S

Figure 29.1: A directed graph of modules importing modules: M imports N and O, N
imports P and Q, etc.

in two phases:
• Instantiation: Every module is visited and its imports are connected to its exports.

Before a parent can be instantiated, all of its children must be instantiated.
• Evaluation: The bodies of the modules are executed. Once again, children are eval-

uated before parents.
This approach handles cyclic imports correctly, due to two features of ES modules:

• Due to the static structure of ES modules, the exports are already known after pars-
ing. That makes it possible to instantiate P before its child M: P can already look up
M’s exports.

• When P is evaluated, M hasn’t been evaluated, yet. However, entities in P can al-
ready mention imports fromM. They just can’t use them, yet, because the imported
values are filled in later. For example, a function in P can access an import from
M. The only limitation is that we must wait until after the evaluation of M, before
calling that function.
Imports being filled in later is enabled by them being “live immutable views” on
exports.

29.10 npm packages
The npm software registry is the dominant way of distributing JavaScript libraries and apps
for Node.js and web browsers. It is managed via the npm package manager (short: npm).
Software is distributed as so-called packages. A package is a directory containing arbitrary
files and a file package.json at the top level that describes the package. For example, when
npm creates an empty package inside a directory my-package/, we get this package.json:

288 29 Modules [ES6]

{

"name": "my-package",

"version": "1.0.0",

"description": "",

"main": "index.js",

"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"

},

"keywords": [],

"author": "",

"license": "ISC"

}

Some of these properties contain simple metadata:

• name specifies the name of this package. Once it is uploaded to the npm registry, it
can be installed via npm install my-package.

• version is used for version management and follows semantic versioning, with
three numbers:

– Major version: is incremented when incompatible API changes are made.
– Minor version: is incremented when functionality is added in a backward
compatible manner.

– Patch version: is incremented when backward compatible changes are made.
• description, keywords, authormake it easier to find packages.
• license clarifies how we can use this package.

Other properties enable advanced configuration:

• main: specifies the module that “is” the package (explained later in this chapter).
• scripts: are commands that we can execute via npm run. For example, the script

test can be executed via npm run test.

For more information on package.json, consult the npm documentation.

29.10.1 Packages are installed inside a directory node_modules/

npm always installs packages inside a directory node_modules. There are usually many of
these directories. Which one npm uses, depends on the directory where one currently is.
For example, if we are inside a directory /tmp/a/b/, npm tries to find a node_modules in
the current directory, its parent directory, the parent directory of the parent, etc. In other
words, it searches the following chain of locations:

• /tmp/a/b/node_modules

• /tmp/a/node_modules

• /tmp/node_modules

When installing a package some-pkg, npm uses the closest node_modules. If, for example,
we are inside /tmp/a/b/ and there is a node_modules in that directory, then npm puts the
package inside the directory:

/tmp/a/b/node_modules/some-pkg/

https://semver.org
https://docs.npmjs.com/cli/v10/configuring-npm/package-json

29.11 Naming modules 289

When importing a module, we can use a special module specifier to tell Node.js that we
want to import it from an installed package. How exactly that works, is explained later.
For now, consider the following example:

// /home/jane/proj/main.mjs

import * as theModule from 'the-package/the-module.mjs';

To find the-module.mjs (Node.js prefers the filename extension .mjs for ES modules),
Node.js walks up the node_module chain and searches the following locations:

• /home/jane/proj/node_modules/the-package/the-module.mjs

• /home/jane/node_modules/the-package/the-module.mjs

• /home/node_modules/the-package/the-module.mjs

29.10.2 Why can npm be used to install frontend libraries?
Finding installed modules in node_modules directories is only supported on Node.js. So
why can we also use npm to install libraries for browsers?

That is enabled via bundling tools, such as webpack, that compile and optimize code be-
fore it is deployed online. During this compilation process, the code in npm packages is
adapted so that it works in browsers.

29.11 Naming modules
There are no established best practices for naming module files and the variables they are
imported into.

In this chapter, I’m using the following naming style:

• The names of module files are dash-cased and start with lowercase letters:

./my-module.mjs

./some-func.mjs

• The names of namespace imports are lowercased and camel-cased:

import * as myModule from './my-module.mjs';

• The names of default imports are lowercased and camel-cased:

import someFunc from './some-func.mjs';

What are the rationales behind this style?

• npm doesn’t allow uppercase letters in package names (source). Thus, we avoid
camel case, so that “local” files have names that are consistent with those of npm
packages. Using only lowercase letters alsominimizes conflicts between file systems
that are case-sensitive and file systems that aren’t: the former distinguish fileswhose
names have the same letters, but with different cases; the latter don’t.

• There are clear rules for translating dash-cased file names to camel-cased JavaScript
variable names. Due to howwe name namespace imports, these rules work for both
namespace imports and default imports.

https://docs.npmjs.com/cli/v10/configuring-npm/package-json#name

290 29 Modules [ES6]

I also like underscore-cased module file names because we can directly use these names
for namespace imports (without any translation):

import * as my_module from './my_module.mjs';

But that style does not work for default imports: I like underscore-casing for namespace
objects, but it is not a good choice for functions, etc.

29.12 Module specifiers
Module specifiers are the strings that identify modules. They work slightly differently in
browsers and Node.js. Before we can look at the differences, we need to learn about the
different categories of module specifiers.

29.12.1 Categories of module specifiers
In ESmodules, we distinguish the following categories of specifiers. These categories orig-
inated with CommonJS modules.

• Relative path: starts with a dot. Examples:
'./some/other/module.mjs'

'../../lib/counter.mjs'

• Absolute path: starts with a slash. Example:
'/home/jane/file-tools.mjs'

• URL: includes a protocol (technically, paths are URLs, too). Examples:
'https://example.com/some-module.mjs'

'file:///home/john/tmp/main.mjs'

• Bare path: does not start with a dot, a slash or a protocol, and consists of a single
filename without an extension. Examples:

'lodash'

'the-package'

• Deep import path: starts with a bare path and has at least one slash. Example:
'the-package/dist/the-module.mjs'

29.12.2 ES module specifiers in browsers
Browsers handle module specifiers as follows:

• Relative paths, absolute paths, and URLs work as expected. They all must point
to real files (in contrast to CommonJS, which lets us omit filename extensions and
more).

• The file name extensions of modules don’t matter, as long as they are served with
the content type text/javascript.

• How bare paths will end up being handled is not yet clear. We will probably even-
tually be able to map them to other specifiers via lookup tables.

29.12 Module specifiers 291

Note that bundling tools such as webpack, which combinemodules into fewer files, are of-
ten less strict with specifiers than browsers. That’s because they operate at build/compile
time (not at runtime) and can search for files by traversing the file system.

29.12.3 ES module specifiers on Node.js
Node.js handles module specifiers as follows:

• Relative paths are resolved as they are in web browsers – relative to the path of the
current module.

• Absolute paths are currently not supported. As a workaround, we can use URLs
that start with file:///. We can create such URLs via url.pathToFileURL().

• Only file: is supported as a protocol for URL specifiers.

• A bare path is interpreted as a package name and resolved relative to the closest
node_modules directory. What module should be loaded, is determined by looking
at property "main" of the package’s package.json (similarly to CommonJS).

• Deep import paths are also resolved relatively to the closest node_modules directory.
They contain file names, so it is always clear which module is meant.

All specifiers, except bare paths, must refer to actual files. That is, ESM does not support
the following CommonJS features:

• CommonJS automatically adds missing filename extensions.

• CommonJS can import a directory dir if there is a dir/package.json with a "main"
property.

• CommonJS can import a directory dir if there is a module dir/index.js.

All built-in Node.js modules are available via bare paths and have named ESM exports –
for example:

import assert from 'node:assert/strict';

import * as path from 'node:path';

assert.equal(

path.join('a/b/c', '../d'), 'a/b/d');

Filename extensions on Node.js

Node.js supports the following default filename extensions:

• .mjs for ES modules
• .cjs for CommonJS modules

The filename extension .js stands for either ESM or CommonJS. Which one it is is con-
figured via the “closest” package.json (in the current directory, the parent directory, etc.).
Using package.json in this manner is independent of packages.

In that package.json, there is a property "type", which has two settings:

292 29 Modules [ES6]

• "commonjs" (the default): files with the extension .js or without an extension are
interpreted as CommonJS modules.

• "module": files with the extension .js or without an extension are interpreted as
ESM modules.

Interpreting non-file source code as either CommonJS or ESM

Not all source code executed by Node.js comes from files. We can also send it code via
stdin, --eval, and --print. The command line option --input-type lets us specify how
such code is interpreted:

• As CommonJS (the default): --input-type=commonjs
• As ESM: --input-type=module

29.13 import.meta – metadata for the current module [ES2020]

The object import.meta holds metadata for the current module.

29.13.1 import.meta.url

The most important property of import.meta is .urlwhich contains a string with the URL
of the current module’s file – for example:

'https://example.com/code/main.mjs'

29.13.2 import.meta.url and class URL
Class URL is available via a global variable in browsers and on Node.js. We can look up its
full functionality in the Node.js documentation. When working with import.meta.url, its
constructor is especially useful:

new URL(input: string, base?: string|URL)

Parameter input contains the URL to be parsed. It can be relative if the second parameter,
base, is provided.

In other words, this constructor lets us resolve a relative path against a base URL:

> new URL('other.mjs', 'https://example.com/code/main.mjs').href

'https://example.com/code/other.mjs'

> new URL('../other.mjs', 'https://example.com/code/main.mjs').href

'https://example.com/other.mjs'

This is how we get a URL instance that points to a file data.txt that sits next to the current
module:

const urlOfData = new URL('data.txt', import.meta.url);

29.13.3 import.meta.url on Node.js
On Node.js, import.meta.url is always a string with a file: URL – for example:

https://nodejs.org/api/url.html#url_class_url

29.13 import.meta – metadata for the current module [ES2020] 293

'file:///Users/rauschma/my-module.mjs'

Example: reading a sibling file of a module

Many Node.js file system operations accept either strings with paths or instances of URL.
That enables us to read a sibling file data.txt of the current module:

import * as fs from 'node:fs';

function readData() {

// data.txt sits next to current module

const urlOfData = new URL('data.txt', import.meta.url);

return fs.readFileSync(urlOfData, {encoding: 'UTF-8'});

}

Module fs and URLs

For most functions of the module fs, we can refer to files via:

• Paths – in strings or instances of Buffer.
• URLs – in instances of URL (with the protocol file:)

For more information on this topic, see the Node.js API documentation.

Converting between file: URLs and paths

The Node.js module url has two functions for converting between file: URLs and paths:

• fileURLToPath(url: URL|string): string

Converts a file: URL to a path.
• pathToFileURL(path: string): URL

Converts a path to a file: URL.

If we need a path that can be used in the local file system, then property .pathname of URL
instances does not always work:

assert.equal(

new URL('file:///tmp/with%20space.txt').pathname,

'/tmp/with%20space.txt');

Therefore, it is better to use fileURLToPath():

import * as url from 'node:url';

assert.equal(

url.fileURLToPath('file:///tmp/with%20space.txt'),

'/tmp/with space.txt'); // result on Unix

Similarly, pathToFileURL() does more than just prepend 'file://' to an absolute path.

https://nodejs.org/api/fs.html#fs_file_paths
https://nodejs.org/api/url.html

294 29 Modules [ES6]

29.14 Loadingmodules dynamically via import() [ES2020] (ad-
vanced)

The import() operator uses Promises
Promises are a technique for handling results that are computed asynchronously
(i.e., not immediately). They are explained in “Promises for asynchronous pro-
gramming”. It may make sense to postpone reading this section until you under-
stand them.

29.14.1 The limitations of static import statements
So far, the only way to import a module has been via an import statement. That statement
has several limitations:

• We must use it at the top level of a module. That is, we can’t, for example, import
something when we are inside a function or inside an if statement.

• The module specifier is always fixed. That is, we can’t change what we import de-
pending on a condition. And we can’t assemble a specifier dynamically.

29.14.2 Dynamic imports via the import() operator
The import() operator doesn’t have the limitations of import statements. It looks like this:

import(moduleSpecifierStr)

.then((namespaceObject) => {

console.log(namespaceObject.namedExport);

});

This operator is used like a function, receives a string with a module specifier and returns
a Promise that resolves to a namespace object. The properties of that object are the exports
of the imported module.
import() is even more convenient to use via await:

const namespaceObject = await import(moduleSpecifierStr);

console.log(namespaceObject.namedExport);

Note that await can be used at the top levels of modules (see next section).
Let’s look at an example of using import().

Example: loading a module dynamically
Consider the following files:

lib/my-math.mjs

main1.mjs

main2.mjs

We have already seen module my-math.mjs:

29.14 Loading modules dynamically via import() [ES2020] (advanced) 295

// Not exported, private to module

function times(a, b) {

return a * b;

}

export function square(x) {

return times(x, x);

}

export const LIGHTSPEED = 299792458;

We can use import() to load this module on demand:

// main1.mjs

const moduleSpecifier = './lib/my-math.mjs';

function mathOnDemand() {

return import(moduleSpecifier)

.then(myMath => {

const result = myMath.LIGHTSPEED;

assert.equal(result, 299792458);

return result;

});

}

await mathOnDemand()

.then((result) => {

assert.equal(result, 299792458);

});

Two things in this code can’t be done with import statements:

• We are importing inside a function (not at the top level).
• The module specifier comes from a variable.

Next, we’ll implement the same functionality as in main1.mjs but via a feature called async
function or async/await which provides nicer syntax for Promises.

// main2.mjs

const moduleSpecifier = './lib/my-math.mjs';

async function mathOnDemand() {

const myMath = await import(moduleSpecifier);

const result = myMath.LIGHTSPEED;

assert.equal(result, 299792458);

return result;

}

296 29 Modules [ES6]

Why is import() an operator and not a function?
import() looks like a function but couldn’t be implemented as a function:

• It needs to know the URL of the current module in order to resolve relative
module specifiers.

• If import()were a function, we’d have to explicitly pass this information to
it (e.g. via an parameter).

• In contrast, an operator is a core language construct and has implicit access
to more data, including the URL of the current module.

29.14.3 Use cases for import()
Loading code on demand

Some functionality ofweb apps doesn’t have to be presentwhen they start, it can be loaded
on demand. Then import() helps because we can put such functionality into modules –
for example:

button.addEventListener('click', event => {

import('./dialogBox.mjs')

.then(dialogBox => {

dialogBox.open();

})

.catch(error => {

/* Error handling */

})

});

Conditional loading of modules

We may want to load a module depending on whether a condition is true. For example, a
module with a polyfill that makes a new feature available on legacy platforms:

if (isLegacyPlatform()) {

import('./my-polyfill.mjs')

.then(···);

}

Computed module specifiers

For applications such as internationalization, it helps if we can dynamically computemod-
ule specifiers:

import(`messages_${getLocale()}.mjs`)

.then(···);

29.15 Top-level await in modules [ES2022] (advanced) 297

29.15 Top-level await in modules [ES2022] (advanced)

await is a feature of async functions
await is explained in “Async functions”. It may make sense to postpone reading
this section until you understand async functions.

We can use the await operator at the top level of a module. If we do that, the module
becomes asynchronous and works differently. Thankfully, we don’t usually see that as
programmers because it is handled transparently by the language.

29.15.1 Use cases for top-level await
Why would we want to use the await operator at the top level of a module? It lets us
initialize a module with asynchronously loaded data. The next three subsections show
three examples of where that is useful.

Loading modules dynamically

const params = new URLSearchParams(location.search);

const language = params.get('lang');

const messages = await import(`./messages-${language}.mjs`); // (A)

console.log(messages.welcome);

In line A, we dynamically import a module. Thanks to top-level await, that is almost as
convenient as using a normal, static import.

Using a fallback if module loading fails

let mylib;

try {

mylib = await import('https://primary.example.com/mylib');

} catch {

mylib = await import('https://secondary.example.com/mylib');

}

Using whichever resource loads fastest

const resource = await Promise.any([

fetch('http://example.com/first.txt')

.then(response => response.text()),

fetch('http://example.com/second.txt')

.then(response => response.text()),

]);

Due to Promise.any(), variable resource is initialized via whichever download finishes
first.

298 29 Modules [ES6]

29.15.2 How does top-level await work under the hood?
Consider the following two files.
first.mjs:

const response = await fetch('http://example.com/first.txt');

export const first = await response.text();

main.mjs:
import {first} from './first.mjs';

import {second} from './second.mjs';

assert.equal(first, 'First!');

assert.equal(second, 'Second!');

Both are roughly equivalent to the following code: first.mjs:
export let first;

export const promise = (async () => { // (A)

const response = await fetch('http://example.com/first.txt');

first = await response.text();

})();

main.mjs:
import {promise as firstPromise, first} from './first.mjs';

import {promise as secondPromise, second} from './second.mjs';

export const promise = (async () => { // (B)

await Promise.all([firstPromise, secondPromise]); // (C)

assert.equal(first, 'First!');

assert.equal(second, 'Second!');

})();

A module becomes asynchronous if:
1. It directly uses top-level await (first.mjs).
2. It imports one or more asynchronous modules (main.mjs).

Each asynchronous module exports a Promise (line A and line B) that is fulfilled after its
body was executed. At that point, it is safe to access the exports of that module.
In case (2), the importing module waits until the Promises of all imported asynchronous
modules are fulfilled, before it enters its body (line C). Synchronous modules are handled
as usually.
Awaited rejections and synchronous exceptions are managed as in async functions.

29.15.3 The pros and cons of top-level await
The two most important benefits of top-level await are:

• It ensures that modules don’t access asynchronous imports before they are fully ini-
tialized.

• It handles asynchronicity transparently: Importers do not need to know if an im-
ported module is asynchronous or not.

29.16 Polyfills: emulating native web platform features (advanced) 299

On the downside, top-level await delays the initialization of importing modules. There-
fore, it’s best used sparingly. Asynchronous tasks that take longer are better performed
later, on demand.

However, even modules without top-level await can block importers (e.g. via an infinite
loop at the top level), so blocking per se is not an argument against it.

29.16 Polyfills: emulating nativewebplatform features (ad-
vanced)

Backends have polyfills, too
This section is about frontend development and web browsers, but similar ideas
apply to backend development.

Polyfills help with a conflict that we are facing when developing a web application in
JavaScript:

• On one hand, we want to use modern web platform features that make the app
better and/or development easier.

• On the other hand, the app should run on as many browsers as possible.

Given a web platform feature X:

• A polyfill for X is a piece of code. If it is executed on a platform that already has
built-in support for X, it does nothing. Otherwise, it makes the feature available on
the platform. In the latter case, the polyfilled feature is (mostly) indistinguishable
from a native implementation. In order to achieve that, the polyfill usually makes
global changes. For example, it may modify global data or configure a global mod-
ule loader. Polyfills are often packaged as modules.

– The term polyfill was coined by Remy Sharp.

• A speculative polyfill is a polyfill for a proposed web platform feature (that is not
standardized, yet).

– Alternative term: prollyfill

• A replica of X is a library that reproduces the API and functionality of X locally. Such
a library exists independently of a native (and global) implementation of X.

– Replica is a new term introduced in this section. Alternative term: ponyfill

• There is also the term shim, but it doesn’t have a universally agreed upon definition.
It often means roughly the same as polyfill.

Every time our web applications starts, it must first execute all polyfills for features that
may not be available everywhere. Afterwards, we can be sure that those features are avail-
able natively.

https://remysharp.com/2010/10/08/what-is-a-polyfill

300 29 Modules [ES6]

29.16.1 Sources of this section
• “What is a Polyfill?” by Remy Sharp
• Inspiration for the term replica: The Eiffel Tower in Las Vegas
• Useful clarification of “polyfill” and related terms: “Polyfills and the evolution of

the Web”. Edited by Andrew Betts.

https://remysharp.com/2010/10/08/what-is-a-polyfill
https://en.wikipedia.org/wiki/Paris_Las_Vegas
https://www.w3.org/2001/tag/doc/polyfills/
https://www.w3.org/2001/tag/doc/polyfills/

Chapter 30

Objects

30.1 Cheat sheet: objects . 303
30.1.1 Cheat sheet: single objects . 303
30.1.2 Cheat sheet: prototype chains . 304

30.2 What is an object? . 305
30.2.1 The two ways of using objects . 306

30.3 Fixed-layout objects . 306
30.3.1 Object literals: properties . 306
30.3.2 Object literals: property value shorthands 307
30.3.3 Getting properties . 307
30.3.4 Setting properties . 307
30.3.5 Object literals: methods . 308
30.3.6 Object literals: accessors . 308

30.4 Spreading into object literals (...) [ES2018] 309
30.4.1 Use case for spreading: copying objects 310
30.4.2 Use case for spreading: default values for missing properties 311
30.4.3 Use case for spreading: non-destructively changing properties . . . 311
30.4.4 “Destructive spreading”: Object.assign() [ES6] 312

30.5 Methods and the special variable this . 312
30.5.1 Methods are properties whose values are functions 312
30.5.2 The special variable this . 313
30.5.3 Methods and .call() . 313
30.5.4 Methods and .bind() . 314
30.5.5 this pitfall: extracting methods 314
30.5.6 this pitfall: accidentally shadowing this 316
30.5.7 The value of this in various contexts (advanced) 318

30.6 Optional chaining for property getting and method calls [ES2020] (advanced) 318
30.6.1 Example: optional fixed property getting 319
30.6.2 The operators in more detail (advanced) 320
30.6.3 Short-circuiting with optional property getting 321

301

302 30 Objects

30.6.4 Optional chaining: downsides and alternatives 321
30.6.5 Frequently asked questions . 322

30.7 Dictionary objects (advanced) . 322
30.7.1 Quoted keys in object literals . 322
30.7.2 Computed keys in object literals 323
30.7.3 The in operator: is there a property with a given key? 324
30.7.4 Deleting properties . 325
30.7.5 Enumerability . 325
30.7.6 Listing property keys via Object.keys() etc. 326
30.7.7 Listing property values via Object.values() 327
30.7.8 Listing property entries via Object.entries() [ES2017] 327
30.7.9 Properties are listed deterministically 328
30.7.10 Assembling objects via Object.fromEntries() [ES2019] 328
30.7.11 The pitfalls of using an object as a dictionary 330

30.8 Property attributes and property descriptors [ES5] (advanced) 331
30.9 Protecting objects from being changed [ES5] (advanced) 333
30.10Prototype chains . 334

30.10.1 JavaScript’s operations: all properties vs. own properties 335
30.10.2 Pitfall: only the first member of a prototype chain is mutated . . . 335
30.10.3 Tips for working with prototypes (advanced) 337
30.10.4 Object.hasOwn(): Is a given property own (non-inherited)? [ES2022] . 338
30.10.5 Sharing data via prototypes . 338

30.11FAQ: objects . 340
30.11.1 Why do objects preserve the insertion order of properties? 340

30.12Quick reference: Object . 340
30.12.1 Object.*: creating objects, handling prototypes 340
30.12.2 Object.*: property attributes . 341
30.12.3 Object.*: property keys, values, entries 343
30.12.4 Object.*: protecting objects . 345
30.12.5 Object.*: miscellaneous . 346
30.12.6 Object.prototype.* . 347

30.13Quick reference: Reflect . 348
30.13.1 Reflect.* vs. Object.* . 349

In this book, JavaScript’s style of object-oriented programming (OOP) is introduced in four
steps. This chapter covers step 1 and 2; the next chapter covers step 3 and 4. The steps are
(figure 30.1):

1. Single objects (this chapter): Howdo objects, JavaScript’s basicOOPbuilding blocks,
work in isolation?

2. Prototype chains (this chapter): Each object has a chain of zero or more prototype
objects. Prototypes are JavaScript’s core inheritance mechanism.

3. Classes (next chapter): JavaScript’s classes are factories for objects. The relationship
between a class and its instances is based on prototypal inheritance (step 2).

4. Subclassing (next chapter): The relationship between a subclass and its superclass is

30.1 Cheat sheet: objects 303

also based on prototypal inheritance.

ƒmthd

data
__proto__

4
ƒ

data
mthd

4

MyClass

data
mthd

SubClass

subData
subMthd

SuperClass

superData
superMthd

1. Single objects 2. Prototype chains 3. Classes 4. Subclassing

Figure 30.1: This book introduces object-oriented programming in JavaScript in four steps.

30.1 Cheat sheet: objects
30.1.1 Cheat sheet: single objects
Creating an object via an object literal (starts and ends with a curly brace):

const myObject = { // object literal

myProperty: 1,

myMethod() {

return 2;

}, // comma!

get myAccessor() {

return this.myProperty;

}, // comma!

set myAccessor(value) {

this.myProperty = value;

}, // last comma is optional

};

assert.equal(

myObject.myProperty, 1

);

assert.equal(

myObject.myMethod(), 2

);

assert.equal(

myObject.myAccessor, 1

);

myObject.myAccessor = 3;

assert.equal(

myObject.myProperty, 3

);

304 30 Objects

Being able to create objects directly (without classes) is one of the highlights of JavaScript.

Spreading into objects:

const original = {

a: 1,

b: {

c: 3,

},

};

// Spreading (...) copies one object “into” another one:

const modifiedCopy = {

...original, // spreading

d: 4,

};

assert.deepEqual(

modifiedCopy,

{

a: 1,

b: {

c: 3,

},

d: 4,

}

);

// Caveat: spreading copies shallowly (property values are shared)

modifiedCopy.a = 5; // does not affect `original`

modifiedCopy.b.c = 6; // affects `original`

assert.deepEqual(

original,

{

a: 1, // unchanged

b: {

c: 6, // changed

},

},

);

We can also use spreading to make an unmodified (shallow) copy of an object:

const exactCopy = {...obj};

30.1.2 Cheat sheet: prototype chains
Prototypes are JavaScript’s fundamental inheritance mechanism. Even classes are based
on it. Each object has null or an object as its prototype. The latter object can also have a
prototype, etc. In general, we get chains of prototypes.

30.2 What is an object? 305

Prototypes are managed like this:

// `obj1` has no prototype (its prototype is `null`)

const obj1 = Object.create(null); // (A)

assert.equal(

Object.getPrototypeOf(obj1), null // (B)

);

// `obj2` has the prototype `proto`

const proto = {

protoProp: 'protoProp',

};

const obj2 = {

__proto__: proto, // (C)

objProp: 'objProp',

}

assert.equal(

Object.getPrototypeOf(obj2), proto

);

Notes:

• Setting an object’s prototype while creating the object: line A, line C
• Retrieving the prototype of an object: line B

Each object inherits all the properties of its prototype:

// `obj2` inherits .protoProp from `proto`

assert.equal(

obj2.protoProp, 'protoProp'

);

assert.deepEqual(

Reflect.ownKeys(obj2),

['objProp'] // own properties of `obj2`

);

The non-inherited properties of an object are called its own properties.

The most important use case for prototypes is that several objects can share methods by
inheriting them from a common prototype.

30.2 What is an object?
Objects in JavaScript:

• An object is a set of slots (key-value entries).
• Public slots are called properties:

– A property key can only be a string or a symbol.
• Private slots can only be created via classes and are explained in “Public slots (prop-

erties) vs. private slots” (§31.2.4).

306 30 Objects

30.2.1 The two ways of using objects
There are two ways of using objects in JavaScript:

• Fixed-layout objects: Used this way, objects work like records in databases. They
have a fixed number of properties, whose keys are known at development time.
Their values generally have different types.

const fixedLayoutObject = {

product: 'carrot',

quantity: 4,

};

• Dictionary objects: Used this way, objects work like lookup tables or maps. They
have a variable number of properties, whose keys are not known at development
time. All of their values have the same type.

const dictionaryObject = {

['one']: 1,

['two']: 2,

};

Note that the two ways can also be mixed: Some objects are both fixed-layout objects and
dictionary objects.

The ways of using objects influence how they are explained in this chapter:

• First, we’ll explore fixed-layout objects. Even though property keys are strings or
symbols under the hood, they will appear as fixed identifiers to us.

• Later, we’ll explore dictionary objects. Note thatMaps are usually better dictionaries
than objects. However, some of the operations that we’ll encounter are also useful
for fixed-layout objects.

30.3 Fixed-layout objects
Let’s first explore fixed-layout objects.

30.3.1 Object literals: properties
Object literals are one way of creating fixed-layout objects. They are a stand-out feature of
JavaScript: we can directly create objects – no need for classes! This is an example:

const jane = {

first: 'Jane',

last: 'Doe', // optional trailing comma

};

In the example, we created an object via an object literal, which starts and ends with curly
braces {}. Inside it, we defined two properties (key-value entries):

• The first property has the key first and the value 'Jane'.
• The second property has the key last and the value 'Doe'.

30.3 Fixed-layout objects 307

Since ES5, trailing commas are allowed in object literals.
We will later see other ways of specifying property keys, but with this way of specifying
them, they must follow the rules of JavaScript variable names. For example, we can use
first_name as a property key, but not first-name). However, reserved words are allowed:

const obj = {

if: true,

const: true,

};

In order to check the effects of various operations on objects, we’ll occasionally use Ob-

ject.keys() in this part of the chapter. It lists property keys:
> Object.keys({a:1, b:2})

['a', 'b']

30.3.2 Object literals: property value shorthands
Whenever the value of a property is defined via a variable that has the same name as the
key, we can omit the key.

function createPoint(x, y) {

return {x, y}; // Same as: {x: x, y: y}

}

assert.deepEqual(

createPoint(9, 2),

{ x: 9, y: 2 }

);

30.3.3 Getting properties
This is how we get (read) a property (line A):

const jane = {

first: 'Jane',

last: 'Doe',

};

// Get property .first

assert.equal(jane.first, 'Jane'); // (A)

Getting an unknown property produces undefined:
assert.equal(jane.unknownProperty, undefined);

30.3.4 Setting properties
This is how we set (write to) a property (line A):

const obj = {

prop: 1,

};

308 30 Objects

assert.equal(obj.prop, 1);

obj.prop = 2; // (A)

assert.equal(obj.prop, 2);

We just changed an existing property via setting. If we set an unknown property, we create
a new entry:

const obj = {}; // empty object

assert.deepEqual(

Object.keys(obj), []);

obj.unknownProperty = 'abc';

assert.deepEqual(

Object.keys(obj), ['unknownProperty']);

30.3.5 Object literals: methods
The following code shows how to create the method .says() via an object literal:

const jane = {

first: 'Jane', // value property

says(text) { // method

return `${this.first} says “${text}”`; // (A)

}, // comma as separator (optional at end)

};

assert.equal(jane.says('hello'), 'Jane says “hello”');

During the method call jane.says('hello'), jane is called the receiver of the method call
and assigned to the special variable this (more on this in “Methods and the special vari-
able this” (§30.5)). That enables method .says() to access the sibling property .first in
line A.

30.3.6 Object literals: accessors
An accessor is defined via syntax inside an object literal that looks like methods: a getter
and/or a setter (i.e., each accessor has one or both of them).
Invoking an accessor looks like accessing a value property:

• Reading the property invokes the getter.
• Writing to the property invokes the setter.

Getters

A getter is created by prefixing a method definition with the modifier get:
const jane = {

first: 'Jane',

last: 'Doe',

get full() {

return `${this.first} ${this.last}`;

},

30.4 Spreading into object literals (...) [ES2018] 309

};

assert.equal(jane.full, 'Jane Doe');

jane.first = 'John';

assert.equal(jane.full, 'John Doe');

Setters

A setter is created by prefixing a method definition with the modifier set:
const jane = {

first: 'Jane',

last: 'Doe',

set full(fullName) {

const parts = fullName.split(' ');

this.first = parts[0];

this.last = parts[1];

},

};

jane.full = 'Richard Roe';

assert.equal(jane.first, 'Richard');

assert.equal(jane.last, 'Roe');

Exercise: Creating an object via an object literal
exercises/objects/color_point_object_test.mjs

30.4 Spreading into object literals (...) [ES2018]

Inside an object literal, a spread property adds the properties of another object to the current
one:

> const obj = {one: 1, two: 2};

> {...obj, three: 3}

{ one: 1, two: 2, three: 3 }

const obj1 = {one: 1, two: 2};

const obj2 = {three: 3};

assert.deepEqual(

{...obj1, ...obj2, four: 4},

{one: 1, two: 2, three: 3, four: 4}

);

If property keys clash, the property that is mentioned last “wins”:
> const obj = {one: 1, two: 2, three: 3};

> {...obj, one: true}

{ one: true, two: 2, three: 3 }

310 30 Objects

> {one: true, ...obj}

{ one: 1, two: 2, three: 3 }

All values are spreadable, even undefined and null:

> {...undefined}

{}

> {...null}

{}

> {...123}

{}

> {...'abc'}

{ '0': 'a', '1': 'b', '2': 'c' }

> {...['a', 'b']}

{ '0': 'a', '1': 'b' }

Property .length of strings and Arrays is hidden from this kind of operation (it is not enu-
merable; see “Property attributes and property descriptors” (§30.8) for more information).

Spreading includes propertieswhose keys are symbols (which are ignored by Object.keys(),
Object.values() and Object.entries()):

const symbolKey = Symbol('symbolKey');

const obj = {

stringKey: 1,

[symbolKey]: 2,

};

assert.deepEqual(

{...obj, anotherStringKey: 3},

{

stringKey: 1,

[symbolKey]: 2,

anotherStringKey: 3,

}

);

30.4.1 Use case for spreading: copying objects
We can use spreading to create a copy of an object original:

const copy = {...original};

Caveat – copying is shallow: copy is a fresh object with duplicates of all properties (key-
value entries) of original. But if property values are objects, then those are not copied
themselves; they are shared between original and copy. Let’s look at an example:

const original = { a: 1, b: {prop: true} };

const copy = {...original};

The first level of copy is really a copy: If we change any properties at that level, it does not
affect the original:

30.4 Spreading into object literals (...) [ES2018] 311

copy.a = 2;

assert.deepEqual(

original, { a: 1, b: {prop: true} }); // no change

However, deeper levels are not copied. For example, the value of .b is shared between
original and copy. Changing .b in the copy also changes it in the original.

copy.b.prop = false;

assert.deepEqual(

original, { a: 1, b: {prop: false} });

JavaScript doesn’t have built-in support for deep copying
JavaScript does not have a built-in operation for deeply copying objects. Options:

• Implement it ourselves.
• The global function structuredClone() is supported by most JavaScript

platforms now – even though it is not part of ECMAScript. Alas, this func-
tion has a number of limitations – e.g., if we copy an instance of a class we
created, the copy is not an instance of that class.

• The Lodash library has the functions _.cloneDeep() and _.cloneDeepWith()

that can help. They have fewer limitations than structuredClone().

30.4.2 Use case for spreading: default values for missing properties
If one of the inputs of our code is an object with data, we can make properties optional
by specifying default values that are used if those properties are missing. One technique
for doing so is via an object whose properties contain the default values. In the following
example, that object is DEFAULTS:

const DEFAULTS = {alpha: 'a', beta: 'b'};

const providedData = {alpha: 1};

const allData = {...DEFAULTS, ...providedData};

assert.deepEqual(allData, {alpha: 1, beta: 'b'});

The result, the object allData, is created by copying DEFAULTS and overriding its properties
with those of providedData.
But we don’t need an object to specify the default values; we can also specify them inside
the object literal, individually:

const providedData = {alpha: 1};

const allData = {alpha: 'a', beta: 'b', ...providedData};

assert.deepEqual(allData, {alpha: 1, beta: 'b'});

30.4.3 Use case for spreading: non-destructively changing properties
So far, we have encountered one way of changing a property .alpha of an object: We set it
(line A) and mutate the object. That is, this way of changing a property is destructive.

https://2ality.com/2022/01/structured-clone.html
https://lodash.com/docs/4.17.15#cloneDeep
https://lodash.com/docs/4.17.15#cloneDeepWith

312 30 Objects

const obj = {alpha: 'a', beta: 'b'};

obj.alpha = 1; // (A)

assert.deepEqual(obj, {alpha: 1, beta: 'b'});

With spreading, we can change .alpha non-destructively – we make a copy of obj where
.alpha has a different value:

const obj = {alpha: 'a', beta: 'b'};

const updatedObj = {...obj, alpha: 1};

assert.deepEqual(updatedObj, {alpha: 1, beta: 'b'});

Exercise: Non-destructively updating a property via spreading (fixed key)
exercises/objects/update_name_test.mjs

30.4.4 “Destructive spreading”: Object.assign() [ES6]

Object.assign() is a tool method:

Object.assign(target, source_1, source_2, ···)

This expression assigns all properties of source_1 to target, then all properties of source_-
2, etc. At the end, it returns target – for example:

const target = { a: 1 };

const result = Object.assign(

target,

{b: 2},

{c: 3, b: true});

assert.deepEqual(

result, { a: 1, b: true, c: 3 });

// target was modified and returned:

assert.equal(result, target);

The use cases for Object.assign() are similar to those for spread properties. In a way, it
spreads destructively.

30.5 Methods and the special variable this
30.5.1 Methods are properties whose values are functions
Let’s revisit the example that was used to introduce methods:

const jane = {

first: 'Jane',

says(text) {

return `${this.first} says “${text}”`;

30.5 Methods and the special variable this 313

},

};

Somewhat surprisingly, methods are functions:

assert.equal(typeof jane.says, 'function');

Why is that? We learned in the chapter on callable values that ordinary functions play
several roles. Method is one of those roles. Therefore, internally, jane roughly looks as
follows.

const jane = {

first: 'Jane',

says: function (text) {

return `${this.first} says “${text}”`;

},

};

30.5.2 The special variable this
Consider the following code:

const obj = {

someMethod(x, y) {

assert.equal(this, obj); // (A)

assert.equal(x, 'a');

assert.equal(y, 'b');

}

};

obj.someMethod('a', 'b'); // (B)

In line B, obj is the receiver of amethod call. It is passed to the function stored in obj.someMethod
via an implicit (hidden) parameter whose name is this (line A).

How to understand this

The best way to understand this is as an implicit parameter of ordinary functions
(and therefore methods, too).

30.5.3 Methods and .call()

Methods are functions and functions have methods themselves. One of those methods is
.call(). Let’s look at an example to understand how this method works.

In the previous section, there was this method invocation:

obj.someMethod('a', 'b')

This invocation is equivalent to:

obj.someMethod.call(obj, 'a', 'b');

314 30 Objects

Which is also equivalent to:
const func = obj.someMethod;

func.call(obj, 'a', 'b');

.call() makes the normally implicit parameter this explicit: When invoking a function
via .call(), the first parameter is this, followed by the regular (explicit) function param-
eters.
As an aside, this means that there are actually two different dot operators:

1. One for accessing properties: obj.prop
2. Another one for calling methods: obj.prop()

They are different in that (2) is not just (1) followed by the function call operator (). Instead,
(2) additionally provides a value for this.

30.5.4 Methods and .bind()

.bind() is another method of function objects. In the following code, we use .bind() to
turn method .says() into the stand-alone function func():

const jane = {

first: 'Jane',

says(text) {

return `${this.first} says “${text}”`; // (A)

},

};

const func = jane.says.bind(jane, 'hello');

assert.equal(func(), 'Jane says “hello”');

Setting this to jane via .bind() is crucial here. Otherwise, func()wouldn’t work properly
because this is used in line A. In the next section, we’ll explore why that is.

30.5.5 this pitfall: extracting methods
We now know quite a bit about functions and methods and are ready to take a look at the
biggest pitfall involving methods and this: function-calling a method extracted from an
object can fail if we are not careful.
In the following example, we fail when we extract method jane.says(), store it in the
variable func, and function-call func.

const jane = {

first: 'Jane',

says(text) {

return `${this.first} says “${text}”`;

},

};

const func = jane.says; // extract the method

assert.throws(

() => func('hello'), // (A)

30.5 Methods and the special variable this 315

{

name: 'TypeError',

message: "Cannot read properties of undefined (reading 'first')",

});

In line A, we are making a normal function call. And in normal function calls, this is
undefined (if strictmode is active, which it almost always is). LineA is therefore equivalent
to:

assert.throws(

() => jane.says.call(undefined, 'hello'), // `this` is undefined!

{

name: 'TypeError',

message: "Cannot read properties of undefined (reading 'first')",

}

);

How do we fix this? We need to use .bind() to extract method .says():

const func2 = jane.says.bind(jane);

assert.equal(func2('hello'), 'Jane says “hello”');

The .bind() ensures that this is always jane when we call func().

We can also use arrow functions to extract methods:

const func3 = text => jane.says(text);

assert.equal(func3('hello'), 'Jane says “hello”');

Example: extracting a method

The following is a simplified version of code that we may see in actual web development:

class ClickHandler {

constructor(id, elem) {

this.id = id;

elem.addEventListener('click', this.handleClick); // (A)

}

handleClick(event) {

alert('Clicked ' + this.id);

}

}

In line A, we don’t extract the method .handleClick() properly. Instead, we should do:

const listener = this.handleClick.bind(this);

elem.addEventListener('click', listener);

// Later, possibly:

elem.removeEventListener('click', listener);

Each invocation of .bind() creates a new function. That’s why we need to store the result
somewhere if we want to remove it later on.

316 30 Objects

How to avoid the pitfall of extracting methods
Alas, there is no simpleway around the pitfall of extractingmethods: Wheneverwe extract
a method, we have to be careful and do it properly – for example, by binding this or by
using an arrow function.

Exercise: Extracting a method
exercises/objects/method_extraction_exrc.mjs

30.5.6 this pitfall: accidentally shadowing this

Accidentally shadowing this is only an issue with ordinary functions
Arrow functions don’t shadow this.

Consider the following problem: whenwe are inside an ordinary function, we can’t access
the this of the surrounding scope because the ordinary function has its own this. In
other words, a variable in an inner scope hides a variable in an outer scope. That is called
shadowing. The following code is an example:

const prefixer = {

prefix: '==> ',

prefixStringArray(stringArray) {

return stringArray.map(

function (x) {

return this.prefix + x; // (A)

});

},

};

assert.throws(

() => prefixer.prefixStringArray(['a', 'b']),

{

name: 'TypeError',

message: "Cannot read properties of undefined (reading 'prefix')",

}

);

In line A, we want to access the this of .prefixStringArray(). But we can’t since the
surrounding ordinary function has its own this that shadows (and blocks access to) the
this of the method. The value of the former this is undefined due to the callback being
function-called. That explains the error message.
The simplest way to fix this problem is via an arrow function, which doesn’t have its own
this and therefore doesn’t shadow anything:

const prefixer = {

prefix: '==> ',

30.5 Methods and the special variable this 317

prefixStringArray(stringArray) {

return stringArray.map(

(x) => {

return this.prefix + x;

});

},

};

assert.deepEqual(

prefixer.prefixStringArray(['a', 'b']),

['==> a', '==> b']);

We can also store this in a different variable (line A), so that it doesn’t get shadowed:

prefixStringArray(stringArray) {

const that = this; // (A)

return stringArray.map(

function (x) {

return that.prefix + x;

});

},

Another option is to specify a fixed this for the callback via .bind() (line A):

prefixStringArray(stringArray) {

return stringArray.map(

function (x) {

return this.prefix + x;

}.bind(this)); // (A)

},

Lastly, .map() lets us specify a value for this (line A) that it uses when invoking the call-
back:

prefixStringArray(stringArray) {

return stringArray.map(

function (x) {

return this.prefix + x;

},

this); // (A)

},

Avoiding the pitfall of accidentally shadowing this

If we follow the advice in “Recommendation: prefer specialized functions over ordinary
functions” (§27.3.4), we can avoid the pitfall of accidentally shadowing this. This is a
summary:

• Use arrow functions as anonymous inline functions. They don’t have this as an
implicit parameter and don’t shadow it.

• For named stand-alone function declarations we can either use arrow functions or
function declarations. If we do the latter, we have tomake sure this isn’t mentioned

318 30 Objects

in their bodies.

30.5.7 The value of this in various contexts (advanced)
What is the value of this in various contexts?

Inside a callable entity, the value of this depends on how the callable entity is invoked
and what kind of callable entity it is:

• Function call:
– Ordinary functions: this === undefined (in strict mode)
– Arrow functions: this is same as in surrounding scope (lexical this)

• Method call: this is receiver of call
• new: this refers to the newly created instance

We can also access this in all common top-level scopes:

• <script> element: this === globalThis

• ECMAScript modules: this === undefined

• CommonJS modules: this === module.exports

Tip: pretend that this doesn’t exist in top-level scopes
I like to do that because top-level this is confusing and there are better alternatives
for its (few) use cases.

30.6 Optional chaining for property getting andmethod calls
[ES2020] (advanced)

The following kinds of optional chaining operations exist:

obj?.prop // optional fixed property getting

obj?.[«expr»] // optional dynamic property getting

func?.(«arg0», «arg1») // optional function or method call

The rough idea is:

• If the value before the question mark is neither undefined nor null, then perform
the operation after the question mark.

• Otherwise, return undefined.

Each of the three syntaxes is covered in more detail later. These are a few first examples:

> null?.prop

undefined

> {prop: 1}?.prop

1

> null?.(123)

undefined

30.6 Optional chaining for property getting and method calls [ES2020] (advanced) 319

> String?.(123)

'123'

Mnemonic for the optional chaining operator (?.)
Are you occasionally unsure if the optional chaining operator starts with a dot (.?)
or a question mark (?.)? Then this mnemonic may help you:

• If (?) the left-hand side is not nullish
• then (.) access a property.

30.6.1 Example: optional fixed property getting
Consider the following data:

const persons = [

{

surname: 'Zoe',

address: {

street: {

name: 'Sesame Street',

number: '123',

},

},

},

{

surname: 'Mariner',

},

{

surname: 'Carmen',

address: {

},

},

];

We can use optional chaining to safely extract street names:

const streetNames = persons.map(

p => p.address?.street?.name);

assert.deepEqual(

streetNames, ['Sesame Street', undefined, undefined]

);

Handling defaults via nullish coalescing

The nullish coalescing operator allows us to use the default value '(no name)' instead of
undefined:

const streetNames = persons.map(

p => p.address?.street?.name ?? '(no name)');

320 30 Objects

assert.deepEqual(

streetNames, ['Sesame Street', '(no name)', '(no name)']

);

30.6.2 The operators in more detail (advanced)
Optional fixed property getting

The following two expressions are equivalent:
o?.prop

(o !== undefined && o !== null) ? o.prop : undefined

Examples:
assert.equal(undefined?.prop, undefined);

assert.equal(null?.prop, undefined);

assert.equal({prop:1}?.prop, 1);

Optional dynamic property getting

The following two expressions are equivalent:
o?.[«expr»]

(o !== undefined && o !== null) ? o[«expr»] : undefined

Examples:
const key = 'prop';

assert.equal(undefined?.[key], undefined);

assert.equal(null?.[key], undefined);

assert.equal({prop:1}?.[key], 1);

Optional function or method call

The following two expressions are equivalent:
f?.(arg0, arg1)

(f !== undefined && f !== null) ? f(arg0, arg1) : undefined

Examples:
assert.equal(undefined?.(123), undefined);

assert.equal(null?.(123), undefined);

assert.equal(String?.(123), '123');

Note that this operator produces an error if its left-hand side is not callable:
assert.throws(

() => true?.(123),

TypeError);

Why? The idea is that the operator only tolerates deliberate omissions. An uncallable
value (other than undefined and null) is probably an error and should be reported, rather
than worked around.

30.6 Optional chaining for property getting and method calls [ES2020] (advanced) 321

30.6.3 Short-circuiting with optional property getting
In a chain of property gettings and method invocations, evaluation stops once the first
optional operator encounters undefined or null at its left-hand side:

function invokeM(value) {

return value?.a.b.m(); // (A)

}

const obj = {

a: {

b: {

m() { return 'result' }

}

}

};

assert.equal(

invokeM(obj), 'result'

);

assert.equal(

invokeM(undefined), undefined // (B)

);

Consider invokeM(undefined) in line B: undefined?.a is undefined. Therefore we’d expect
.b to fail in line A. But it doesn’t: The ?. operator encounters the value undefined and the
evaluation of the whole expression immediately returns undefined.
This behavior differs fromanormal operatorwhere JavaScript always evaluates all operands
before evaluating the operator. It is called short-circuiting. Other short-circuiting operators
are:

• (a && b): b is only evaluated if a is truthy.
• (a || b): b is only evaluated if a is falsy.
• (c ? t : e): If c is truthy, t is evaluated. Otherwise, e is evaluated.

30.6.4 Optional chaining: downsides and alternatives
Optional chaining also has downsides:

• Deeply nested structures are more difficult to manage. For example, refactoring
is harder if there are many sequences of property names: Each one enforces the
structure of multiple objects.

• Being so forgiving when accessing data hides problems that will surface much later
and are then harder to debug. For example, a typo early in a sequence of optional
property names has more negative effects than a normal typo.

An alternative to optional chaining is to extract the information once, in a single location:
• We can either write a helper function that extracts the data.
• Or we can write a function whose input is deeply nested data and whose output is

simpler, normalized data.
With either approach, it is possible to perform checks and to fail early if there are problems.

322 30 Objects

Further reading:

• “Overly defensive programming” by Carl Vitullo

30.6.5 Frequently asked questions
Why are there dots in o?.[x] and f?.()?

The syntaxes of the following two optional operator are not ideal:

obj?.[«expr»] // better: obj?[«expr»]

func?.(«arg0», «arg1») // better: func?(«arg0», «arg1»)

Alas, the less elegant syntax is necessary because distinguishing the ideal syntax (first ex-
pression) from the conditional operator (second expression) is too complicated:

obj?['a', 'b', 'c'].map(x => x+x)

obj ? ['a', 'b', 'c'].map(x => x+x) : []

Why does null?.prop evaluate to undefined and not null?

The operator ?. is mainly about its right-hand side: Does property .prop exist? If not, stop
early. Therefore, keeping information about its left-hand side is rarely useful. However,
only having a single “early termination” value does simplify things.

30.7 Dictionary objects (advanced)
Objects work best as fixed-layout objects. But before ES6, JavaScript did not have a data
structure for dictionaries (ES6 brought Maps). Therefore, objects had to be used as dictio-
naries, which imposed a signficant constraint: Dictionary keys had to be strings (symbols
were also introduced with ES6).

We first look at features of objects that are related to dictionaries but also useful for fixed-
layout objects. This section concludes with tips for actually using objects as dictionaries.
(Spoiler: If possible, it’s better to use Maps.)

30.7.1 Quoted keys in object literals
So far, we have always used fixed-layout objects. Property keys were fixed tokens that had
to be valid identifiers and internally became strings:

const obj = {

mustBeAnIdentifier: 123,

};

// Get property

assert.equal(obj.mustBeAnIdentifier, 123);

// Set property

obj.mustBeAnIdentifier = 'abc';

assert.equal(obj.mustBeAnIdentifier, 'abc');

https://blog.vcarl.com/overly-defensive-programming/

30.7 Dictionary objects (advanced) 323

As a next step, we’ll go beyond this limitation for property keys: In this subsection, we’ll
use arbitrary fixed strings as keys. In the next subsection, we’ll dynamically compute keys.

Two syntaxes enable us to use arbitrary strings as property keys.

First, when creating property keys via object literals, we can quote property keys (with
single or double quotes):

const obj = {

'Can be any string!': 123,

};

Second, when getting or setting properties, we can use square brackets with strings inside
them:

// Get property

assert.equal(obj['Can be any string!'], 123);

// Set property

obj['Can be any string!'] = 'abc';

assert.equal(obj['Can be any string!'], 'abc');

We can also use these syntaxes for methods:

const obj = {

'A nice method'() {

return 'Yes!';

},

};

assert.equal(obj['A nice method'](), 'Yes!');

30.7.2 Computed keys in object literals
In the previous subsection, property keys were specified via fixed strings inside object
literals. In this section we learn how to dynamically compute property keys. That enables
us to use either arbitrary strings or symbols.

The syntax of dynamically computed property keys in object literals is inspired by dynam-
ically accessing properties. That is, we can use square brackets to wrap expressions:

const obj = {

['Hello world!']: true,

['p'+'r'+'o'+'p']: 123,

[Symbol.toStringTag]: 'Goodbye', // (A)

};

assert.equal(obj['Hello world!'], true);

assert.equal(obj.prop, 123);

assert.equal(obj[Symbol.toStringTag], 'Goodbye');

The main use case for computed keys is having symbols as property keys (line A).

324 30 Objects

Note that the square brackets operator for getting and setting properties works with arbi-
trary expressions:

assert.equal(obj['p'+'r'+'o'+'p'], 123);

assert.equal(obj['==> prop'.slice(4)], 123);

Methods can have computed property keys, too:

const methodKey = Symbol();

const obj = {

[methodKey]() {

return 'Yes!';

},

};

assert.equal(obj[methodKey](), 'Yes!');

For the remainder of this chapter, we’ll mostly use fixed property keys again (because they
are syntactically more convenient). But all features are also available for arbitrary strings
and symbols.

Exercise: Non-destructively updating a property via spreading (computed
key)
exercises/objects/update_property_test.mjs

30.7.3 The in operator: is there a property with a given key?
The in operator checks if an object has a property with a given key:

const obj = {

alpha: 'abc',

beta: false,

};

assert.equal('alpha' in obj, true);

assert.equal('beta' in obj, true);

assert.equal('unknownKey' in obj, false);

Checking if a property exists via truthiness

We can also use a truthiness check to determine if a property exists:

assert.equal(

obj.alpha ? 'exists' : 'does not exist',

'exists');

assert.equal(

obj.unknownKey ? 'exists' : 'does not exist',

'does not exist');

30.7 Dictionary objects (advanced) 325

The previous checks work because obj.alpha is truthy and because reading a missing
property returns undefined (which is falsy).

There is, however, one important caveat: truthiness checks fail if the property exists, but
has a falsy value (undefined, null, false, 0, "", etc.):

assert.equal(

obj.beta ? 'exists' : 'does not exist',

'does not exist'); // should be: 'exists'

30.7.4 Deleting properties
We can delete properties via the delete operator:

const obj = {

myProp: 123,

};

assert.deepEqual(Object.keys(obj), ['myProp']);

delete obj.myProp;

assert.deepEqual(Object.keys(obj), []);

30.7.5 Enumerability
Enumerability is an attribute of a property. Non-enumerable properties are ignored by some
operations – for example, by Object.keys() and when spreading properties. By default,
most properties are enumerable. The next example shows how to change that and how it
affects spreading.

const enumerableSymbolKey = Symbol('enumerableSymbolKey');

const nonEnumSymbolKey = Symbol('nonEnumSymbolKey');

// We create enumerable properties via an object literal

const obj = {

enumerableStringKey: 1,

[enumerableSymbolKey]: 2,

}

// For non-enumerable properties, we need a more powerful tool

Object.defineProperties(obj, {

nonEnumStringKey: {

value: 3,

enumerable: false,

},

[nonEnumSymbolKey]: {

value: 4,

enumerable: false,

},

});

326 30 Objects

// Non-enumerable properties are ignored by spreading:

assert.deepEqual(

{...obj},

{

enumerableStringKey: 1,

[enumerableSymbolKey]: 2,

}

);

Object.defineProperties() is explained later in this chapter. The next subsection shows
how these operations are affected by enumerability:

30.7.6 Listing property keys via Object.keys() etc.

enumerable non-e. string symbol
Object.keys() ✔ ✔
Object.getOwnPropertyNames() ✔ ✔ ✔
Object.getOwnPropertySymbols() ✔ ✔ ✔
Reflect.ownKeys() ✔ ✔ ✔ ✔

Table 30.1: Standard library methods for listing own (non-inherited) property keys. All of
them return Arrays with strings and/or symbols.

Each of the methods in table 30.1 returns an Array with the own property keys of the
parameter. In the names of the methods, we can see that the following distinction is made:

• A property key can be either a string or a symbol. (Object.keys() is older and does
not yet follow this convention.)

• A property name is a property key whose value is a string.
• A property symbol is a property key whose value is a symbol.

To demonstrate the four operations, we revisit the example from the previous subsection:
const enumerableSymbolKey = Symbol('enumerableSymbolKey');

const nonEnumSymbolKey = Symbol('nonEnumSymbolKey');

const obj = {

enumerableStringKey: 1,

[enumerableSymbolKey]: 2,

}

Object.defineProperties(obj, {

nonEnumStringKey: {

value: 3,

enumerable: false,

},

[nonEnumSymbolKey]: {

value: 4,

enumerable: false,

},

30.7 Dictionary objects (advanced) 327

});

assert.deepEqual(

Object.keys(obj),

['enumerableStringKey']

);

assert.deepEqual(

Object.getOwnPropertyNames(obj),

['enumerableStringKey', 'nonEnumStringKey']

);

assert.deepEqual(

Object.getOwnPropertySymbols(obj),

[enumerableSymbolKey, nonEnumSymbolKey]

);

assert.deepEqual(

Reflect.ownKeys(obj),

[

'enumerableStringKey', 'nonEnumStringKey',

enumerableSymbolKey, nonEnumSymbolKey,

]

);

30.7.7 Listing property values via Object.values()
Object.values() lists the values of all own enumerable string-keyed properties of an ob-
ject:

const firstName = Symbol('firstName');

const obj = {

[firstName]: 'Jane',

lastName: 'Doe',

};

assert.deepEqual(

Object.values(obj),

['Doe']);

30.7.8 Listing property entries via Object.entries() [ES2017]

Object.entries(obj) returns an Array with one key-value pair for each of its properties:
• Each pair is encoded as a two-element Array.
• Only own enumerable properties with string keys are included.

const firstName = Symbol('firstName');

const obj = {

[firstName]: 'Jane',

lastName: 'Doe',

};

Object.defineProperty(

obj, 'city', {value: 'Metropolis', enumerable: false}

328 30 Objects

);

assert.deepEqual(

Object.entries(obj),

[

['lastName', 'Doe'],

]);

A simple implementation of Object.entries()

The following function is a simplified version of Object.entries():

function entries(obj) {

return Object.keys(obj)

.map(key => [key, obj[key]]);

}

Exercise: Object.entries()
exercises/objects/find_key_test.mjs

30.7.9 Properties are listed deterministically
Own (non-inherited) properties of objects are always listed in the following order:

1. Properties with string keys that contain integer indices (that includes Array indices):
In ascending numeric order

2. Remaining properties with string keys:
In the order in which they were added

3. Properties with symbol keys:
In the order in which they were added

The following example demonstrates that property keys are sorted according to these
rules:

> Object.keys({b:'',a:'', 10:'',2:''})

['2', '10', 'b', 'a']

The order of properties
The ECMAScript specification describes inmore detail howproperties are ordered.

30.7.10 Assembling objects via Object.fromEntries() [ES2019]

Given an iterable over [key, value] pairs, Object.fromEntries() creates an object:

const symbolKey = Symbol('symbolKey');

assert.deepEqual(

Object.fromEntries(

https://tc39.es/ecma262/#sec-ordinaryownpropertykeys

30.7 Dictionary objects (advanced) 329

[

['stringKey', 1],

[symbolKey, 2],

]

),

{

stringKey: 1,

[symbolKey]: 2,

}

);

Object.fromEntries()does the opposite of Object.entries(). However, while Object.entries()
ignores symbol-keyed properties, Object.fromEntries() doesn’t (see previous example).

To demonstrate both, we’ll use them to implement two tool functions from the library
Underscore in the next subsubsections.

Example: pick()

The Underscore function pick() has the following signature:

pick(object, ...keys)

It returns a copy of object that has only those properties whose keys are mentioned in the
trailing arguments:

const address = {

street: 'Evergreen Terrace',

number: '742',

city: 'Springfield',

state: 'NT',

zip: '49007',

};

assert.deepEqual(

pick(address, 'street', 'number'),

{

street: 'Evergreen Terrace',

number: '742',

}

);

We can implement pick() as follows:

function pick(object, ...keys) {

const filteredEntries = Object.entries(object)

.filter(([key, _value]) => keys.includes(key));

return Object.fromEntries(filteredEntries);

}

Example: invert()

The Underscore function invert() has the following signature:

https://underscorejs.org
https://underscorejs.org/#pick
https://underscorejs.org/#invert

330 30 Objects

invert(object)

It returns a copy of object where the keys and values of all properties are swapped:
assert.deepEqual(

invert({a: 1, b: 2, c: 3}),

{1: 'a', 2: 'b', 3: 'c'}

);

We can implement invert() like this:
function invert(object) {

const reversedEntries = Object.entries(object)

.map(([key, value]) => [value, key]);

return Object.fromEntries(reversedEntries);

}

A simple implementation of Object.fromEntries()

The following function is a simplified version of Object.fromEntries():
function fromEntries(iterable) {

const result = {};

for (const [key, value] of iterable) {

let coercedKey;

if (typeof key === 'string' || typeof key === 'symbol') {

coercedKey = key;

} else {

coercedKey = String(key);

}

result[coercedKey] = value;

}

return result;

}

Exercise: Using Object.entries() and Object.fromEntries()

exercises/objects/omit_properties_test.mjs

30.7.11 The pitfalls of using an object as a dictionary
If we use plain objects (created via object literals) as dictionaries, we have to look out for
two pitfalls.
The first pitfall is that the in operator also finds inherited properties:

const dict = {};

assert.equal('toString' in dict, true);

We want dict to be treated as empty, but the in operator detects the properties it inherits
from its prototype, Object.prototype.

30.8 Property attributes and property descriptors [ES5] (advanced) 331

The second pitfall is that we can’t use the property key __proto__ because it has special
powers (it sets the prototype of the object):

const dict = {};

dict['__proto__'] = 123;

// No property was added to dict:

assert.deepEqual(Object.keys(dict), []);

Safely using objects as dictionaries
So how do we avoid the two pitfalls?

• If we can, we use Maps. They are the best solution for dictionaries.
• If we can’t, we use a library for objects-as-dictionaries that protects us from making

mistakes.
• If that’s not possible or desired, we use an object without a prototype.

The following code demonstrates using prototype-less objects as dictionaries:
const dict = Object.create(null); // prototype is `null`

assert.equal('toString' in dict, false); // (A)

dict['__proto__'] = 123;

assert.deepEqual(Object.keys(dict), ['__proto__']);

We avoided both pitfalls:
• First, a property without a prototype does not inherit any properties (line A).
• Second, in modern JavaScript, __proto__ is implemented via Object.prototype.

That means that it is switched off if Object.prototype is not in the prototype chain.

Exercise: Using an object as a dictionary
exercises/objects/simple_dict_test.mjs

30.8 Property attributes and property descriptors [ES5] (ad-
vanced)

Just as objects are composed of properties, properties are composed of attributes. There are
two kinds of properties and they are characterized by their attributes:

• A data property stores data. Its attribute value holds any JavaScript value.
– Methods are data properties whose values are functions.

• An accessor property consists of a getter function and/or a setter function. The former
is stored in the attribute get, the latter in the attribute set.

Additionally, there are attributes that both kinds of properties have. The following table
lists all attributes and their default values.

332 30 Objects

Kind of property Name and type of attribute Default value
All properties configurable: boolean false

enumerable: boolean false

Data property value: any undefined

writable: boolean false

Accessor property get: (this: any) => any undefined

set: (this: any, v: any) => void undefined

We have already encountered the attributes value, get, and set. The other attributes work
as follows:

• writable determines if the value of a data property can be changed.
• configurable determines if the attributes of a property can be changed. If it is false,

then:
– We cannot delete the property.
– We cannot change a property from a data property to an accessor property or
vice versa.

– We cannot change any attribute other than value.
– However, onemore attribute change is allowed: We can change writable from

true to false. The rationale behind this anomaly is historical: Property .length
ofArrays has always beenwritable andnon-configurable. Allowing its writable
attribute to be changed enables us to freeze Arrays.

• enumerable influences some operations (such as Object.keys()). If it is false, then
those operations ignore the property. Enumerability is covered in greater detail ear-
lier in this chapter.

When we are using one of the operations for handling property attributes, attributes are
specified via property descriptors: objects where each property represents one attribute. For
example, this is how we read the attributes of a property obj.myProp:

const obj = { myProp: 123 };

assert.deepEqual(

Object.getOwnPropertyDescriptor(obj, 'myProp'),

{

value: 123,

writable: true,

enumerable: true,

configurable: true,

});

And this is how we change the attributes of obj.myProp:

assert.deepEqual(Object.keys(obj), ['myProp']);

// Hide property `myProp` from Object.keys()

// by making it non-enumerable

Object.defineProperty(obj, 'myProp', {

enumerable: false,

});

https://stackoverflow.com/questions/9829817/why-can-i-set-enumerability-and-writability-of-unconfigurable-property-descrip/9843191#9843191

30.9 Protecting objects from being changed [ES5] (advanced) 333

assert.deepEqual(Object.keys(obj), []);

Lastly, let’s see what methods and getters look like:

const obj = {

myMethod() {},

get myGetter() {},

};

const propDescs = Object.getOwnPropertyDescriptors(obj);

propDescs.myMethod.value = typeof propDescs.myMethod.value;

propDescs.myGetter.get = typeof propDescs.myGetter.get;

assert.deepEqual(

propDescs,

{

myMethod: {

value: 'function',

writable: true,

enumerable: true,

configurable: true

},

myGetter: {

get: 'function',

set: undefined,

enumerable: true,

configurable: true

}

}

);

Further reading
For more information on property attributes and property descriptors, see Deep
JavaScript.

30.9 Protecting objects from being changed [ES5] (advanced)
JavaScript has three levels of protecting objects:

• Preventing extensions makes it impossible to add new properties to an object and to
change its prototype. We can still delete and change properties, though.

– Apply: Object.preventExtensions(obj)
– Check: Object.isExtensible(obj)

• Sealing prevents extensions and makes all properties unconfigurable (roughly: we
can’t change how a property works anymore).

– Apply: Object.seal(obj)
– Check: Object.isSealed(obj)

https://exploringjs.com/deep-js/ch_property-attributes-intro.html
https://exploringjs.com/deep-js/ch_property-attributes-intro.html

334 30 Objects

• Freezing seals an object after making all of its properties non-writable. That is, the
object is not extensible, all properties are read-only and there is no way to change
that.

– Apply: Object.freeze(obj)
– Check: Object.isFrozen(obj)

Caveat: Objects are only protected shallowly
All three of the aforementioned Object.* methods only affect the top level of an
object, not objects nested inside it.

This is what using Object.freeze() looks like:
const frozen = Object.freeze({ x: 2, y: 5 });

assert.throws(

() => frozen.x = 7,

{

name: 'TypeError',

message: /^Cannot assign to read only property 'x'/,

}

);

Changing frozen properties only causes an exception in strict mode. In sloppy mode, it
fails silently.

Further reading
Formore information on freezing and otherways of locking down objects, seeDeep
JavaScript.

30.10 Prototype chains
Prototypes are JavaScript’s only inheritance mechanism: Each object has a prototype that
is either null or an object. In the latter case, the object inherits all of the prototype’s prop-
erties.
In an object literal, we can set the prototype via the special property __proto__:

const proto = {

protoProp: 'a',

};

const obj = {

__proto__: proto,

objProp: 'b',

};

// obj inherits .protoProp:

https://exploringjs.com/deep-js/ch_protecting-objects.html
https://exploringjs.com/deep-js/ch_protecting-objects.html

30.10 Prototype chains 335

assert.equal(obj.protoProp, 'a');

assert.equal('protoProp' in obj, true);

Given that a prototype object can have a prototype itself, we get a chain of objects – the so-
called prototype chain. Inheritance gives us the impression that we are dealing with single
objects, but we are actually dealing with chains of objects.

Figure 30.2 shows what the prototype chain of obj looks like. Non-inherited properties

__proto__
protoProp 'a'

proto

. . .

objProp
__proto__

'b'

obj

Figure 30.2: obj starts a chain of objects that continues with proto and other objects.

are called own properties. obj has one own property, .objProp.

30.10.1 JavaScript’s operations: all properties vs. own properties
Some operations consider all properties (own and inherited) – for example, getting prop-
erties:

> const obj = { one: 1 };

> typeof obj.one // own

'number'

> typeof obj.toString // inherited

'function'

Other operations only consider own properties – for example, Object.keys():

> Object.keys(obj)

['one']

Read on for another operation that also only considers own properties: setting properties.

30.10.2 Pitfall: only the first member of a prototype chain is mutated
Given an object obj with a chain of prototype objects, it makes sense that setting an own
property of obj only changes obj. However, setting an inherited property via obj also only
changes obj. It creates a new own property in obj that overrides the inherited property.
Let’s explore how that works with the following object:

336 30 Objects

const proto = {

protoProp: 'a',

};

const obj = {

__proto__: proto,

objProp: 'b',

};

In the next code snippet, we set the inherited property obj.protoProp (lineA). That “changes”
it by creating an own property: When reading obj.protoProp, the own property is found
first and its value overrides the value of the inherited property.

// In the beginning, obj has one own property

assert.deepEqual(Object.keys(obj), ['objProp']);

obj.protoProp = 'x'; // (A)

// We created a new own property:

assert.deepEqual(Object.keys(obj), ['objProp', 'protoProp']);

// The inherited property itself is unchanged:

assert.equal(proto.protoProp, 'a');

// The own property overrides the inherited property:

assert.equal(obj.protoProp, 'x');

The prototype chain of obj is depicted in figure 30.3.

protoProp 'a'
__proto__

proto

. . .

'b'
__proto__
objProp
protoProp 'x'

obj

Figure 30.3: The own property .protoProp of obj overrides the property inherited from
proto.

30.10 Prototype chains 337

30.10.3 Tips for working with prototypes (advanced)
Getting and setting prototypes

Recommendations for __proto__:

• Don’t use __proto__ as a pseudo-property (a setter of all instances of Object):

– It can’t be used with all objects (e.g. objects that are not instances of Object).
– The language specification has deprecated it.

For more information on this feature see “Object.prototype.__proto__ (accessor)”
(§31.8.8).

• Using __proto__ in object literals to set prototypes is different: It’s a feature of object
literals that has no pitfalls.

The recommended ways of getting and setting prototypes are:

• Getting the prototype of an object:

Object.getPrototypeOf(obj: Object) : Object

• The best time to set the prototype of an object is when we are creating it. We can do
so via __proto__ in an object literal or via:

Object.create(proto: Object) : Object

If we have to, we can use Object.setPrototypeOf() to change the prototype of an
existing object. But that may affect performance negatively.

This is how these features are used:

const proto1 = {};

const proto2a = {};

const proto2b = {};

const obj1 = {

__proto__: proto1,

};

assert.equal(Object.getPrototypeOf(obj1), proto1);

const obj2 = Object.create(proto2a);

assert.equal(Object.getPrototypeOf(obj2), proto2a);

Object.setPrototypeOf(obj2, proto2b);

assert.equal(Object.getPrototypeOf(obj2), proto2b);

Checking if an object is in the prototype chain of another object

So far, “proto is a prototype of obj” always meant “proto is a direct prototype of obj”. But
it can also be used more loosely and mean that proto is in the prototype chain of obj. That
looser relationship can be checked via .isPrototypeOf():

For example:

338 30 Objects

const a = {};

const b = {__proto__: a};

const c = {__proto__: b};

assert.equal(a.isPrototypeOf(b), true);

assert.equal(a.isPrototypeOf(c), true);

assert.equal(c.isPrototypeOf(a), false);

assert.equal(a.isPrototypeOf(a), false);

For more information on this method see “Object.prototype.isPrototypeOf()” (§31.8.6).

30.10.4 Object.hasOwn(): Is a givenproperty own (non-inherited)? [ES2022]

The in operator (lineA) checks if an object has a givenproperty. In contrast, Object.hasOwn()
(lines B and C) checks if a property is own.

const proto = {

protoProp: 'protoProp',

};

const obj = {

__proto__: proto,

objProp: 'objProp',

}

assert.equal('protoProp' in obj, true); // (A)

assert.equal(Object.hasOwn(obj, 'protoProp'), false); // (B)

assert.equal(Object.hasOwn(proto, 'protoProp'), true); // (C)

Alternative before ES2022: .hasOwnProperty()
Before ES2022, we canuse another feature: “Object.prototype.hasOwnProperty()”
(§31.8.9). This feature has pitfalls, but the referenced section explains how to work
around them.

30.10.5 Sharing data via prototypes
Consider the following code:

const jane = {

firstName: 'Jane',

describe() {

return 'Person named '+this.firstName;

},

};

const tarzan = {

firstName: 'Tarzan',

describe() {

return 'Person named '+this.firstName;

30.10 Prototype chains 339

},

};

assert.equal(jane.describe(), 'Person named Jane');

assert.equal(tarzan.describe(), 'Person named Tarzan');

We have two objects that are very similar. Both have two properties whose names are
.firstName and .describe. Additionally, method .describe() is the same. How can we
avoid duplicating that method?
We canmove it to an object PersonProto andmake that object a prototype of both jane and
tarzan:

const PersonProto = {

describe() {

return 'Person named ' + this.firstName;

},

};

const jane = {

__proto__: PersonProto,

firstName: 'Jane',

};

const tarzan = {

__proto__: PersonProto,

firstName: 'Tarzan',

};

The name of the prototype reflects that both jane and tarzan are persons. Figure 30.4

__proto__
firstName 'Jane' firstName

__proto__
'Tarzan'

describe function() {···}

jane tarzan

PersonProto

Figure 30.4: Objects jane and tarzan share method .describe(), via their common proto-
type PersonProto.

illustrates how the three objects are connected: The objects at the bottom now contain the
properties that are specific to jane and tarzan. The object at the top contains the properties
that are shared between them.
Whenwemake themethod call jane.describe(), thispoints to the receiver of thatmethod
call, jane (in the bottom-left corner of the diagram). That’s why the method still works.
tarzan.describe() works similarly.

assert.equal(jane.describe(), 'Person named Jane');

assert.equal(tarzan.describe(), 'Person named Tarzan');

340 30 Objects

Looking ahead to the next chapter on classes – this is how classes are organized internally:

• All instances share a common prototype with methods.
• Instance-specific data is stored in own properties in each instance.

“The internals of classes” (§31.3) explains this in more detail.

30.11 FAQ: objects
30.11.1 Why do objects preserve the insertion order of properties?
In principle, objects are unordered. The main reason for ordering properties is so that
operations that list entries, keys, or values are deterministic. That helps, e.g., with testing.

30.12 Quick reference: Object
30.12.1 Object.*: creating objects, handling prototypes

• Object.create(proto, propDescObj?) [ES5]

– Returns a new object whose prototype is proto.
– The optional propDescObj is an object with property descriptors that is used to
define properties in the new object.

> const obj = Object.create(null);

> Object.getPrototypeOf(obj)

null

In the following example, we define own properties via the second parameter:

const obj = Object.create(

null,

{

color: {

value: 'green',

writable: true,

enumerable: true,

configurable: true,

},

}

);

assert.deepEqual(

obj,

{

__proto__: null,

color: 'green',

}

);

• Object.getPrototypeOf(obj) [ES5]

30.12 Quick reference: Object 341

Return the prototype of obj – which is either an object or null.

assert.equal(

Object.getPrototypeOf({__proto__: null}), null

);

assert.equal(

Object.getPrototypeOf({}), Object.prototype

);

assert.equal(

Object.getPrototypeOf(Object.prototype), null

);

• Object.setPrototypeOf(obj, proto) [ES6]

Sets the prototype of obj to proto (which must be null or an object) and returns the
former.

const obj = {};

assert.equal(

Object.getPrototypeOf(obj), Object.prototype

);

Object.setPrototypeOf(obj, null);

assert.equal(

Object.getPrototypeOf(obj), null

);

30.12.2 Object.*: property attributes

• Object.defineProperty(obj, propKey, propDesc) [ES5]

– Defines one property in obj, as specified by the property key propKey and the
property descriptor propDesc.

– Returns obj.

const obj = {};

Object.defineProperty(

obj, 'color',

{

value: 'green',

writable: true,

enumerable: true,

configurable: true,

}

);

assert.deepEqual(

obj,

{

color: 'green',

}

);

342 30 Objects

• Object.defineProperties(obj, propDescObj) [ES5]

– Defines properties in obj, as specified by the object propDescObjwith property
descriptors.

– Returns obj.

const obj = {};

Object.defineProperties(

obj,

{

color: {

value: 'green',

writable: true,

enumerable: true,

configurable: true,

},

}

);

assert.deepEqual(

obj,

{

color: 'green',

}

);

• Object.getOwnPropertyDescriptor(obj, propKey) [ES5]

– Returns a property descriptor for the own property of objwhose key is prop-
Key. If no such property exists, it returns undefined.

– More information on property descriptors: “Property attributes and property
descriptors” (§30.8)

> Object.getOwnPropertyDescriptor({a: 1, b: 2}, 'a')

{ value: 1, writable: true, enumerable: true, configurable: true }

> Object.getOwnPropertyDescriptor({a: 1, b: 2}, 'x')

undefined

• Object.getOwnPropertyDescriptors(obj) [ES2017]

– Returns an object with property descriptors, one for each own property of obj.
– More information on property descriptors: “Property attributes and property
descriptors” (§30.8)

> Object.getOwnPropertyDescriptors({a: 1, b: 2})

{

a: { value: 1, writable: true, enumerable: true, configurable: true },

b: { value: 2, writable: true, enumerable: true, configurable: true },

}

30.12 Quick reference: Object 343

30.12.3 Object.*: property keys, values, entries

• Object.keys(obj) [ES5]

Returns an Array with all own enumerable property keys that are strings.

const enumSymbolKey = Symbol('enumSymbolKey');

const nonEnumSymbolKey = Symbol('nonEnumSymbolKey');

const obj = Object.defineProperties(

{},

{

enumStringKey: {

value: 1, enumerable: true,

},

[enumSymbolKey]: {

value: 2, enumerable: true,

},

nonEnumStringKey: {

value: 3, enumerable: false,

},

[nonEnumSymbolKey]: {

value: 4, enumerable: false,

},

}

);

assert.deepEqual(

Object.keys(obj),

['enumStringKey']

);

• Object.getOwnPropertyNames(obj) [ES5]

Returns an Array with all own property keys that are strings (enumerable and non-
enumerable ones).

const enumSymbolKey = Symbol('enumSymbolKey');

const nonEnumSymbolKey = Symbol('nonEnumSymbolKey');

const obj = Object.defineProperties(

{},

{

enumStringKey: {

value: 1, enumerable: true,

},

[enumSymbolKey]: {

value: 2, enumerable: true,

},

nonEnumStringKey: {

value: 3, enumerable: false,

344 30 Objects

},

[nonEnumSymbolKey]: {

value: 4, enumerable: false,

},

}

);

assert.deepEqual(

Object.getOwnPropertyNames(obj),

['enumStringKey', 'nonEnumStringKey']

);

• Object.getOwnPropertySymbols(obj) [ES6]

Returns an Array with all own property keys that are symbols (enumerable and
non-enumerable ones).

const enumSymbolKey = Symbol('enumSymbolKey');

const nonEnumSymbolKey = Symbol('nonEnumSymbolKey');

const obj = Object.defineProperties(

{},

{

enumStringKey: {

value: 1, enumerable: true,

},

[enumSymbolKey]: {

value: 2, enumerable: true,

},

nonEnumStringKey: {

value: 3, enumerable: false,

},

[nonEnumSymbolKey]: {

value: 4, enumerable: false,

},

}

);

assert.deepEqual(

Object.getOwnPropertySymbols(obj),

[enumSymbolKey, nonEnumSymbolKey]

);

• Object.values(obj) [ES2017]

Returns an Array with the values of all enumerable own string-keyed properties.

> Object.values({a: 1, b: 2})

[1, 2]

• Object.entries(obj) [ES2017]

– Returns an Array with one key-value pair (encoded as a two-element Array)

30.12 Quick reference: Object 345

per property of obj.
– Only own enumerable properties with string keys are included.
– Inverse operation: Object.fromEntries()

const obj = {

a: 1,

b: 2,

[Symbol('myKey')]: 3,

};

assert.deepEqual(

Object.entries(obj),

[

['a', 1],

['b', 2],

// Property with symbol key is ignored

]

);

• Object.fromEntries(keyValueIterable) [ES2019]

– Creates an object whose own properties are specified by keyValueIterable.
– Inverse operation: Object.entries()

> Object.fromEntries([['a', 1], ['b', 2]])

{ a: 1, b: 2 }

• Object.hasOwn(obj, key) [ES2022]

– Returns true if obj has an own property whose key is key. If not, it returns
false.

> Object.hasOwn({a: 1, b: 2}, 'a')

true

> Object.hasOwn({a: 1, b: 2}, 'x')

false

30.12.4 Object.*: protecting objects
More information: “Protecting objects from being changed” (§30.9)

• Object.preventExtensions(obj) [ES5]

– Makes obj non-extensible and returns it.
– Effect:

* obj is non-extensible: We can’t add properties or change its prototype.
– Only the top level of obj is changed (shallow change). Nested objects are not
affected.

– Related: Object.isExtensible()

• Object.isExtensible(obj) [ES5]

– Returns true if obj is extensible and false if it isn’t.

346 30 Objects

– Related: Object.preventExtensions()

• Object.seal(obj) [ES5]

– Seals obj and returns it.
– Effect:

* obj is non-extensible: We can’t add properties or change its prototype.
* obj is sealed: Additionally, all of its properties are unconfigurable.

– Only the top level of obj is changed (shallow change). Nested objects are not
affected.

– Related: Object.isSealed()

• Object.isSealed(obj) [ES5]

– Returns true if obj is sealed and false if it isn’t.
– Related: Object.seal()

• Object.freeze(obj) [ES5]

– Freezes obj and returns it.
– Effect:

* obj is non-extensible: We can’t add properties or change its prototype.
* obj is sealed: Additionally, all of its properties are unconfigurable.
* obj is frozen: Additionally, all of its properties are non-writable.

– Only the top level of obj is changed (shallow change). Nested objects are not
affected.

– Related: Object.isFrozen()

const frozen = Object.freeze({ x: 2, y: 5 });

assert.equal(

Object.isFrozen(frozen), true

);

assert.throws(

() => frozen.x = 7,

{

name: 'TypeError',

message: /^Cannot assign to read only property 'x'/,

}

);

• Object.isFrozen(obj) [ES5]

– Returns true if obj is frozen.
– Related: Object.freeze()

30.12.5 Object.*: miscellaneous

• Object.assign(target, ...sources) [ES6]

Assigns all enumerable own string-keyed properties of each of the sources to target
and returns target.

30.12 Quick reference: Object 347

> const obj = {a: 1, b: 1};

> Object.assign(obj, {b: 2, c: 2}, {d: 3})

{ a: 1, b: 2, c: 2, d: 3 }

> obj

{ a: 1, b: 2, c: 2, d: 3 }

• Object.groupBy(items, computeGroupKey) [ES2024]

Object.groupBy<K extends PropertyKey, T>(

items: Iterable<T>,

computeGroupKey: (item: T, index: number) => K,

): {[key: K]: Array<T>}

– The callback computeGroupKey returns a group key for each of the items.
– The result of Object.groupBy() is an object where:

* The key of each property is a group key and
* its value is an Array with all items that have that group key.

assert.deepEqual(

Object.groupBy(

['orange', 'apricot', 'banana', 'apple', 'blueberry'],

(str) => str[0] // compute group key

),

{

__proto__: null,

'o': ['orange'],

'a': ['apricot', 'apple'],

'b': ['banana', 'blueberry'],

}

);

• Object.is(value1, value2) [ES6]

Is mostly equivalent to value1 === value2 – with two exceptions:
> NaN === NaN

false

> Object.is(NaN, NaN)

true

> -0 === 0

true

> Object.is(-0, 0)

false

– Considering all NaN values to be equal can be useful – e.g., when searching for
a value in an Array.

– The value -0 is rare and it’s usually best to pretend it is the same as 0.

30.12.6 Object.prototype.*

Object.prototype has the following properties:

348 30 Objects

• Object.prototype.__proto__ (getter and setter)
• Object.prototype.hasOwnProperty()

• Object.prototype.isPrototypeOf()

• Object.prototype.propertyIsEnumerable()

• Object.prototype.toLocaleString()

• Object.prototype.toString()

• Object.prototype.valueOf()

Thesemethods are explained in detail in “Quick reference: Object.prototype.*” (§31.8.1).

30.13 Quick reference: Reflect
Reflect provides functionality for JavaScript proxies that is also occasionally useful else-
where:

• Reflect.apply(target, thisArgument, argumentsList)

– Invokes target with the arguments provided by argumentsList and this set
to thisArgument.

– Equivalent to target.apply(thisArgument, argumentsList)

• Reflect.construct(target, argumentsList, newTarget=target)

– The new operator as a function.
– target is the constructor to invoke.
– The optional parameter newTarget points to the constructor that started the
current chain of constructor calls.

• Reflect.defineProperty(target, propertyKey, propDesc)

– Similar to Object.defineProperty().
– Returns a boolean indicating whether or not the operation succeeded.

• Reflect.deleteProperty(target, propertyKey)

The delete operator as a function. It works slightly differently, though:

– It returns true if it successfully deleted the property or if the property never
existed.

– It returns false if the property could not be deleted and still exists.

In sloppy mode, the delete operator returns the same results as this method. But in
strict mode, it throws a TypeError instead of returning false.

The only way to protect properties from deletion is by making them non-config-
urable.

• Reflect.get(target, propertyKey, receiver=target)

A function that gets properties. The optional parameter receiver is needed if get
reaches a getter (somewhere in the prototype chain). Then it provides the value for
this.

• Reflect.getOwnPropertyDescriptor(target, propertyKey)

https://exploringjs.com/deep-js/ch_proxies.html

30.13 Quick reference: Reflect 349

Same as Object.getOwnPropertyDescriptor().
• Reflect.getPrototypeOf(target)

Same as Object.getPrototypeOf().
• Reflect.has(target, propertyKey)

The in operator as a function.
• Reflect.isExtensible(target)

Same as Object.isExtensible().
• Reflect.ownKeys(target)

Returns all own property keys (strings and symbols) in an Array.
• Reflect.preventExtensions(target)

– Similar to Object.preventExtensions().
– Returns a boolean indicating whether or not the operation succeeded.

• Reflect.set(target, propertyKey, value, receiver=target)

– Sets properties.
– Returns a boolean indicating whether or not the operation succeeded.

• Reflect.setPrototypeOf(target, proto)

– Same as Object.setPrototypeOf().
– Returns a boolean indicating whether or not the operation succeeded.

30.13.1 Reflect.* vs. Object.*
General recommendations:

• Use Object.* whenever you can.
• Use Reflect.*whenworkingwith ECMAScript proxies. Itsmethods arewell adapted

to ECMAScript’s meta-object protocol (MOP) which also return boolean error flags
instead of exceptions.

What are use cases for Reflect beyond proxies?
• Reflect.ownKeys() lists all own property keys – functionality that isn’t provided

anywhere else.
• Same functionality as Object but different return values: Reflect duplicates the fol-

lowing methods of Object, but its methods return booleans indicating whether the
operation succeeded (where the Object methods return the object that was modi-
fied).

– Object.defineProperty(obj, propKey, propDesc)

– Object.preventExtensions(obj)

– Object.setPrototypeOf(obj, proto)

• Operators as functions: The following Reflect methods implement functionality
that is otherwise only available via operators:

https://exploringjs.com/deep-js/ch_proxies.html

350 30 Objects

– Reflect.construct(target, argumentsList, newTarget=target)

– Reflect.deleteProperty(target, propertyKey)

– Reflect.get(target, propertyKey, receiver=target)

– Reflect.has(target, propertyKey)

– Reflect.set(target, propertyKey, value, receiver=target)

• Shorter version of apply(): If we want to be completely safe about invoking the
method apply() on a function, we can’t do so via dynamic dispatch, because the
function may have an own property with the key 'apply':

func.apply(thisArg, argArray) // not safe

Function.prototype.apply.call(func, thisArg, argArray) // safe

Using Reflect.apply() is shorter:
Reflect.apply(func, thisArg, argArray)

• No exceptions when deleting properties: the delete operator throws in strict mode
if we try to delete a non-configurable own property. Reflect.deleteProperty() re-
turns false in that case.

Chapter 31

Classes [ES6]

31.1 Cheat sheet: classes . 352
31.2 The essentials of classes . 355

31.2.1 A class for persons . 355
31.2.2 Class expressions . 356
31.2.3 The instanceof operator . 357
31.2.4 Public slots (properties) vs. private slots 357
31.2.5 Private slots in more detail [ES2022] (advanced) 358
31.2.6 The pros and cons of classes in JavaScript 363
31.2.7 Tips for using classes . 364

31.3 The internals of classes . 364
31.3.1 A class is actually two connected objects 364
31.3.2 Classes set up the prototype chains of their instances 365
31.3.3 .__proto__ vs. .prototype . 366
31.3.4 Person.prototype.constructor (advanced) 366
31.3.5 Dispatched vs. direct method calls (advanced) 367
31.3.6 Classes evolved from ordinary functions (advanced) 369

31.4 Prototype members of classes . 370
31.4.1 Public prototype methods and accessors 370
31.4.2 Private methods and accessors [ES2022] 372

31.5 Instance members of classes [ES2022] . 374
31.5.1 Instance public fields . 374
31.5.2 Instance private fields . 376
31.5.3 Private instance data before ES2022 (advanced) 376
31.5.4 Simulating protected visibility and friend visibility via WeakMaps

(advanced) . 378
31.6 Static members of classes . 379

31.6.1 Static public methods and accessors 379
31.6.2 Static public fields [ES2022] . 381
31.6.3 Static private methods, accessors, and fields [ES2022] 381

351

352 31 Classes [ES6]

31.6.4 Static initialization blocks in classes [ES2022] 382
31.6.5 Pitfall: Using this to access static private fields 384
31.6.6 All members (static, prototype, instance) can access all private mem-

bers . 385
31.6.7 Static private methods and data before ES2022 386
31.6.8 Static factory methods . 387

31.7 Subclassing . 388
31.7.1 The internals of subclassing (advanced) 389
31.7.2 instanceof and subclassing (advanced) 390
31.7.3 Not all objects are instances of Object (advanced) 391
31.7.4 Prototype chains of built-in objects (advanced) 392
31.7.5 Mixin classes (advanced) . 394

31.8 The methods and accessors of Object.prototype (advanced) 396
31.8.1 Quick reference: Object.prototype.* 396
31.8.2 Using Object.prototypemethods safely 396
31.8.3 Object.prototype.toString() . 398
31.8.4 Object.prototype.toLocaleString() 398
31.8.5 Object.prototype.valueOf() . 399
31.8.6 Object.prototype.isPrototypeOf() 399
31.8.7 Object.prototype.propertyIsEnumerable() 400
31.8.8 Object.prototype.__proto__ (accessor) 401
31.8.9 Object.prototype.hasOwnProperty() 402

31.9 FAQ: classes . 403
31.9.1 Why are they called “instance private fields” in this book and not

“private instance fields”? . 403
31.9.2 Why the identifier prefix #? Whynot declare private fields via private?403

In this book, JavaScript’s style of object-oriented programming (OOP) is introduced in four
steps. This chapter covers step 3 and 4, the previous chapter covers step 1 and 2. The steps
are (figure 31.1):

1. Single objects (previous chapter): How do objects, JavaScript’s basic OOP building
blocks, work in isolation?

2. Prototype chains (previous chapter): Each object has a chain of zero or more proto-
type objects. Prototypes are JavaScript’s core inheritance mechanism.

3. Classes (this chapter): JavaScript’s classes are factories for objects. The relationship
between a class and its instances is based on prototypal inheritance (step 2).

4. Subclassing (this chapter): The relationship between a subclass and its superclass is
also based on prototypal inheritance.

31.1 Cheat sheet: classes
A JavaScript class:

class Person {

constructor(firstName) { // (A)

this.firstName = firstName; // (B)

31.1 Cheat sheet: classes 353

ƒmthd

data
__proto__

4
ƒ

data
mthd

4

MyClass

data
mthd

SubClass

subData
subMthd

SuperClass

superData
superMthd

1. Single objects 2. Prototype chains 3. Classes 4. Subclassing

Figure 31.1: This book introduces object-oriented programming in JavaScript in four steps.

}

describe() { // (C)

return 'Person named ' + this.firstName;

}

}

const tarzan = new Person('Tarzan');

assert.equal(

tarzan.firstName, 'Tarzan'

);

assert.equal(

tarzan.describe(),

'Person named Tarzan'

);

// One property (public slot)

assert.deepEqual(

Reflect.ownKeys(tarzan), ['firstName']

);

Explanations:

• Inside a class, this refers to the current instance
• Line A: constructor of the class
• Line B: Property .firstName (a public slot) is created (no prior declaration neces-

sary).
• Line C: method .describe()

Public instance data such as .firstName is relatively common in JavaScript.

The same class Person, but with private instance data:

class Person {

#firstName; // (A)

constructor(firstName) {

this.#firstName = firstName; // (B)

}

describe() {

return 'Person named ' + this.#firstName;

354 31 Classes [ES6]

}

}

const tarzan = new Person('Tarzan');

assert.equal(

tarzan.describe(),

'Person named Tarzan'

);

// No properties, only a private field

assert.deepEqual(

Reflect.ownKeys(tarzan), []

);

Explanations:

• Line A: private field .#firstName. In contrast to properties, private fields must be
declared (lineA) before they can be used (line B). A private field can only be accessed
inside the class that declares it. It can’t even be accessed by subclasses.

Class Employee is a subclass of Person:

class Employee extends Person {

#title;

constructor(firstName, title) {

super(firstName); // (A)

this.#title = title;

}

describe() {

return `${super.describe()} (${this.#title})`; // (B)

}

}

const jane = new Employee('Jane', 'CTO');

assert.equal(

jane.describe(),

'Person named Jane (CTO)'

);

• Line A: In subclasses, we can omit the constructor. If we don’t, we have to call
super().

• Line B: We can refer to overridden methods via super.

The next class demonstrates how to create properties via public fields (line A):

class StringBuilderClass {

string = ''; // (A)

add(str) {

this.string += str;

return this;

}

}

31.2 The essentials of classes 355

const sb = new StringBuilderClass();

sb.add('Hello').add(' everyone').add('!');

assert.equal(

sb.string, 'Hello everyone!'

);

JavaScript also supports static members, but external functions and variables are often
preferred.

31.2 The essentials of classes
Classes are basically a compact syntax for setting up prototype chains (which are explained
in the previous chapter). Under the hood, JavaScript’s classes are unconventional. But that
is something we rarely see when working with them. They should normally feel familiar
to people who have used other object-oriented programming languages.

Note that we don’t need classes to create objects. We can also do so via object literals.
That’s why the singleton pattern isn’t needed in JavaScript and classes are used less than
in many other languages that have them.

31.2.1 A class for persons
We have previously worked with jane and tarzan, single objects representing persons.
Let’s use a class declaration to implement a factory for such objects:

class Person {

#firstName; // (A)

constructor(firstName) {

this.#firstName = firstName; // (B)

}

describe() {

return `Person named ${this.#firstName}`;

}

static extractNames(persons) {

return persons.map(person => person.#firstName);

}

}

jane and tarzan can now be created via new Person():

const jane = new Person('Jane');

const tarzan = new Person('Tarzan');

Let’s examine what’s inside the body of class Person.

• .constructor() is a special method that is called after the creation of a new instance.
Inside it, this refers to that instance.

• .#firstName [ES2022] is an instance private field: Such fields are stored in instances.
They are accessed similarly to properties, but their names are separate – they always

356 31 Classes [ES6]

start with hash symbols (#). And they are invisible to the world outside the class:
assert.deepEqual(

Reflect.ownKeys(jane),

[]

);

Before we can initialize .#firstName in the constructor (line B), we need to declare
it by mentioning it in the class body (line A).

• .describe() is a method. If we invoke it via obj.describe() then this refers to obj

inside the body of .describe().
assert.equal(

jane.describe(), 'Person named Jane'

);

assert.equal(

tarzan.describe(), 'Person named Tarzan'

);

• .extractName() is a staticmethod. “Static” means that it belongs to the class, not to
instances:

assert.deepEqual(

Person.extractNames([jane, tarzan]),

['Jane', 'Tarzan']

);

We can also create instance properties (public fields) in constructors:
class Container {

constructor(value) {

this.value = value;

}

}

const abcContainer = new Container('abc');

assert.equal(

abcContainer.value, 'abc'

);

In contrast to instance private fields, instance properties don’t have to be declared in class
bodies.

31.2.2 Class expressions
There are two kinds of class definitions (ways of defining classes):

• Class declarations, which we have seen in the previous section.
• Class expressions, which we’ll see next.

Class expressions can be anonymous and named:
// Anonymous class expression

const Person = class { ··· };

31.2 The essentials of classes 357

// Named class expression

const Person = class MyClass { ··· };

The name of a named class expression works similarly to the name of a named function
expression: It can only be accessed inside the body of a class and stays the same, regardless
of what the class is assigned to.

31.2.3 The instanceof operator
The instanceof operator tells us if a value is an instance of a given class:

> new Person('Jane') instanceof Person

true

> {} instanceof Person

false

> {} instanceof Object

true

> [] instanceof Array

true

We’ll explore the instanceof operator in more detail later, after we have looked at sub-
classing.

31.2.4 Public slots (properties) vs. private slots
In the JavaScript language, objects can have two kinds of “slots”.

• Public slots (which are are also called properties). For example, methods are public
slots.

• Private slots [ES2022]. For example, private fields are private slots.

These are the most important rules we need to know about properties and private slots:

• In classes, we can use public and private versions of fields, methods, getters and
setters. All of them are slots in objects. Which objects they are placed in depends on
whether the keyword static is used and other factors.

• A getter and a setter that have the same key create a single accessor slot. An Accessor
can also have only a getter or only a setter.

• Properties and private slots are very different – for example:
– They are stored separately.
– Their keys are different. The keys of private slots can’t even be accessed di-
rectly (see “Each private slot has a unique key (a private name)” (§31.2.5.2) later
in this chapter).

– Properties are inherited from prototypes, private slots aren’t.
– Private slots can only be created via classes.

The following class demonstrates the two kinds of slots. Each of its instances has one
private field and one property:

class MyClass {

#instancePrivateField = 1;

358 31 Classes [ES6]

instanceProperty = 2;

getInstanceValues() {

return [

this.#instancePrivateField,

this.instanceProperty,

];

}

}

const inst = new MyClass();

assert.deepEqual(

inst.getInstanceValues(), [1, 2]

);

As expected, outside MyClass, we can only see the property:

assert.deepEqual(

Reflect.ownKeys(inst),

['instanceProperty']

);

More information on properties
This chapter doesn’t cover all details of properties (just the essentials). If you want
to dig deeper, you can do so in “Property attributes and property descriptors”
(§30.8)

Next, we’ll look at some of the details of private slots.

31.2.5 Private slots in more detail [ES2022] (advanced)
Private slots can’t be accessed in subclasses

A private slot really can only be accessed inside the class that declares it. We can’t even
access it from a subclass:

class SuperClass {

#superProp = 'superProp';

}

class SubClass extends SuperClass {

getSuperProp() {

return this.#superProp;

}

}

// SyntaxError: Private field '#superProp'

// must be declared in an enclosing class

Subclassing via extends is explained later in this chapter. How to work around this limi-
tation is explained in “Simulating protected visibility and friend visibility via WeakMaps”
(§31.5.4).

31.2 The essentials of classes 359

Each private slot has a unique key (a private name)

Private slots have unique keys that are similar to symbols. Consider the following class
from earlier:

class MyClass {

#instancePrivateField = 1;

instanceProperty = 2;

getInstanceValues() {

return [

this.#instancePrivateField,

this.instanceProperty,

];

}

}

Internally, the private field of MyClass is handled roughly like this:

let MyClass;

{ // Scope of the body of the class

const instancePrivateFieldKey = Symbol();

MyClass = class {

__PrivateElements__ = new Map([

[instancePrivateFieldKey, 1],

]);

instanceProperty = 2;

getInstanceValues() {

return [

this.__PrivateElements__.get(instancePrivateFieldKey),

this.instanceProperty,

];

}

}

}

The value of instancePrivateFieldKey is called a private name. We can’t use private names
directly in JavaScript, we can only use them indirectly, via the fixed identifiers of private
fields, private methods, and private accessors. Where the fixed identifiers of public slots
(such as getInstanceValues) are interpreted as string keys, the fixed identifiers of private
slots (such as #instancePrivateField) refer to private names (similarly to how variable
names refer to values).

Private slots in the ECMAScript language specification
Section “Object Internal Methods and Internal Slots” in the ECMAScript language
specification explains how private slots work. Search for “[[PrivateElements]]”.

https://tc39.es/ecma262/#sec-object-internal-methods-and-internal-slots

360 31 Classes [ES6]

Private names are statically scoped (like variables)

A callable entity can only access the name of a private slot if it was born inside the scope
where the name was declared. However, it doesn’t lose this ability if it moves somewhere
else later on:

class MyClass {

#privateData = 'hello';

static createGetter() {

return (obj) => obj.#privateData; // (A)

}

}

const myInstance = new MyClass();

const getter = MyClass.createGetter();

assert.equal(

getter(myInstance), 'hello' // (B)

);

The arrow function getter was born inside MyClass (line A), but it can still access the
private name #privateData after it left its birth scope (line B).

The same private identifier refers to different private names in different classes

Because the identifiers of private slots aren’t used as keys, using the same identifier in
different classes produces different slots (line A and line C):

class Color {

#name; // (A)

constructor(name) {

this.#name = name; // (B)

}

static getName(obj) {

return obj.#name;

}

}

class Person {

#name; // (C)

constructor(name) {

this.#name = name;

}

}

assert.equal(

Color.getName(new Color('green')), 'green'

);

// We can’t access the private slot #name of a Person in line B:

assert.throws(

() => Color.getName(new Person('Jane')),

31.2 The essentials of classes 361

{

name: 'TypeError',

message: 'Cannot read private member #name from'

+ ' an object whose class did not declare it',

}

);

The names of private fields never clash
Even if a subclass uses the samename for a private field, the twonames never clash because
they refer to private names (which are always unique). In the following example, .#pri-
vateField in SuperClass does not clash with .#privateField in SubClass, even though
both slots are stored directly in inst:

class SuperClass {

#privateField = 'super';

getSuperPrivateField() {

return this.#privateField;

}

}

class SubClass extends SuperClass {

#privateField = 'sub';

getSubPrivateField() {

return this.#privateField;

}

}

const inst = new SubClass();

assert.equal(

inst.getSuperPrivateField(), 'super'

);

assert.equal(

inst.getSubPrivateField(), 'sub'

);

Subclassing via extends is explained later in this chapter.

Using in to check if an object has a given private slot
The in operator can be used to check if a private slot exists (line A):

class Color {

#name;

constructor(name) {

this.#name = name;

}

static check(obj) {

return #name in obj; // (A)

}

}

Let’s look at more examples of in applied to private slots.

362 31 Classes [ES6]

Private methods. The following code shows that private methods create private slots in
instances:

class C1 {

#priv() {}

static check(obj) {

return #priv in obj;

}

}

assert.equal(C1.check(new C1()), true);

Static private fields. We can also use in for a static private field:

class C2 {

static #priv = 1;

static check(obj) {

return #priv in obj;

}

}

assert.equal(C2.check(C2), true);

assert.equal(C2.check(new C2()), false);

Static private methods. And we can check for the slot of a static private method:

class C3 {

static #priv() {}

static check(obj) {

return #priv in obj;

}

}

assert.equal(C3.check(C3), true);

Using the same private identifier in different classes. In the next example, the two classes
Color and Person both have a slot whose identifier is #name. The in operator distinguishes
them correctly:

class Color {

#name;

constructor(name) {

this.#name = name;

}

static check(obj) {

return #name in obj;

}

}

class Person {

#name;

constructor(name) {

this.#name = name;

}

static check(obj) {

31.2 The essentials of classes 363

return #name in obj;

}

}

// Detecting Color’s #name

assert.equal(

Color.check(new Color()), true

);

assert.equal(

Color.check(new Person()), false

);

// Detecting Person’s #name

assert.equal(

Person.check(new Person()), true

);

assert.equal(

Person.check(new Color()), false

);

31.2.6 The pros and cons of classes in JavaScript
I recommend using classes for the following reasons:

• Classes are a common standard for object creation and inheritance that is nowwidely
supported across libraries and frameworks. This is an improvement compared to
how things were before, when almost every framework had its own inheritance li-
brary.

• They help tools such as IDEs and type checkers with their work and enable new
features there.

• If you come from another language to JavaScript and are used to classes, then you
can get started more quickly.

• JavaScript engines optimize them. That is, code that uses classes is almost always
faster than code that uses a custom inheritance library.

• We can subclass built-in constructor functions such as Error.

That doesn’t mean that classes are perfect:

• There is a risk of overdoing inheritance.

• There is a risk of putting too much functionality in classes (when some of it is often
better put in functions).

• Classes look familiar to programmers coming from other languages, but they work
differently and are used differently (see next subsection). Therefore, there is a risk
of those programmers writing code that doesn’t feel like JavaScript.

• How classes seem to work superficially is quite different from how they actually
work. In other words, there is a disconnect between syntax and semantics. Two

364 31 Classes [ES6]

examples are:
– Amethod definition inside a class C creates amethod in the object C.prototype.
– Classes are functions.

The motivation for the disconnect is backward compatibility. Thankfully, the dis-
connect causes few problems in practice; we are usually OK if we go along with
what classes pretend to be.

This was a first look at classes. We’ll explore more features soon.

Exercise: Writing a class
exercises/classes/point_class_test.mjs

31.2.7 Tips for using classes
• Use inheritance sparingly – it tends to make code more complicated and spread out

related functionality across multiple locations.
• Instead of static members, it is often better to use external functions and variables.

We can even make those private to a module, simply by not exporting them. Two
important exceptions to this rule are:

– Operations that need access to private slots
– Static factory methods

• Only put core functionality in prototype methods. Other functionality is better im-
plemented via functions – especially algorithms that involve instances of multiple
classes.

31.3 The internals of classes
31.3.1 A class is actually two connected objects
Under the hood, a class becomes two connected objects. Let’s revisit class Person to see
how that works:

class Person {

#firstName;

constructor(firstName) {

this.#firstName = firstName;

}

describe() {

return `Person named ${this.#firstName}`;

}

static extractNames(persons) {

return persons.map(person => person.#firstName);

}

}

The first object created by the class is stored in Person. It has four properties:

31.3 The internals of classes 365

assert.deepEqual(

Reflect.ownKeys(Person),

['length', 'name', 'prototype', 'extractNames']

);

// The number of parameters of the constructor

assert.equal(

Person.length, 1

);

// The name of the class

assert.equal(

Person.name, 'Person'

);

The two remaining properties are:

• Person.extractNames is the static method that we have already seen in action.
• Person.prototype points to the second object that is created by a class definition.

These are the contents of Person.prototype:

assert.deepEqual(

Reflect.ownKeys(Person.prototype),

['constructor', 'describe']

);

There are two properties:

• Person.prototype.constructor points to the constructor.
• Person.prototype.describe is the method that we have already used.

31.3.2 Classes set up the prototype chains of their instances
The object Person.prototype is the prototype of all instances:

const jane = new Person('Jane');

assert.equal(

Object.getPrototypeOf(jane), Person.prototype

);

const tarzan = new Person('Tarzan');

assert.equal(

Object.getPrototypeOf(tarzan), Person.prototype

);

That explains how the instances get their methods: They inherit them from the object Per-
son.prototype.

Figure 31.2 visualizes how everything is connected.

366 31 Classes [ES6]

__proto__
#firstName 'Tarzan'

describe function() {···}
constructor

tarzan

Person.prototype

extractNames function() {···}
prototype

Person

__proto__
#firstName 'Jane'

jane

Figure 31.2: The class Person has the property .prototype that points to an object that is the
prototype of all instances of Person. The objects jane and tarzan are two such instances.

31.3.3 .__proto__ vs. .prototype
It is easy to confuse .__proto__ and .prototype. Hopefully, figure 31.2 makes it clear how
they differ:

• Object.prototype.__proto__ is an accessor that most objects inherit that gets and
sets the prototype of the receiver. Therefore the following two expressions are equiv-
alent:

someObj.__proto__

Object.getPrototypeOf(someObj)

As are the following two expressions:
someObj.__proto__ = anotherObj

Object.setPrototypeOf(someObj, anotherObj)

• SomeClass.prototype holds the object that becomes the prototype of all instances of
SomeClass. A better name for .prototypewould be .instancePrototype. This prop-
erty is only special because the new operator uses it to set up instances of SomeClass.

class SomeClass {}

const inst = new SomeClass();

assert.equal(

Object.getPrototypeOf(inst), SomeClass.prototype

);

31.3.4 Person.prototype.constructor (advanced)
There is one detail in figure 31.2 thatwe haven’t looked at, yet: Person.prototype.constructor
points back to Person:

> Person.prototype.constructor === Person

true

31.3 The internals of classes 367

This setup exists due to backward compatibility. But it has two additional benefits.

First, each instance of a class inherits property .constructor. Therefore, given an instance,
we can make “similar” objects via it:

const jane = new Person('Jane');

const cheeta = new jane.constructor('Cheeta');

// cheeta is also an instance of Person

assert.equal(cheeta instanceof Person, true);

Second, we can get the name of the class that created a given instance:

const tarzan = new Person('Tarzan');

assert.equal(tarzan.constructor.name, 'Person');

31.3.5 Dispatched vs. direct method calls (advanced)
In this subsection, we learn about two different ways of invoking methods:

• Dispatched method calls
• Direct method calls

Understanding both of them will give us important insights into how methods work.

We’ll also need the second way later in this chapter: It will allow us to borrow useful
methods from Object.prototype.

Dispatched method calls

Let’s examine how method calls work with classes. We are revisiting jane from earlier:

class Person {

#firstName;

constructor(firstName) {

this.#firstName = firstName;

}

describe() {

return 'Person named '+this.#firstName;

}

}

const jane = new Person('Jane');

Figure 31.3 has a diagramwith jane’s prototype chain. Normal method calls are dispatched
– the method call

jane.describe()

happens in two steps:

• Dispatch: JavaScript traverses the prototype chain starting with jane to find the
first object that has an own property with the key 'describe': It first looks at jane
and doesn’t find an own property .describe. It continues with jane’s prototype,
Person.prototype and finds an own property describe whose value it returns.

368 31 Classes [ES6]

__proto__
describe function() {···}

Person.prototype

. . .

#firstName
__proto__

'Jane'

jane

Figure 31.3: The prototype chain of jane starts with jane and continues with Per-

son.prototype.

const func = jane.describe;

• Invocation: Method-invoking a value is different from function-invoking a value in
that it not only calls what comes before the parentheses with the arguments inside
the parentheses but also sets this to the receiver of the method call (in this case,
jane):

func.call(jane);

This way of dynamically looking for a method and invoking it is called dynamic dispatch.

Direct method calls

We can also make method calls directly, without dispatching:

Person.prototype.describe.call(jane)

This time, wedirectly point to themethodvia Person.prototype.describe anddon’t search
for it in the prototype chain. We also specify this differently – via .call().

this always points to the instance
No matter where in the prototype chain of an instance a method is located, this
always points to the instance (the beginning of the prototype chain). That enables
.describe() to access .#firstName in the example.

When are direct method calls useful? Whenever we want to borrow a method from else-
where that a given object doesn’t have – for example:

const obj = Object.create(null);

// `obj` is not an instance of Object and doesn’t inherit

// its prototype method .toString()

31.3 The internals of classes 369

assert.throws(

() => obj.toString(),

/^TypeError: obj.toString is not a function$/

);

assert.equal(

Object.prototype.toString.call(obj),

'[object Object]'

);

31.3.6 Classes evolved from ordinary functions (advanced)
Before ECMAScript 6, JavaScript didn’t have classes. Instead, ordinary functions were
used as constructor functions:

function StringBuilderConstr(initialString) {

this.string = initialString;

}

StringBuilderConstr.prototype.add = function (str) {

this.string += str;

return this;

};

const sb = new StringBuilderConstr('¡');

sb.add('Hola').add('!');

assert.equal(

sb.string, '¡Hola!'

);

Classes provide better syntax for this approach:
class StringBuilderClass {

constructor(initialString) {

this.string = initialString;

}

add(str) {

this.string += str;

return this;

}

}

const sb = new StringBuilderClass('¡');

sb.add('Hola').add('!');

assert.equal(

sb.string, '¡Hola!'

);

Subclassing is especially tricky with constructor functions. Classes also offer benefits that
go beyond more convenient syntax:

• Built-in constructor functions such as Error can be subclassed.
• We can access overridden properties via super.
• Classes can’t be function-called.

370 31 Classes [ES6]

• Methods can’t be new-called and don’t have the property .prototype.
• Support for private instance data.
• And more.

Classes are so compatible with constructor functions that they can even extend them:
function SuperConstructor() {}

class SubClass extends SuperConstructor {}

assert.equal(

new SubClass() instanceof SuperConstructor, true

);

extends and subclassing are explained later in this chapter.

A class is the constructor
This brings us to an interesting insight. On one hand, StringBuilderClass refers to its
constructor via StringBuilderClass.prototype.constructor.
On the other hand, the class is the constructor (a function):

> StringBuilderClass.prototype.constructor === StringBuilderClass

true

> typeof StringBuilderClass

'function'

Constructor (functions) vs. classes
Due to how similar they are, I use the terms constructor (function) and class inter-
changeably.

31.4 Prototype members of classes
31.4.1 Public prototype methods and accessors
All members in the body of the following class declaration create properties of PublicPro-
toClass.prototype.

class PublicProtoClass {

constructor(args) {

// (Do something with `args` here.)

}

publicProtoMethod() {

return 'publicProtoMethod';

}

get publicProtoAccessor() {

return 'publicProtoGetter';

}

set publicProtoAccessor(value) {

31.4 Prototype members of classes 371

assert.equal(value, 'publicProtoSetter');

}

}

assert.deepEqual(

Reflect.ownKeys(PublicProtoClass.prototype),

['constructor', 'publicProtoMethod', 'publicProtoAccessor']

);

const inst = new PublicProtoClass('arg1', 'arg2');

assert.equal(

inst.publicProtoMethod(), 'publicProtoMethod'

);

assert.equal(

inst.publicProtoAccessor, 'publicProtoGetter'

);

inst.publicProtoAccessor = 'publicProtoSetter';

All kinds of public prototype methods and accessors (advanced)

const accessorKey = Symbol('accessorKey');

const syncMethodKey = Symbol('syncMethodKey');

const syncGenMethodKey = Symbol('syncGenMethodKey');

const asyncMethodKey = Symbol('asyncMethodKey');

const asyncGenMethodKey = Symbol('asyncGenMethodKey');

class PublicProtoClass2 {

// Identifier keys

get accessor() {}

set accessor(value) {}

syncMethod() {}

* syncGeneratorMethod() {}

async asyncMethod() {}

async * asyncGeneratorMethod() {}

// Quoted keys

get 'an accessor'() {}

set 'an accessor'(value) {}

'sync method'() {}

* 'sync generator method'() {}

async 'async method'() {}

async * 'async generator method'() {}

// Computed keys

get [accessorKey]() {}

set [accessorKey](value) {}

[syncMethodKey]() {}

* [syncGenMethodKey]() {}

372 31 Classes [ES6]

async [asyncMethodKey]() {}

async * [asyncGenMethodKey]() {}

}

// Quoted and computed keys are accessed via square brackets:

const inst = new PublicProtoClass2();

inst['sync method']();

inst[syncMethodKey]();

Quoted and computed keys can also be used in object literals:

• “Quoted keys in object literals” (§30.7.1)
• “Computed keys in object literals” (§30.7.2)

More information on accessors (definedvia getters and/or setters), generators, asyncmeth-
ods, and async generator methods:

• “Object literals: accessors” (§30.3.6)
• “Synchronous generators”
• “Async functions”
• “Asynchronous generators”

31.4.2 Private methods and accessors [ES2022]

Private methods (and accessors) are an interestingmix of prototypemembers and instance
members.

On one hand, private methods are stored in slots in instances (line A):

class MyClass {

#privateMethod() {}

static check() {

const inst = new MyClass();

assert.equal(

#privateMethod in inst, true // (A)

);

assert.equal(

#privateMethod in MyClass.prototype, false

);

assert.equal(

#privateMethod in MyClass, false

);

}

}

MyClass.check();

Why are they not stored in .prototype objects? Private slots are not inherited, only prop-
erties are.

On the other hand, private methods are shared between instances – like prototype public
methods:

31.4 Prototype members of classes 373

class MyClass {

#privateMethod() {}

static check() {

const inst1 = new MyClass();

const inst2 = new MyClass();

assert.equal(

inst1.#privateMethod,

inst2.#privateMethod

);

}

}

Due to that and due to their syntax being similar to prototype public methods, they are
covered here.

The following code demonstrates how private methods and accessors work:

class PrivateMethodClass {

#privateMethod() {

return 'privateMethod';

}

get #privateAccessor() {

return 'privateGetter';

}

set #privateAccessor(value) {

assert.equal(value, 'privateSetter');

}

callPrivateMembers() {

assert.equal(this.#privateMethod(), 'privateMethod');

assert.equal(this.#privateAccessor, 'privateGetter');

this.#privateAccessor = 'privateSetter';

}

}

assert.deepEqual(

Reflect.ownKeys(new PrivateMethodClass()), []

);

All kinds of private methods and accessors (advanced)

With private slots, the keys are always identifiers:

class PrivateMethodClass2 {

get #accessor() {}

set #accessor(value) {}

#syncMethod() {}

* #syncGeneratorMethod() {}

async #asyncMethod() {}

async * #asyncGeneratorMethod() {}

}

374 31 Classes [ES6]

More information on accessors (definedvia getters and/or setters), generators, asyncmeth-
ods, and async generator methods:

• “Object literals: accessors” (§30.3.6)
• “Synchronous generators”
• “Async functions”
• “Asynchronous generators”

31.5 Instance members of classes [ES2022]

31.5.1 Instance public fields
Instances of the following class have two instance properties (created in line A and line B):

class InstPublicClass {

// Instance public field

instancePublicField = 0; // (A)

constructor(value) {

// We don’t need to mention .property elsewhere!

this.property = value; // (B)

}

}

const inst = new InstPublicClass('constrArg');

assert.deepEqual(

Reflect.ownKeys(inst),

['instancePublicField', 'property']

);

assert.equal(

inst.instancePublicField, 0

);

assert.equal(

inst.property, 'constrArg'

);

If we create an instance property inside the constructor (line B), we don’t need to “declare”
it elsewhere. As we have already seen, that is different for instance private fields.

Note that instance properties are relatively common in JavaScript; much more so than in,
e.g., Java, where most instance state is private.

Instance public fields with quoted and computed keys (advanced)

const computedFieldKey = Symbol('computedFieldKey');

class InstPublicClass2 {

'quoted field key' = 1;

[computedFieldKey] = 2;

}

const inst = new InstPublicClass2();

31.5 Instance members of classes [ES2022] 375

assert.equal(inst['quoted field key'], 1);

assert.equal(inst[computedFieldKey], 2);

What is the value of this in instance public fields? (advanced)

In the initializer of a instance public field, this refers to the newly created instance:

class MyClass {

instancePublicField = this;

}

const inst = new MyClass();

assert.equal(

inst.instancePublicField, inst

);

When are instance public fields executed? (advanced)

The execution of instance public fields roughly follows these two rules:

• In base classes (classes without superclasses), instance public fields are executed
immediately before the constructor.

• In derived classes (classes with superclasses):
– The superclass sets up its instance slots when super() is called.
– Instance public fields are executed immediately after super().

The following example demonstrates these rules:

class SuperClass {

superProp = console.log('superProp');

constructor() {

console.log('super-constructor');

}

}

class SubClass extends SuperClass {

subProp = console.log('subProp');

constructor() {

console.log('BEFORE super()');

super();

console.log('AFTER super()');

}

}

new SubClass();

Output:

BEFORE super()

superProp

super-constructor

subProp

AFTER super()

extends and subclassing are explained later in this chapter.

376 31 Classes [ES6]

31.5.2 Instance private fields
The following class contains two instance private fields (line A and line B):

class InstPrivateClass {

#privateField1 = 'private field 1'; // (A)

#privateField2; // (B) required!

constructor(value) {

this.#privateField2 = value; // (C)

}

/**

* Private fields are not accessible outside the class body.

*/

checkPrivateValues() {

assert.equal(

this.#privateField1, 'private field 1'

);

assert.equal(

this.#privateField2, 'constructor argument'

);

}

}

const inst = new InstPrivateClass('constructor argument');

inst.checkPrivateValues();

// No instance properties were created

assert.deepEqual(

Reflect.ownKeys(inst),

[]

);

Note that we can only use .#privateField2 in line C if we declare it in the class body.

31.5.3 Private instance data before ES2022 (advanced)
In this section, we look at two techniques for keeping instance data private. Because they
don’t rely on classes, we can also use them for objects that were created in other ways –
e.g., via object literals.

Before ES6: private members via naming conventions

The first technique makes a property private by prefixing its name with an underscore.
This doesn’t protect the property in any way; it merely signals to the outside: “You don’t
need to know about this property.”
In the following code, the properties ._counter and ._action are private.

class Countdown {

constructor(counter, action) {

this._counter = counter;

31.5 Instance members of classes [ES2022] 377

this._action = action;

}

dec() {

this._counter--;

if (this._counter === 0) {

this._action();

}

}

}

// The two properties aren’t really private:

assert.deepEqual(

Object.keys(new Countdown()),

['_counter', '_action']);

With this technique, we don’t get any protection and private names can clash. On the plus
side, it is easy to use.
Private methods work similarly: They are normal methods whose names start with un-
derscores.

ES6 and later: private instance data via WeakMaps

We can also manage private instance data via WeakMaps:
const _counter = new WeakMap();

const _action = new WeakMap();

class Countdown {

constructor(counter, action) {

_counter.set(this, counter);

_action.set(this, action);

}

dec() {

let counter = _counter.get(this);

counter--;

_counter.set(this, counter);

if (counter === 0) {

_action.get(this)();

}

}

}

// The two pseudo-properties are truly private:

assert.deepEqual(

Object.keys(new Countdown()),

[]);

How exactly that works is explained in the chapter on WeakMaps.
This technique offers us considerable protection from outside access and there can’t be any

378 31 Classes [ES6]

name clashes. But it is also more complicated to use.

We control the visibility of the pseudo-property _superProp by controlling who has access
to it – for example: If the variable exists inside a module and isn’t exported, everyone
inside the module and no one outside the module can access it. In other words: The scope
of privacy isn’t the class in this case, it’s the module. We could narrow the scope, though:

let Countdown;

{ // class scope

const _counter = new WeakMap();

const _action = new WeakMap();

Countdown = class {

// ···

}

}

This technique doesn’t really support private methods. But module-local functions that
have access to _superProp are the next best thing:

const _counter = new WeakMap();

const _action = new WeakMap();

class Countdown {

constructor(counter, action) {

_counter.set(this, counter);

_action.set(this, action);

}

dec() {

privateDec(this);

}

}

function privateDec(_this) { // (A)

let counter = _counter.get(_this);

counter--;

_counter.set(_this, counter);

if (counter === 0) {

_action.get(_this)();

}

}

Note that this becomes the explicit function parameter _this (line A).

31.5.4 Simulatingprotected visibility and friend visibility viaWeakMaps
(advanced)

As previously discussed, instance private fields are only visible inside their classes and not
even in subclasses. Thus, there is no built-in way to get:

• Protected visibility: A class and all of its subclasses can access a piece instance data.

31.6 Static members of classes 379

• Friend visibility: A class and its “friends” (designated functions, objects, or classes)
can access a piece of instance data.

In the previous subsection, we simulated “module visibility” (everyone inside a module
has access to a piece of instance data) via WeakMaps. Therefore:

• If we put a class and its subclasses into the samemodule, we get protected visibility.
• If we put a class and its friends into the same module, we get friend visibility.

The next example demonstrates protected visibility:
const _superProp = new WeakMap();

class SuperClass {

constructor() {

_superProp.set(this, 'superProp');

}

}

class SubClass extends SuperClass {

getSuperProp() {

return _superProp.get(this);

}

}

assert.equal(

new SubClass().getSuperProp(),

'superProp'

);

Subclassing via extends is explained later in this chapter.

31.6 Static members of classes
31.6.1 Static public methods and accessors
All members in the body of the following class declaration create so-called static properties
– properties of StaticClass itself.

class StaticPublicMethodsClass {

static staticMethod() {

return 'staticMethod';

}

static get staticAccessor() {

return 'staticGetter';

}

static set staticAccessor(value) {

assert.equal(value, 'staticSetter');

}

}

assert.equal(

StaticPublicMethodsClass.staticMethod(), 'staticMethod'

);

assert.equal(

380 31 Classes [ES6]

StaticPublicMethodsClass.staticAccessor, 'staticGetter'

);

StaticPublicMethodsClass.staticAccessor = 'staticSetter';

All kinds of static public methods and accessors (advanced)

const accessorKey = Symbol('accessorKey');

const syncMethodKey = Symbol('syncMethodKey');

const syncGenMethodKey = Symbol('syncGenMethodKey');

const asyncMethodKey = Symbol('asyncMethodKey');

const asyncGenMethodKey = Symbol('asyncGenMethodKey');

class StaticPublicMethodsClass2 {

// Identifier keys

static get accessor() {}

static set accessor(value) {}

static syncMethod() {}

static * syncGeneratorMethod() {}

static async asyncMethod() {}

static async * asyncGeneratorMethod() {}

// Quoted keys

static get 'an accessor'() {}

static set 'an accessor'(value) {}

static 'sync method'() {}

static * 'sync generator method'() {}

static async 'async method'() {}

static async * 'async generator method'() {}

// Computed keys

static get [accessorKey]() {}

static set [accessorKey](value) {}

static [syncMethodKey]() {}

static * [syncGenMethodKey]() {}

static async [asyncMethodKey]() {}

static async * [asyncGenMethodKey]() {}

}

// Quoted and computed keys are accessed via square brackets:

StaticPublicMethodsClass2['sync method']();

StaticPublicMethodsClass2[syncMethodKey]();

Quoted and computed keys can also be used in object literals:

• “Quoted keys in object literals” (§30.7.1)
• “Computed keys in object literals” (§30.7.2)

More information on accessors (definedvia getters and/or setters), generators, asyncmeth-
ods, and async generator methods:

31.6 Static members of classes 381

• “Object literals: accessors” (§30.3.6)
• “Synchronous generators”
• “Async functions”
• “Asynchronous generators”

31.6.2 Static public fields [ES2022]

The following code demonstrates static public fields. StaticPublicFieldClass has three
of them:

const computedFieldKey = Symbol('computedFieldKey');

class StaticPublicFieldClass {

static identifierFieldKey = 1;

static 'quoted field key' = 2;

static [computedFieldKey] = 3;

}

assert.deepEqual(

Reflect.ownKeys(StaticPublicFieldClass),

[

'length', // number of constructor parameters

'name', // 'StaticPublicFieldClass'

'prototype',

'identifierFieldKey',

'quoted field key',

computedFieldKey,

],

);

assert.equal(StaticPublicFieldClass.identifierFieldKey, 1);

assert.equal(StaticPublicFieldClass['quoted field key'], 2);

assert.equal(StaticPublicFieldClass[computedFieldKey], 3);

31.6.3 Static private methods, accessors, and fields [ES2022]

The following class has two static private slots (line A and line B):

class StaticPrivateClass {

// Declare and initialize

static #staticPrivateField = 'hello'; // (A)

static #twice() { // (B)

const str = StaticPrivateClass.#staticPrivateField;

return str + ' ' + str;

}

static getResultOfTwice() {

return StaticPrivateClass.#twice();

}

}

382 31 Classes [ES6]

assert.deepEqual(

Reflect.ownKeys(StaticPrivateClass),

[

'length', // number of constructor parameters

'name', // 'StaticPublicFieldClass'

'prototype',

'getResultOfTwice',

],

);

assert.equal(

StaticPrivateClass.getResultOfTwice(),

'hello hello'

);

This is a complete list of all kinds of static private slots:
class MyClass {

static #staticPrivateMethod() {}

static * #staticPrivateGeneratorMethod() {}

static async #staticPrivateAsyncMethod() {}

static async * #staticPrivateAsyncGeneratorMethod() {}

static get #staticPrivateAccessor() {}

static set #staticPrivateAccessor(value) {}

}

31.6.4 Static initialization blocks in classes [ES2022]

To set up instance data via classes, we have two constructs:
• Fields, to create and optionally initialize instance data
• Constructors, blocks of code that are executed every time a new instance is created

For static data, we have:
• Static fields
• Static blocks that are executed when a class is created

The following code demonstrates static blocks (line A):
class Translator {

static translations = {

yes: 'ja',

no: 'nein',

maybe: 'vielleicht',

};

static englishWords = [];

static germanWords = [];

static { // (A)

for (const [english, german] of Object.entries(this.translations)) {

31.6 Static members of classes 383

this.englishWords.push(english);

this.germanWords.push(german);

}

}

}

We could also execute the code inside the static block after the class (at the top level).
However, using a static block has two benefits:

• All class-related code is inside the class.
• The code in a static block has access to private slots.

Rules for static initialization blocks
The rules for how static initialization blocks work, are relatively simple:

• There can be more than one static block per class.
• The execution of static blocks is interleaved with the execution of static field initial-

izers.
• The static members of a superclass are executed before the static members of a sub-

class.
The following code demonstrates these rules:

class SuperClass {

static superField1 = console.log('superField1');

static {

assert.equal(this, SuperClass);

console.log('static block 1 SuperClass');

}

static superField2 = console.log('superField2');

static {

console.log('static block 2 SuperClass');

}

}

class SubClass extends SuperClass {

static subField1 = console.log('subField1');

static {

assert.equal(this, SubClass);

console.log('static block 1 SubClass');

}

static subField2 = console.log('subField2');

static {

console.log('static block 2 SubClass');

}

}

Output:
superField1

static block 1 SuperClass

384 31 Classes [ES6]

superField2

static block 2 SuperClass

subField1

static block 1 SubClass

subField2

static block 2 SubClass

Subclassing via extends is explained later in this chapter.

31.6.5 Pitfall: Using this to access static private fields
In static public members, we can access static public slots via this. Alas, we should not
use it to access static private slots.

this and static public fields
Consider the following code:

class SuperClass {

static publicData = 1;

static getPublicViaThis() {

return this.publicData;

}

}

class SubClass extends SuperClass {

}

Subclassing via extends is explained later in this chapter.
Static public fields are properties. If we make the method call

assert.equal(SuperClass.getPublicViaThis(), 1);

then this points to SuperClass and everything works as expected. We can also invoke
.getPublicViaThis() via the subclass:

assert.equal(SubClass.getPublicViaThis(), 1);

SubClass inherits .getPublicViaThis() from its prototype SuperClass. this points to Sub-
Class and things continue to work, because SubClass also inherits the property .public-

Data.
As an aside, if we assigned to this.publicData in getPublicViaThis() and invoked it via
SubClass.getPublicViaThis(), then we would create a new own poperty of SubClass that
(non-destructively) overrides the property inherited from SuperClass.

this and static private fields
Consider the following code:

class SuperClass {

static #privateData = 2;

static getPrivateDataViaThis() {

31.6 Static members of classes 385

return this.#privateData;

}

static getPrivateDataViaClassName() {

return SuperClass.#privateData;

}

}

class SubClass extends SuperClass {

}

Invoking .getPrivateDataViaThis() via SuperClassworks, because this points to Super-
Class:

assert.equal(SuperClass.getPrivateDataViaThis(), 2);

However, invoking .getPrivateDataViaThis() via SubClass does not work, because this
now points to SubClass and SubClass has no static private field .#privateData (private
slots in prototype chains are not inherited):

assert.throws(

() => SubClass.getPrivateDataViaThis(),

{

name: 'TypeError',

message: 'Cannot read private member #privateData from'

+ ' an object whose class did not declare it',

}

);

The workaround is to accesss .#privateData directly, via SuperClass:
assert.equal(SubClass.getPrivateDataViaClassName(), 2);

With static private methods, we are facing the same issue.

31.6.6 All members (static, prototype, instance) can access all private
members

Every member inside a class can access all other members inside that class – both public
and private ones:

class DemoClass {

static #staticPrivateField = 1;

#instPrivField = 2;

static staticMethod(inst) {

// A static method can access static private fields

// and instance private fields

assert.equal(DemoClass.#staticPrivateField, 1);

assert.equal(inst.#instPrivField, 2);

}

protoMethod() {

// A prototype method can access instance private fields

386 31 Classes [ES6]

// and static private fields

assert.equal(this.#instPrivField, 2);

assert.equal(DemoClass.#staticPrivateField, 1);

}

}

In contrast, no one outside can access the private members:
// Accessing private fields outside their classes triggers

// syntax errors (before the code is even executed).

assert.throws(

() => eval('DemoClass.#staticPrivateField'),

{

name: 'SyntaxError',

message: "Private field '#staticPrivateField' must"

+ " be declared in an enclosing class",

}

);

// Accessing private fields outside their classes triggers

// syntax errors (before the code is even executed).

assert.throws(

() => eval('new DemoClass().#instPrivField'),

{

name: 'SyntaxError',

message: "Private field '#instPrivField' must"

+ " be declared in an enclosing class",

}

);

31.6.7 Static private methods and data before ES2022
The following code only works in ES2022 – due to every line that has a hash symbol (#) in
it:

class StaticClass {

static #secret = 'Rumpelstiltskin';

static #getSecretInParens() {

return `(${StaticClass.#secret})`;

}

static callStaticPrivateMethod() {

return StaticClass.#getSecretInParens();

}

}

Since private slots only exist once per class, we canmove #secret and #getSecretInParens

to the scope surrounding the class and use a module to hide them from the world outside
the module.

const secret = 'Rumpelstiltskin';

function getSecretInParens() {

return `(${secret})`;

31.6 Static members of classes 387

}

// Only the class is accessible outside the module

export class StaticClass {

static callStaticPrivateMethod() {

return getSecretInParens();

}

}

31.6.8 Static factory methods
Sometimes there are multiple ways in which a class can be instantiated. Then we can
implement static factory methods such as Point.fromPolar():

class Point {

static fromPolar(radius, angle) {

const x = radius * Math.cos(angle);

const y = radius * Math.sin(angle);

return new Point(x, y);

}

constructor(x=0, y=0) {

this.x = x;

this.y = y;

}

}

assert.deepEqual(

Point.fromPolar(13, 0.39479111969976155),

new Point(12, 5)

);

I like how descriptive static factory methods are: fromPolar describes how an instance is
created. JavaScript’s standard library also has such factory methods – for example:

• Array.from()

• Object.create()

I prefer to either have no static factory methods or only static factory methods. Things to
consider in the latter case:

• One factory method will probably directly call the constructor (but have a descrip-
tive name).

• We need to find a way to prevent the constructor being called from outside.
In the following code, we use a secret token (line A) to prevent the constructor being called
from outside the current module.

// Only accessible inside the current module

const secretToken = Symbol('secretToken'); // (A)

export class Point {

static create(x=0, y=0) {

388 31 Classes [ES6]

return new Point(secretToken, x, y);

}

static fromPolar(radius, angle) {

const x = radius * Math.cos(angle);

const y = radius * Math.sin(angle);

return new Point(secretToken, x, y);

}

constructor(token, x, y) {

if (token !== secretToken) {

throw new TypeError('Must use static factory method');

}

this.x = x;

this.y = y;

}

}

Point.create(3, 4); // OK

assert.throws(

() => new Point(3, 4),

TypeError

);

31.7 Subclassing
Classes can also extend existing classes. For example, the following class Employee extends
Person:

class Person {

#firstName;

constructor(firstName) {

this.#firstName = firstName;

}

describe() {

return `Person named ${this.#firstName}`;

}

static extractNames(persons) {

return persons.map(person => person.#firstName);

}

}

class Employee extends Person {

constructor(firstName, title) {

super(firstName);

this.title = title;

}

describe() {

return super.describe() +

` (${this.title})`;

}

31.7 Subclassing 389

}

const jane = new Employee('Jane', 'CTO');

assert.equal(

jane.title,

'CTO'

);

assert.equal(

jane.describe(),

'Person named Jane (CTO)'

);

Terminology related to extending:

• Another word for extending is subclassing.
• Person is the superclass of Employee.
• Employee is the subclass of Person.
• A base class is a class that has no superclasses.
• A derived class is a class that has a superclass.

Inside the .constructor() of a derived class, we must call the super-constructor via su-

per() before we can access this. Why is that?

Let’s consider a chain of classes:

• Base class A
• Class B extends A.
• Class C extends B.

If we invoke new C(), C’s constructor super-calls B’s constructor which super-calls A’s con-
structor. Instances are always created in base classes, before the constructors of subclasses
add their slots. Therefore, the instance doesn’t exist before we call super() and we can’t
access it via this, yet.

Note that static public slots are inherited. For example, Employee inherits the static method
.extractNames():

> 'extractNames' in Employee

true

Exercise: Subclassing
exercises/classes/color_point_class_test.mjs

31.7.1 The internals of subclassing (advanced)
The classes Person and Employee from the previous section are made up of several objects
(figure 31.4). One key insight for understanding how these objects are related is that there
are two prototype chains:

• The instance prototype chain, on the right.

390 31 Classes [ES6]

Person Person.prototype

Employee Employee.prototype

jane

__proto__

__proto__

prototype

prototype

Object.prototype

__proto__

__proto__

Function.prototype

__proto__

Figure 31.4: These are the objects that make up class Person and its subclass, Employee.
The left column is about classes. The right column is about the Employee instance jane and
its prototype chain.

• The class prototype chain, on the left.

The instance prototype chain (right column)

The instance prototype chain starts with jane and continues with Employee.prototype and
Person.prototype. In principle, the prototype chain ends at this point, butwe get onemore
object: Object.prototype. This prototype provides services to virtually all objects, which
is why it is included here, too:

> Object.getPrototypeOf(Person.prototype) === Object.prototype

true

The class prototype chain (left column)

In the class prototype chain, Employee comes first, Person next. Afterward, the chain con-
tinueswith Function.prototype, which is only there because Person is a function and func-
tions need the services of Function.prototype.

> Object.getPrototypeOf(Person) === Function.prototype

true

31.7.2 instanceof and subclassing (advanced)
We have not yet learned how instanceof really works. How does instanceof determine
if a value x is an instance of a class C (it can be a direct instance of C or a direct instance of a
subclass of C)? It checks if C.prototype is in the prototype chain of x. That is, the following
two expressions are equivalent:

x instanceof C

C.prototype.isPrototypeOf(x)

31.7 Subclassing 391

If we go back to figure 31.4, we can confirm that the prototype chain does lead us to the
following correct answers:

> jane instanceof Employee

true

> jane instanceof Person

true

> jane instanceof Object

true

Note that instanceof always returns false if its self-hand side is a primitive value:

> 'abc' instanceof String

false

> 123 instanceof Number

false

31.7.3 Not all objects are instances of Object (advanced)
An object (a non-primitive value) is only an instance of Object if Object.prototype is in
its prototype chain (see previous subsection). Virtually all objects are instances of Object
– for example:

assert.equal(

{a: 1} instanceof Object, true

);

assert.equal(

['a'] instanceof Object, true

);

assert.equal(

/abc/g instanceof Object, true

);

assert.equal(

new Map() instanceof Object, true

);

class C {}

assert.equal(

new C() instanceof Object, true

);

In the next example, obj1 and obj2 are both objects (line A and line C), but they are not
instances of Object (line B and line D): Object.prototype is not in their prototype chains
because they don’t have any prototypes.

const obj1 = {__proto__: null};

assert.equal(

typeof obj1, 'object' // (A)

);

assert.equal(

obj1 instanceof Object, false // (B)

392 31 Classes [ES6]

);

const obj2 = Object.create(null);

assert.equal(

typeof obj2, 'object' // (C)

);

assert.equal(

obj2 instanceof Object, false // (D)

);

Object.prototype is the object that ends most prototype chains. Its prototype is null,
which means it isn’t an instance of Object either:

> typeof Object.prototype

'object'

> Object.getPrototypeOf(Object.prototype)

null

> Object.prototype instanceof Object

false

31.7.4 Prototype chains of built-in objects (advanced)
Next, we’ll use our knowledge of subclassing to understand the prototype chains of a few
built-in objects. The following tool function p() helps us with our explorations.

const p = Object.getPrototypeOf.bind(Object);

We extracted method .getPrototypeOf() of Object and assigned it to p.

The prototype chain of {}

Let’s start by examining plain objects:

> p({}) === Object.prototype

true

> p(p({})) === null

true

Object.prototype

{}

__proto__

null

__proto__

Figure 31.5: The prototype chain of an object created via an object literal starts with that
object, continues with Object.prototype, and ends with null.

31.7 Subclassing 393

Figure 31.5 shows a diagram for this prototype chain. We can see that {} really is an in-
stance of Object – Object.prototype is in its prototype chain.

The prototype chain of []

What does the prototype chain of an Array look like?

> p([]) === Array.prototype

true

> p(p([])) === Object.prototype

true

> p(p(p([]))) === null

true

Object.prototype

Array.prototype

[]

__proto__

__proto__

null

__proto__

Figure 31.6: The prototype chain of an Array has these members: the Array instance, Ar-
ray.prototype, Object.prototype, null.

This prototype chain (visualized in figure 31.6) tells us that an Array object is an instance
of Array and of Object.

The prototype chain of function () {}

Lastly, the prototype chain of an ordinary function tells us that all functions are objects:

> p(function () {}) === Function.prototype

true

> p(p(function () {})) === Object.prototype

true

The prototype chains of built-in classes

The prototype of a base class is Function.prototype which means that it is a function (an
instance of Function):

394 31 Classes [ES6]

class A {}

assert.equal(

Object.getPrototypeOf(A),

Function.prototype

);

assert.equal(

Object.getPrototypeOf(class {}),

Function.prototype

);

The prototype of a derived class is its superclass:
class B extends A {}

assert.equal(

Object.getPrototypeOf(B),

A

);

assert.equal(

Object.getPrototypeOf(class extends Object {}),

Object

);

Interestingly, Object, Array, and Function are all base classes:
> Object.getPrototypeOf(Object) === Function.prototype

true

> Object.getPrototypeOf(Array) === Function.prototype

true

> Object.getPrototypeOf(Function) === Function.prototype

true

However, as we have seen, even the instances of base classes have Object.prototype in
their prototype chains because it provides services that all objects need.

Why are Array and Function base classes?
Base classes are where instances are actually created. Both Array and Function

need to create their own instances because they have so-called “internal slots”
which can’t be added later to instances created by Object.

31.7.5 Mixin classes (advanced)
JavaScript’s class system only supports single inheritance. That is, each class can have at
most one superclass. One way around this limitation is via a technique calledmixin classes
(short: mixins).
The idea is as follows: Let’s say we want a class C to inherit from two superclasses S1 and
S2. That would be multiple inheritance, which JavaScript doesn’t support.

31.7 Subclassing 395

Our workaround is to turn S1 and S2 into mixins, factories for subclasses:

const S1 = (Sup) => class extends Sup { /*···*/ };

const S2 = (Sup) => class extends Sup { /*···*/ };

Each of these two functions returns a class that extends a given superclass Sup. We create
class C as follows:

class C extends S2(S1(Object)) {

/*···*/

}

We now have a class C that extends the class returned by S2() which extends the class
returned by S1() which extends Object.

Example: a mixin for name management

We implement a mixin Named adds a property .name and a method .toString() to its su-
perclass:

const Named = (Sup) => class extends Sup {

name = '(Unnamed)';

toString() {

const className = this.constructor.name;

return `${className} named ${this.name}`;

}

};

We use this mixin to implement a class City that has a name:

class City extends Named(Object) {

constructor(name) {

super();

this.name = name;

}

}

The following code confirms that the mixin works:

const paris = new City('Paris');

assert.equal(

paris.name, 'Paris'

);

assert.equal(

paris.toString(), 'City named Paris'

);

The benefits of mixins

Mixins free us from the constraints of single inheritance:

• The same class can extend a single superclass and zero or more mixins.
• The same mixin can be used by multiple classes.

396 31 Classes [ES6]

31.8 The methods and accessors of Object.prototype (ad-
vanced)

31.8.1 Quick reference: Object.prototype.*
As we have seen in “Not all objects are instances of Object” (§31.7.3), almost all objects are
instances of Object. This class provides useful functionality to its instances:

• Configuring how objects are converted to primitive values (e.g. by the + operator):
The following methods have default implementations but are often overridden in
subclasses or instances.

– .toString(): Configures how an object is converted to a string.
– .toLocaleString(): A version of .toString() that can be configured in vari-
ous ways via arguments (language, region, etc.).

– .valueOf(): Configures how an object is converted to a non-string primitive
value (often a number).

• Useful methods (with pitfalls – see next subsection):
– .isPrototypeOf(): Is the receiver in the prototype chain of a given object?
– .propertyIsEnumerable(): Does the receiver have an enumerable own prop-
erty with the given key?

• Avoid these features (there are better alternatives):
– .__proto__: Get and set the prototype of the receiver.

* Using this accessor is not recommended. Alternatives:
· Object.getPrototypeOf()

· Object.setPrototypeOf()

– .hasOwnProperty(): Does the receiver have an own propertywith a given key?
* Using this method is not recommended. Alternative in ES2022 and later:

Object.hasOwn().
Before we take a closer look at each of these features, we’ll learn about an important pit-
fall (and how to work around it): We can’t use the features of Object.prototype with all
objects.

31.8.2 Using Object.prototypemethods safely
Invoking one of the methods of Object.prototype on an arbitrary object doesn’t always
work. To illustratewhy, we usemethod Object.prototype.hasOwnProperty, which returns
true if an object has an own property with a given key:

> {ownProp: true}.hasOwnProperty('ownProp')

true

> {ownProp: true}.hasOwnProperty('abc')

false

Invoking .hasOwnProperty() on an arbitrary object can fail in two ways. On one hand,
this method isn’t available if an object is not an instance of Object (see “Not all objects are
instances of Object” (§31.7.3)):

const obj = Object.create(null);

assert.equal(obj instanceof Object, false);

assert.throws(

31.8 The methods and accessors of Object.prototype (advanced) 397

() => obj.hasOwnProperty('prop'),

{

name: 'TypeError',

message: 'obj.hasOwnProperty is not a function',

}

);

On the other hand, we can’t use .hasOwnProperty() if an object overrides it with an own
property (line A):

const obj = {

hasOwnProperty: 'yes' // (A)

};

assert.throws(

() => obj.hasOwnProperty('prop'),

{

name: 'TypeError',

message: 'obj.hasOwnProperty is not a function',

}

);

There is, however, a safe way to use .hasOwnProperty():
function hasOwnProp(obj, propName) {

return Object.prototype.hasOwnProperty.call(obj, propName); // (A)

}

assert.equal(

hasOwnProp(Object.create(null), 'prop'), false

);

assert.equal(

hasOwnProp({hasOwnProperty: 'yes'}, 'prop'), false

);

assert.equal(

hasOwnProp({hasOwnProperty: 'yes'}, 'hasOwnProperty'), true

);

The method invocation in line A is explained in “Dispatched vs. direct method calls”
(§31.3.5).
We can also use .bind() to implement hasOwnProp():

const hasOwnProp = Function.prototype.call

.bind(Object.prototype.hasOwnProperty);

How does this code work? In line A in the example before the code above, we used the
functionmethod .call() to turn the function hasOwnPropertywith one implicit parameter
(this) and one explicit parameter (propName) into a function that has two explicit parame-
ters (obj and propName).
In other words – method .call() invokes the function f referred to by its receiver (this):

• The first (explicit) parameter of .call() becomes the this of f.
• The second (explicit) parameter of .call() becomes the first argument of f.

398 31 Classes [ES6]

• Etc.

Weuse .bind() to create a version .call()whose this always refers to Object.prototype.hasOwnProperty.
That new version invokes .hasOwnProperty() in the same manner as we did in line A –
which is what we want.

Is it never OK to use Object.prototypemethods via dynamic dispatch?
In some cases we can be lazy and call Object.prototype methods like normal
methods: If we know the receivers and they are fixed-layout objects.
If, on the other hand, we don’t know their receivers and/or they are dictionary
objects, then we need to take precautions.

31.8.3 Object.prototype.toString()

By overriding .toString() (in a subclass or an instance), we can configure how objects are
converted to strings:

> String({toString() { return 'Hello!' }})

'Hello!'

> String({})

'[object Object]'

For converting objects to strings it’s better to use String() because that also works with
undefined and null:

> undefined.toString()

TypeError: Cannot read properties of undefined (reading 'toString')

> null.toString()

TypeError: Cannot read properties of null (reading 'toString')

> String(undefined)

'undefined'

> String(null)

'null'

31.8.4 Object.prototype.toLocaleString()

.toLocaleString() is a version of .toString() that can be configured via a locale and often
additional options. Any class or instance can implement this method. In the standard
library, the following classes do:

• Array.prototype.toLocaleString()

• Number.prototype.toLocaleString()

• Date.prototype.toLocaleString()

• TypedArray.prototype.toLocaleString()

• BigInt.prototype.toLocaleString()

As an example, this is how numbers with decimal fractions are converted to string differ-
ently, depending on locale ('fr' is French, 'en' is English):

31.8 The methods and accessors of Object.prototype (advanced) 399

> 123.45.toLocaleString('fr')

'123,45'

> 123.45.toLocaleString('en')

'123.45'

31.8.5 Object.prototype.valueOf()

By overriding .valueOf() (in a subclass or an instance), we can configure how objects are
converted to non-string values (often numbers):

> Number({valueOf() { return 123 }})

123

> Number({})

NaN

31.8.6 Object.prototype.isPrototypeOf()

proto.isPrototypeOf(obj) returns true if proto is in the prototype chain of obj and false

otherwise.

const a = {};

const b = {__proto__: a};

const c = {__proto__: b};

assert.equal(a.isPrototypeOf(b), true);

assert.equal(a.isPrototypeOf(c), true);

assert.equal(a.isPrototypeOf(a), false);

assert.equal(c.isPrototypeOf(a), false);

This is how to use this method safely (for details see “Using Object.prototype methods
safely” (§31.8.2)):

const obj = {

// Overrides Object.prototype.isPrototypeOf

isPrototypeOf: true,

};

// Doesn’t work in this case:

assert.throws(

() => obj.isPrototypeOf(Object.prototype),

{

name: 'TypeError',

message: 'obj.isPrototypeOf is not a function',

}

);

// Safe way of using .isPrototypeOf():

assert.equal(

Object.prototype.isPrototypeOf.call(obj, Object.prototype), false

);

400 31 Classes [ES6]

31.8.7 Object.prototype.propertyIsEnumerable()

obj.propertyIsEnumerable(propKey) returns true if obj has an own enumerable property
whose key is propKey and false otherwise.

const proto = {

enumerableProtoProp: true,

};

const obj = {

__proto__: proto,

enumerableObjProp: true,

nonEnumObjProp: true,

};

Object.defineProperty(

obj, 'nonEnumObjProp',

{

enumerable: false,

}

);

assert.equal(

obj.propertyIsEnumerable('enumerableProtoProp'),

false // not an own property

);

assert.equal(

obj.propertyIsEnumerable('enumerableObjProp'),

true

);

assert.equal(

obj.propertyIsEnumerable('nonEnumObjProp'),

false // not enumerable

);

assert.equal(

obj.propertyIsEnumerable('unknownProp'),

false // not a property

);

This is how to use this method safely (for details see “Using Object.prototype methods
safely” (§31.8.2)):

const obj = {

// Overrides Object.prototype.propertyIsEnumerable

propertyIsEnumerable: true,

enumerableProp: 'yes',

};

// Doesn’t work in this case:

assert.throws(

() => obj.propertyIsEnumerable('enumerableProp'),

{

name: 'TypeError',

31.8 The methods and accessors of Object.prototype (advanced) 401

message: 'obj.propertyIsEnumerable is not a function',

}

);

// Safe way of using .propertyIsEnumerable():

assert.equal(

Object.prototype.propertyIsEnumerable.call(obj, 'enumerableProp'),

true

);

Another safe alternative is to use property descriptors:

assert.deepEqual(

Object.getOwnPropertyDescriptor(obj, 'enumerableProp'),

{

value: 'yes',

writable: true,

enumerable: true,

configurable: true,

}

);

31.8.8 Object.prototype.__proto__ (accessor)
Property __proto__ exists in two versions:

• An accessor that all instances of Object have.
• A property of object literals that sets the prototypes of the objects created by them.

I recommend to avoid the former feature:

• As explained in “Using Object.prototypemethods safely” (§31.8.2), it doesn’t work
with all objects.

• The ECMAScript specification has deprecated it and calls it “optional” and “legacy”.

In contrast, __proto__ in object literals always works and is not deprecated.

Read on if you are interested in how the accessor __proto__ works.

__proto__ is an accessor of Object.prototype that is inherited by all instances of Object.
Implementing it via a class would look like this:

class Object {

get __proto__() {

return Object.getPrototypeOf(this);

}

set __proto__(other) {

Object.setPrototypeOf(this, other);

}

// ···

}

Since __proto__ is inherited from Object.prototype, we can remove this feature by cre-
ating an object that doesn’t have Object.prototype in its prototype chain (see “Not all

https://tc39.es/ecma262/#sec-object.prototype.__proto__

402 31 Classes [ES6]

objects are instances of Object” (§31.7.3)):

> '__proto__' in {}

true

> '__proto__' in Object.create(null)

false

31.8.9 Object.prototype.hasOwnProperty()

Better alternative to .hasOwnProperty(): Object.hasOwn() [ES2022]

See “Object.hasOwn(): Is a given property own (non-inherited)?” (§30.10.4).

obj.hasOwnProperty(propKey) returns true if obj has an own (non-inherited) property
whose key is propKey and false otherwise.

const obj = { ownProp: true };

assert.equal(

obj.hasOwnProperty('ownProp'), true // own

);

assert.equal(

'toString' in obj, true // inherited

);

assert.equal(

obj.hasOwnProperty('toString'), false

);

This is how to use this method safely (for details see “Using Object.prototype methods
safely” (§31.8.2)):

const obj = {

// Overrides Object.prototype.hasOwnProperty

hasOwnProperty: true,

};

// Doesn’t work in this case:

assert.throws(

() => obj.hasOwnProperty('anyPropKey'),

{

name: 'TypeError',

message: 'obj.hasOwnProperty is not a function',

}

);

// Safe way of using .hasOwnProperty():

assert.equal(

Object.prototype.hasOwnProperty.call(obj, 'anyPropKey'), false

);

31.9 FAQ: classes 403

31.9 FAQ: classes
31.9.1 Why are they called “instance private fields” in this book and not

“private instance fields”?
That is done to highlight how different properties (public slots) and private slots are: By
changing the order of the adjectives, the words “public” and “field” and the words “pri-
vate” and “field” are always mentioned together.

31.9.2 Why the identifier prefix #? Why not declare private fields via
private?

Could private fields be declared via private and use normal identifiers? Let’s examine
what would happen if that were possible:

class MyClass {

private value; // (A)

compare(other) {

return this.value === other.value;

}

}

Whenever an expression such as other.value appears in the body of MyClass, JavaScript
has to decide:

• Is .value a property?
• Is .value a private field?

At compile time, JavaScript doesn’t know if the declaration in line A applies to other (due
to it being an instance of MyClass) or not. That leaves two options for making the decision:

1. .value is always interpreted as a private field.
2. JavaScript decides at runtime:

• If other is an instance of MyClass, then .value is interpreted as a private field.
• Otherwise .value is interpreted as a property.

Both options have downsides:
• With option (1), we can’t use .value as a property, anymore – for any object.
• With option (2), performance is affected negatively.

That’s why the name prefix # was introduced. The decision is now easy: If we use #, we
want to access a private field. If we don’t, we want to access a property.
private works for statically typed languages (such as TypeScript) because they know at
compile time if other is an instance of MyClass and can then treat .value as private or
public.

404 31 Classes [ES6]

Chapter 32

Where are the remaining chapters?

You are reading a preview version of this book. You can either read all chapters online or
you can buy the full version.

405

https://exploringjs.com/js/book/
https://exploringjs.com/js/#buy

	I Background
	Before you buy the book
	About the content
	What’s in this book?
	What is not covered by this book?

	Previewing and buying this book
	How can I preview the book and its bundled material?
	How can I buy a digital version of this book?
	How can I buy the print version of this book?

	About the author
	Acknowledgements

	FAQ: book and supplementary material
	How to read this book
	In which order should I read the content in this book?
	Why are some chapters and sections marked with “(advanced)”?

	I own a digital version
	How do I submit feedback and corrections?
	How do I get updates for the downloads I bought at Payhip?
	How do I upgrade from a smaller package to a larger one or an older package to a newer one?

	I own the print version (“JavaScript for impatient programmers”)
	Can I get a discount for a digital version?
	How do I submit feedback and corrections?

	Notations and conventions
	What is a type signature? Why am I sometimes seeing static types in this book?
	What do the notes with icons mean?

	Why JavaScript?
	The cons of JavaScript
	The pros of JavaScript
	Community
	Practically useful
	Language

	Pro and con of JavaScript: innovation

	The nature of JavaScript
	JavaScript’s influences
	The nature of JavaScript
	JavaScript often fails silently

	Tips for getting started with JavaScript

	History and evolution of JavaScript
	How JavaScript was created
	Standardization: JavaScript vs. ECMAScript
	Timeline of ECMAScript versions
	Evolving JavaScript: TC39 (Ecma Technical Committee 39)
	The TC39 process for proposed ECMAScript features
	Tip: Think in individual features and stages, not ECMAScript versions
	The details of the TC39 process (advanced)

	How to not break the web while changing JavaScript
	FAQ: ECMAScript and TC39
	Where can I look up which features were added in a given ECMAScript version?
	How is [my favorite proposed JavaScript feature] doing?
	Why does stage 2.7 have such a peculiar number?

	New JavaScript features
	New in ECMAScript 2024
	New in ECMAScript 2023
	New in ECMAScript 2022
	New in ECMAScript 2021
	New in ECMAScript 2020
	New in ECMAScript 2019
	New in ECMAScript 2018
	New in ECMAScript 2017
	New in ECMAScript 2016
	Source of this chapter

	FAQ: JavaScript
	What are good references for JavaScript?
	How do I find out what JavaScript features are supported where?
	Where can I look up what features are planned for JavaScript?
	Why does JavaScript fail silently so often?
	Why can’t we clean up JavaScript, by removing quirks and outdated features?
	How can I quickly try out a piece of JavaScript code?

	II First steps
	Using JavaScript: the big picture
	What are you learning in this book?
	The structure of browsers and Node.js
	JavaScript references
	Further reading

	Syntax
	An overview of JavaScript’s syntax
	Basic constructs
	Modules
	Classes
	Exception handling
	Legal variable and property names
	Casing styles
	Capitalization of names
	More naming conventions
	Where to put semicolons?

	(Advanced)
	Hashbang lines (Unix shell scripts)
	Identifiers
	Valid identifiers (variable names, etc.)
	Reserved words

	Statement vs. expression
	Statements
	Expressions
	What is allowed where?

	Ambiguous syntax
	Same syntax: function declaration and function expression
	Same syntax: object literal and block
	Disambiguation

	Semicolons
	Rule of thumb for semicolons
	Semicolons: control statements

	Automatic semicolon insertion (ASI)
	ASI triggered unexpectedly
	ASI unexpectedly not triggered

	Semicolons: best practices
	Strict mode vs. sloppy mode
	Switching on strict mode
	Improvements in strict mode

	Consoles: interactive JavaScript command lines
	Trying out JavaScript code
	Browser consoles
	The Node.js REPL
	Other options

	The console.* API: printing data and more
	Printing values: console.log() (stdout)
	Printing error information: console.error() (stderr)
	Printing nested objects via JSON.stringify()

	Assertion API
	Assertions in software development
	How assertions are used in this book
	Documenting results in code examples via assertions
	Implementing test-driven exercises via assertions

	Normal comparison vs. deep comparison
	Quick reference: module assert
	Normal equality: assert.equal()
	Deep equality: assert.deepEqual()
	Expecting exceptions: assert.throws()
	Always fail: assert.fail()

	Getting started with exercises
	Exercises
	Installing the exercises
	Running exercises

	Unit tests in JavaScript
	A typical test
	Asynchronous tests in Mocha

	III Variables and values
	Variables and assignment
	let
	const
	const and immutability
	const and loops

	Deciding between const and let
	The scope of a variable
	Shadowing variables

	(Advanced)
	Terminology: static vs. dynamic
	Static phenomenon: scopes of variables
	Dynamic phenomenon: function calls

	Global variables and the global object
	globalThis [ES2020]

	Declarations: scope and activation
	const and let: temporal dead zone
	Function declarations and early activation
	Class declarations are not activated early
	var: hoisting (partial early activation)

	Closures
	Bound variables vs. free variables
	What is a closure?
	Example: A factory for incrementors
	Use cases for closures

	Values
	What’s a type?
	JavaScript’s type hierarchy
	The types of the language specification
	Primitive values vs. objects
	Primitive values (short: primitives)
	Objects

	The operators typeof and instanceof: what’s the type of a value?
	typeof
	instanceof

	Classes and constructor functions
	Constructor functions associated with primitive types

	Converting between types
	Explicit conversion between types
	Coercion (automatic conversion between types)

	Operators
	Making sense of operators
	Operators coerce their operands to appropriate types
	Most operators only work with primitive values

	The plus operator (+)
	Assignment operators
	The plain assignment operator
	Compound assignment operators

	Equality: == vs. ===
	Loose equality (== and !=)
	Strict equality (=== and !==)
	Recommendation: always use strict equality
	Even stricter than ===: Object.is()

	Ordering operators
	Various other operators
	Comma operator
	void operator

	IV Primitive values
	The non-values undefined and null
	undefined vs. null
	Occurrences of undefined and null
	Occurrences of undefined
	Occurrences of null

	Checking for undefined or null
	The nullish coalescing operator (??) for default values [ES2020]
	Example: counting matches
	Example: specifying a default value for a property
	Using destructuring for default values
	Legacy approach: using logical Or (||) for default values
	The nullish coalescing assignment operator (??=) [ES2021]

	undefined and null don’t have properties
	The history of undefined and null

	Booleans
	Converting to boolean
	Falsy and truthy values
	Checking for truthiness or falsiness

	Truthiness-based existence checks
	Pitfall: truthiness-based existence checks are imprecise
	Use case: was a parameter provided?
	Use case: does a property exist?

	Conditional operator (? :)
	Binary logical operators: And (x && y), Or (x || y)
	Value-preservation
	Short-circuiting
	Logical And (x && y)
	Logical Or (||)

	Logical Not (!)

	Numbers
	Numbers are used for both floating point numbers and integers
	Number literals
	Integer literals
	Floating point literals
	Syntactic pitfall: properties of integer literals
	Underscores (_) as separators in number literals [ES2021]

	Arithmetic operators
	Binary arithmetic operators
	Unary plus (+) and negation (-)
	Incrementing (++) and decrementing (–)

	Converting to number
	Error values
	Error value: NaN
	Error value: Infinity

	The precision of numbers: careful with decimal fractions
	(Advanced)
	Background: floating point precision
	A simplified representation of floating point numbers

	Integer numbers in JavaScript
	Converting to integer
	Ranges of integer numbers in JavaScript
	Safe integers

	Bitwise operators
	Internally, bitwise operators work with 32-bit integers
	Bitwise Not
	Binary bitwise operators
	Bitwise shift operators
	b32(): displaying unsigned 32-bit integers in binary notation

	Quick reference: numbers
	Global functions for numbers
	Number.*: data properties
	Number.*: methods
	Number.prototype.*
	Sources

	Math
	Data properties
	Exponents, roots, logarithms
	Rounding
	Trigonometric Functions
	Various other functions
	Sources

	Bigints – arbitrary-precision integers [ES2020] (advanced)
	Why bigints?
	Bigints
	Going beyond 53 bits for integers
	Example: using bigints

	Bigint literals
	Underscores (_) as separators in bigint literals [ES2021]

	Reusing number operators for bigints (overloading)
	Arithmetic operators
	Ordering operators
	Bitwise operators
	Loose equality (==) and inequality (!=)
	Strict equality (===) and inequality (!==)

	The wrapper constructor BigInt
	BigInt as a constructor and as a function
	BigInt.prototype.* methods
	BigInt.* methods
	Casting and 64-bit integers

	Coercing bigints to other primitive types
	TypedArrays and DataView operations for 64-bit values
	Bigints and JSON
	Stringifying bigints
	Parsing bigints

	FAQ: Bigints
	How do I decide when to use numbers and when to use bigints?
	Why not just increase the precision of numbers in the same manner as is done for bigints?

	Unicode – a brief introduction (advanced)
	Code points vs. code units
	Code points
	Encoding Unicode code points: UTF-32, UTF-16, UTF-8

	Encodings used in web development: UTF-16 and UTF-8
	Source code internally: UTF-16
	Strings: UTF-16
	Source code in files: UTF-8

	Grapheme clusters – the real characters
	Grapheme clusters vs. glyphs

	Strings
	Cheat sheet: strings
	Working with strings
	JavaScript characters vs. code points vs. grapheme clusters
	String methods

	Plain string literals
	Escaping

	Accessing JavaScript characters
	String concatenation
	String concatenation via +
	Concatenating via Arrays (.push() and .join())

	Converting to string
	Stringifying objects
	Customizing the stringification of objects
	An alternate way of stringifying values

	Comparing strings
	Atoms of text: code points, JavaScript characters, grapheme clusters
	Working with code points
	Working with code units (char codes)
	ASCII escapes
	Caveat: grapheme clusters

	Quick reference: Strings
	Converting to string
	Numeric values of text atoms
	String.prototype.*: finding and matching
	String.prototype.*: extracting
	String.prototype.*: combining
	String.prototype.*: transforming
	Sources of this quick reference

	Using template literals and tagged templates [ES6]
	Disambiguation: “template”
	Template literals
	Tagged templates
	Cooked vs. raw template strings (advanced)

	Examples of tagged templates (as provided via libraries)
	Tag function library: lit-html
	Tag function library: regex
	Tag function library: graphql-tag

	Raw string literals
	(Advanced)
	Multiline template literals and indentation
	Fix: template tag for dedenting
	Fix: .trim()

	Simple templating via template literals
	A more complex example
	Simple HTML-escaping

	Symbols [ES6]
	Symbols are primitives that are also like objects
	Symbols are primitive values
	Symbols are also like objects

	The descriptions of symbols
	Use cases for symbols
	Symbols as values for constants
	Symbols as unique property keys

	Publicly known symbols
	Converting symbols

	V Control flow and data flow
	Control flow statements
	Controlling loops: break and continue
	break
	break plus label: leaving any labeled statement
	continue

	Conditions of control flow statements
	if statements [ES1]
	The syntax of if statements

	switch statements [ES3]
	A first example of a switch statement
	Don’t forget to return or break!
	Empty case clauses
	Checking for illegal values via a default clause

	while loops [ES1]
	Examples of while loops

	do-while loops [ES3]
	for loops [ES1]
	Examples of for loops

	for-of loops [ES6]
	const: for-of vs. for
	Iterating over iterables
	Iterating over [index, element] pairs of Arrays

	for-await-of loops [ES2018]
	for-in loops (avoid) [ES1]
	Recomendations for looping

	Exception handling
	Motivation: throwing and catching exceptions
	throw
	What values should we throw?

	The try statement
	The try block
	The catch clause
	The finally clause

	Error and its subclasses
	Class Error
	The built-in subclasses of Error
	Subclassing Error

	Chaining errors
	Why would we want to chain errors?
	Chaining errors via error.cause [ES2022]
	An alternative to .cause: a custom error class

	Callable values
	Kinds of functions
	Ordinary functions
	Named function expressions (advanced)
	Terminology: function definitions and function expressions
	Parts of a function declaration
	Roles played by ordinary functions
	Terminology: entity vs. syntax vs. role (advanced)

	Specialized functions [ES6]
	Specialized functions are still functions
	Arrow functions
	The special variable this in methods, ordinary functions and arrow functions
	Recommendation: prefer specialized functions over ordinary functions

	Summary: kinds of callable values
	Returning values from functions and methods
	Parameter handling
	Terminology: parameters vs. arguments
	Terminology: callback
	Too many or not enough arguments
	Parameter default values [ES6]
	Rest parameters [ES6]
	Named parameters
	Simulating named parameters
	Spreading (...) into function calls [ES6]

	Methods of functions: .call(), .apply(), .bind()
	The function method .call()
	The function method .apply()
	The function method .bind()

	Evaluating code dynamically: eval(), new Function() (advanced)
	eval()
	new Function()
	Recommendations

	VI Modularity
	Modules [ES6]
	Cheat sheet: modules
	Named exports, named imports, namespace imports
	Dynamic imports
	Default exports and imports
	Kinds of module specifiers

	JavaScript source code formats
	Code before built-in modules was written in ECMAScript 5

	Before we had modules, we had scripts
	Module systems created prior to ES6
	Server side: CommonJS modules
	Client side: AMD (Asynchronous Module Definition) modules
	Characteristics of JavaScript modules

	ECMAScript modules
	ES modules: syntax, semantics, loader API

	Named exports and imports
	Named exports
	Named imports
	Namespace imports
	Named exporting styles: inline versus clause (advanced)

	Default exports and imports
	The two styles of default-exporting
	The default export as a named export (advanced)

	Re-exporting
	More details on exporting and importing
	Imports are read-only views on exports
	ESM’s transparent support for cyclic imports (advanced)

	npm packages
	Packages are installed inside a directory node_modules/
	Why can npm be used to install frontend libraries?

	Naming modules
	Module specifiers
	Categories of module specifiers
	ES module specifiers in browsers
	ES module specifiers on Node.js

	import.meta – metadata for the current module [ES2020]
	import.meta.url
	import.meta.url and class URL
	import.meta.url on Node.js

	Loading modules dynamically via import() [ES2020] (advanced)
	The limitations of static import statements
	Dynamic imports via the import() operator
	Use cases for import()

	Top-level await in modules [ES2022] (advanced)
	Use cases for top-level await
	How does top-level await work under the hood?
	The pros and cons of top-level await

	Polyfills: emulating native web platform features (advanced)
	Sources of this section

	Objects
	Cheat sheet: objects
	Cheat sheet: single objects
	Cheat sheet: prototype chains

	What is an object?
	The two ways of using objects

	Fixed-layout objects
	Object literals: properties
	Object literals: property value shorthands
	Getting properties
	Setting properties
	Object literals: methods
	Object literals: accessors

	Spreading into object literals (...) [ES2018]
	Use case for spreading: copying objects
	Use case for spreading: default values for missing properties
	Use case for spreading: non-destructively changing properties
	“Destructive spreading”: Object.assign() [ES6]

	Methods and the special variable this
	Methods are properties whose values are functions
	The special variable this
	Methods and .call()
	Methods and .bind()
	this pitfall: extracting methods
	this pitfall: accidentally shadowing this
	The value of this in various contexts (advanced)

	Optional chaining for property getting and method calls [ES2020] (advanced)
	Example: optional fixed property getting
	The operators in more detail (advanced)
	Short-circuiting with optional property getting
	Optional chaining: downsides and alternatives
	Frequently asked questions

	Dictionary objects (advanced)
	Quoted keys in object literals
	Computed keys in object literals
	The in operator: is there a property with a given key?
	Deleting properties
	Enumerability
	Listing property keys via Object.keys() etc.
	Listing property values via Object.values()
	Listing property entries via Object.entries() [ES2017]
	Properties are listed deterministically
	Assembling objects via Object.fromEntries() [ES2019]
	The pitfalls of using an object as a dictionary

	Property attributes and property descriptors [ES5] (advanced)
	Protecting objects from being changed [ES5] (advanced)
	Prototype chains
	JavaScript’s operations: all properties vs. own properties
	Pitfall: only the first member of a prototype chain is mutated
	Tips for working with prototypes (advanced)
	Object.hasOwn(): Is a given property own (non-inherited)? [ES2022]
	Sharing data via prototypes

	FAQ: objects
	Why do objects preserve the insertion order of properties?

	Quick reference: Object
	Object.*: creating objects, handling prototypes
	Object.*: property attributes
	Object.*: property keys, values, entries
	Object.*: protecting objects
	Object.*: miscellaneous
	Object.prototype.*

	Quick reference: Reflect
	Reflect.* vs. Object.*

	Classes [ES6]
	Cheat sheet: classes
	The essentials of classes
	A class for persons
	Class expressions
	The instanceof operator
	Public slots (properties) vs. private slots
	Private slots in more detail [ES2022] (advanced)
	The pros and cons of classes in JavaScript
	Tips for using classes

	The internals of classes
	A class is actually two connected objects
	Classes set up the prototype chains of their instances
	.__proto__ vs. .prototype
	Person.prototype.constructor (advanced)
	Dispatched vs. direct method calls (advanced)
	Classes evolved from ordinary functions (advanced)

	Prototype members of classes
	Public prototype methods and accessors
	Private methods and accessors [ES2022]

	Instance members of classes [ES2022]
	Instance public fields
	Instance private fields
	Private instance data before ES2022 (advanced)
	Simulating protected visibility and friend visibility via WeakMaps (advanced)

	Static members of classes
	Static public methods and accessors
	Static public fields [ES2022]
	Static private methods, accessors, and fields [ES2022]
	Static initialization blocks in classes [ES2022]
	Pitfall: Using this to access static private fields
	All members (static, prototype, instance) can access all private members
	Static private methods and data before ES2022
	Static factory methods

	Subclassing
	The internals of subclassing (advanced)
	instanceof and subclassing (advanced)
	Not all objects are instances of Object (advanced)
	Prototype chains of built-in objects (advanced)
	Mixin classes (advanced)

	The methods and accessors of Object.prototype (advanced)
	Quick reference: Object.prototype.*
	Using Object.prototype methods safely
	Object.prototype.toString()
	Object.prototype.toLocaleString()
	Object.prototype.valueOf()
	Object.prototype.isPrototypeOf()
	Object.prototype.propertyIsEnumerable()
	Object.prototype.__proto__ (accessor)
	Object.prototype.hasOwnProperty()

	FAQ: classes
	Why are they called “instance private fields” in this book and not “private instance fields”?
	Why the identifier prefix #? Why not declare private fields via private?

	Where are the remaining chapters?

