
Table of contents

 	
 1 Before you buy the book

 	
 1.1 About the content

 	
 1.2 Previewing and buying this book

 	
 1.3 About the author

 	
 1.4 Acknowledgements

 	
 2 FAQ: book and supplementary material

 	
 2.1 How to read this book

 	
 2.2 I own a digital version

 	
 2.3 I own the print version (“JavaScript for impatient programmers”)

 	
 2.4 Notations and conventions

 	
 3 Why JavaScript?

 	
 3.1 The cons of JavaScript

 	
 3.2 The pros of JavaScript

 	
 3.3 Pro and con of JavaScript: innovation

 	
 4 The nature of JavaScript

 	
 4.1 JavaScript’s influences

 	
 4.2 The nature of JavaScript

 	
 4.3 Tips for getting started with JavaScript

 	
 5 History and evolution of JavaScript

 	
 5.1 How JavaScript was created

 	
 5.2 Standardization: JavaScript vs. ECMAScript

 	
 5.3 Timeline of ECMAScript versions

 	
 5.4 Evolving JavaScript: TC39 (Ecma Technical Committee 39)

 	
 5.5 The TC39 process for proposed ECMAScript features

 	
 5.6 How to not break the web while changing JavaScript

 	
 5.7 FAQ: ECMAScript and TC39

 	
 6 New JavaScript features

 	
 6.1 New in ECMAScript 2024

 	
 6.2 New in ECMAScript 2023

 	
 6.3 New in ECMAScript 2022

 	
 6.4 New in ECMAScript 2021

 	
 6.5 New in ECMAScript 2020

 	
 6.6 New in ECMAScript 2019

 	
 6.7 New in ECMAScript 2018

 	
 6.8 New in ECMAScript 2017

 	
 6.9 New in ECMAScript 2016

 	
 6.10 Source of this chapter

 	
 7 FAQ: JavaScript

 	
 7.1 What are good references for JavaScript?

 	
 7.2 How do I find out what JavaScript features are supported where?

 	
 7.3 Where can I look up what features are planned for JavaScript?

 	
 7.4 Why does JavaScript fail silently so often?

 	
 7.5 Why can’t we clean up JavaScript, by removing quirks and outdated features?

 	
 7.6 How can I quickly try out a piece of JavaScript code?

 	
 8 Using JavaScript: the big picture

 	
 8.1 What are you learning in this book?

 	
 8.2 The structure of browsers and Node.js

 	
 8.3 JavaScript references

 	
 8.4 Further reading

 	
 9 Syntax

 	
 9.1 An overview of JavaScript’s syntax

 	
 9.2 (Advanced)

 	
 9.3 Hashbang lines (Unix shell scripts)

 	
 9.4 Identifiers

 	
 9.5 Statement vs. expression

 	
 9.6 Ambiguous syntax

 	
 9.7 Semicolons

 	
 9.8 Automatic semicolon insertion (ASI)

 	
 9.9 Semicolons: best practices

 	
 9.10 Strict mode vs. sloppy mode

 	
 10 Consoles: interactive JavaScript command lines

 	
 10.1 Trying out JavaScript code

 	
 10.2 The console.* API: printing data and more

 	
 11 Assertion API

 	
 11.1 Assertions in software development

 	
 11.2 How assertions are used in this book

 	
 11.3 Normal comparison vs. deep comparison

 	
 11.4 Quick reference: module assert

 	
 12 Getting started with exercises

 	
 12.1 Exercises

 	
 12.2 Unit tests in JavaScript

 	
 13 Variables and assignment

 	
 13.1 let

 	
 13.2 const

 	
 13.3 Deciding between const and let

 	
 13.4 The scope of a variable

 	
 13.5 (Advanced)

 	
 13.6 Terminology: static vs. dynamic

 	
 13.7 Global variables and the global object

 	
 13.8 Declarations: scope and activation

 	
 13.9 Closures

 	
 14 Values

 	
 14.1 What’s a type?

 	
 14.2 JavaScript’s type hierarchy

 	
 14.3 The types of the language specification

 	
 14.4 Primitive values vs. objects

 	
 14.5 The operators typeof and instanceof: what’s the type of a value?

 	
 14.6 Classes and constructor functions

 	
 14.7 Converting between types

 	
 15 Operators

 	
 15.1 Making sense of operators

 	
 15.2 The plus operator (+)

 	
 15.3 Assignment operators

 	
 15.4 Equality: == vs. ===

 	
 15.5 Ordering operators

 	
 15.6 Various other operators

 	
 16 The non-values undefined and null

 	
 16.1 undefined vs. null

 	
 16.2 Occurrences of undefined and null

 	
 16.3 Checking for undefined or null

 	
 16.4 The nullish coalescing operator (??) for default values [ES2020]

 	
 16.5 undefined and null don’t have properties

 	
 16.6 The history of undefined and null

 	
 17 Booleans

 	
 17.1 Converting to boolean

 	
 17.2 Falsy and truthy values

 	
 17.3 Truthiness-based existence checks

 	
 17.4 Conditional operator (? :)

 	
 17.5 Binary logical operators: And (x && y), Or (x || y)

 	
 17.6 Logical Not (!)

 	
 18 Numbers

 	
 18.1 Numbers are used for both floating point numbers and integers

 	
 18.2 Number literals

 	
 18.3 Arithmetic operators

 	
 18.4 Converting to number

 	
 18.5 Error values

 	
 18.6 The precision of numbers: careful with decimal fractions

 	
 18.7 (Advanced)

 	
 18.8 Background: floating point precision

 	
 18.9 Integer numbers in JavaScript

 	
 18.10 Bitwise operators

 	
 18.11 Quick reference: numbers

 	
 19 Math

 	
 19.1 Data properties

 	
 19.2 Exponents, roots, logarithms

 	
 19.3 Rounding

 	
 19.4 Trigonometric Functions

 	
 19.5 Various other functions

 	
 19.6 Sources

 	
 20 Bigints – arbitrary-precision integers [ES2020] (advanced)

 	
 20.1 Why bigints?

 	
 20.2 Bigints

 	
 20.3 Bigint literals

 	
 20.4 Reusing number operators for bigints (overloading)

 	
 20.5 The wrapper constructor BigInt

 	
 20.6 Coercing bigints to other primitive types

 	
 20.7 TypedArrays and DataView operations for 64-bit values

 	
 20.8 Bigints and JSON

 	
 20.9 FAQ: Bigints

 	
 21 Unicode – a brief introduction (advanced)

 	
 21.1 Code points vs. code units

 	
 21.2 Encodings used in web development: UTF-16 and UTF-8

 	
 21.3 Grapheme clusters – the real characters

 	
 22 Strings

 	
 22.1 Cheat sheet: strings

 	
 22.2 Plain string literals

 	
 22.3 Accessing JavaScript characters

 	
 22.4 String concatenation

 	
 22.5 Converting to string

 	
 22.6 Comparing strings

 	
 22.7 Atoms of text: code points, JavaScript characters, grapheme clusters

 	
 22.8 Quick reference: Strings

 	
 23 Using template literals and tagged templates [ES6]

 	
 23.1 Disambiguation: “template”

 	
 23.2 Template literals

 	
 23.3 Tagged templates

 	
 23.4 Examples of tagged templates (as provided via libraries)

 	
 23.5 Raw string literals

 	
 23.6 (Advanced)

 	
 23.7 Multiline template literals and indentation

 	
 23.8 Simple templating via template literals

 	
 24 Symbols [ES6]

 	
 24.1 Symbols are primitives that are also like objects

 	
 24.2 The descriptions of symbols

 	
 24.3 Use cases for symbols

 	
 24.4 Publicly known symbols

 	
 24.5 Converting symbols

 	
 25 Control flow statements

 	
 25.1 Controlling loops: break and continue

 	
 25.2 Conditions of control flow statements

 	
 25.3 if statements [ES1]

 	
 25.4 switch statements [ES3]

 	
 25.5 while loops [ES1]

 	
 25.6 do-while loops [ES3]

 	
 25.7 for loops [ES1]

 	
 25.8 for-of loops [ES6]

 	
 25.9 for-await-of loops [ES2018]

 	
 25.10 for-in loops (avoid) [ES1]

 	
 25.11 Recomendations for looping

 	
 26 Exception handling

 	
 26.1 Motivation: throwing and catching exceptions

 	
 26.2 throw

 	
 26.3 The try statement

 	
 26.4 Error and its subclasses

 	
 26.5 Chaining errors

 	
 27 Callable values

 	
 27.1 Kinds of functions

 	
 27.2 Ordinary functions

 	
 27.3 Specialized functions [ES6]

 	
 27.4 Summary: kinds of callable values

 	
 27.5 Returning values from functions and methods

 	
 27.6 Parameter handling

 	
 27.7 Methods of functions: .call(), .apply(), .bind()

 	
 28 Evaluating code dynamically: eval(), new Function() (advanced)

 	
 28.1 eval()

 	
 28.2 new Function()

 	
 28.3 Recommendations

 	
 29 Modules [ES6]

 	
 29.1 Cheat sheet: modules

 	
 29.2 JavaScript source code formats

 	
 29.3 Before we had modules, we had scripts

 	
 29.4 Module systems created prior to ES6

 	
 29.5 ECMAScript modules

 	
 29.6 Named exports and imports

 	
 29.7 Default exports and imports

 	
 29.8 Re-exporting

 	
 29.9 More details on exporting and importing

 	
 29.10 npm packages

 	
 29.11 Naming modules

 	
 29.12 Module specifiers

 	
 29.13 import.meta – metadata for the current module [ES2020]

 	
 29.14 Loading modules dynamically via import() [ES2020] (advanced)

 	
 29.15 Top-level await in modules [ES2022] (advanced)

 	
 29.16 Polyfills: emulating native web platform features (advanced)

 	
 30 Objects

 	
 30.1 Cheat sheet: objects

 	
 30.2 What is an object?

 	
 30.3 Fixed-layout objects

 	
 30.4 Spreading into object literals (...) [ES2018]

 	
 30.5 Methods and the special variable this

 	
 30.6 Optional chaining for property getting and method calls [ES2020] (advanced)

 	
 30.7 Dictionary objects (advanced)

 	
 30.8 Property attributes and property descriptors [ES5] (advanced)

 	
 30.9 Protecting objects from being changed [ES5] (advanced)

 	
 30.10 Prototype chains

 	
 30.11 FAQ: objects

 	
 30.12 Quick reference: Object

 	
 30.13 Quick reference: Reflect

 	
 31 Classes [ES6]

 	
 31.1 Cheat sheet: classes

 	
 31.2 The essentials of classes

 	
 31.3 The internals of classes

 	
 31.4 Prototype members of classes

 	
 31.5 Instance members of classes [ES2022]

 	
 31.6 Static members of classes

 	
 31.7 Subclassing

 	
 31.8 The methods and accessors of Object.prototype (advanced)

 	
 31.9 FAQ: classes

 	
 32 Where are the remaining chapters?

I Background

1 Before you buy the book

 	
 1.1 About the content

 	
 1.1.1 What’s in this book?

 	
 1.1.2 What is not covered by this book?

 	
 1.2 Previewing and buying this book

 	
 1.2.1 How can I preview the book and its bundled material?

 	
 1.2.2 How can I buy a digital version of this book?

 	
 1.2.3 How can I buy the print version of this book?

 	
 1.3 About the author

 	
 1.4 Acknowledgements

1.1 About the content

1.1.1 What’s in this book?

This book makes JavaScript less challenging to learn for newcomers by offering a modern view that is as consistent as possible.

Highlights:

 	
 Get started quickly by initially focusing on modern features.

 	
 Test-driven exercises available for most chapters.

 	
 Covers all essential features of JavaScript, up to and including ES2022.

 	
 Optional advanced sections let you dig deeper.

No prior knowledge of JavaScript is required, but you should know how to program.

1.1.2 What is not covered by this book?

 	
 Some advanced language features are not explained, but references to appropriate material are provided – for example, to my other JavaScript books at ExploringJS.com, which are free to read online.

 	
 This book deliberately focuses on the language. Browser-only features, etc. are not described.

1.2 Previewing and buying this book

1.2.1 How can I preview the book and its bundled material?

Go to the homepage of this book:

 	
 All chapters of this book are free to read online.

 	
 Most material has free preview versions (with about 50% of their content) that are available on the homepage.

1.2.2 How can I buy a digital version of this book?

The homepage of Exploring JavaScript explains how you can buy one of its digital packages.

1.2.3 How can I buy the print version of this book?

An older edition of Exploring JavaScript is called JavaScript for impatient programmers. Its paper version is available on Amazon.

1.3 About the author

Dr. Axel Rauschmayer specializes in JavaScript and web development. He has been developing web applications since 1995. In 1999, he was technical manager at a German internet startup that later expanded internationally. In 2006, he held his first talk on Ajax. In 2010, he received a PhD in Informatics from the University of Munich.

Since 2011, he has been blogging about web development at 2ality.com and has written several books on JavaScript. He has held trainings and talks for companies such as eBay, Bank of America, and O’Reilly Media.

He lives in Munich, Germany.

1.4 Acknowledgements

 	
 Cover image by Fran Caye

 	
 Thanks for answering questions, discussing language topics, etc.:

 	
 Allen Wirfs-Brock

 	
 Benedikt Meurer

 	
 Brian Terlson

 	
 Daniel Ehrenberg

 	
 Jordan Harband

 	
 Maggie Johnson-Pint

 	
 Mathias Bynens

 	
 Myles Borins

 	
 Rob Palmer

 	
 Šime Vidas

 	
 And many others

 	
 Thanks for reviewing:

 	
 Johannes Weber

2 FAQ: book and supplementary material

 	
 2.1 How to read this book

 	
 2.1.1 In which order should I read the content in this book?

 	
 2.1.2 Why are some chapters and sections marked with “(advanced)”?

 	
 2.2 I own a digital version

 	
 2.2.1 How do I submit feedback and corrections?

 	
 2.2.2 How do I get updates for the downloads I bought at Payhip?

 	
 2.2.3 How do I upgrade from a smaller package to a larger one or an older package to a newer one?

 	
 2.3 I own the print version (“JavaScript for impatient programmers”)

 	
 2.3.1 Can I get a discount for a digital version?

 	
 2.3.2 How do I submit feedback and corrections?

 	
 2.4 Notations and conventions

 	
 2.4.1 What is a type signature? Why am I sometimes seeing static types in this book?

 	
 2.4.2 What do the notes with icons mean?

This chapter answers questions you may have and gives tips for reading this book.

2.1 How to read this book

2.1.1 In which order should I read the content in this book?

This book is three books in one:

 	
 You can use it to get started with JavaScript as quickly as possible:

 	
 Start reading with “Using JavaScript: the big picture” (§8).

 	
 Skip all chapters and sections marked as “advanced”, and all quick references.

 	
 It gives you a comprehensive look at current JavaScript. In this “mode”, you read everything and don’t skip advanced content and quick references.

 	
 It serves as a reference. If there is a topic that you are interested in, you can find information on it via the table of contents or via the index. Due to basic and advanced content being mixed, everything you need is usually in a single location.

Exercises play an important part in helping you practice and retain what you have learned.

2.1.2 Why are some chapters and sections marked with “(advanced)”?

Several chapters and sections are marked with “(advanced)”. The idea is that you can initially skip them. That is, you can get a quick working knowledge of JavaScript by only reading the basic (non-advanced) content.

As your knowledge evolves, you can later come back to some or all of the advanced content.

2.2 I own a digital version

2.2.1 How do I submit feedback and corrections?

The HTML version of this book (online, or ad-free archive in the paid version) has a link at the end of each chapter that enables you to give feedback.

2.2.2 How do I get updates for the downloads I bought at Payhip?

 	
 The receipt email for the purchase includes a link. You’ll always be able to download the latest version of the files at that location.

 	
 If you opted into emails while buying, you’ll get an email whenever there is new content. To opt in later, you must contact Payhip (see bottom of payhip.com).

2.2.3 How do I upgrade from a smaller package to a larger one or an older package to a newer one?

The book’s homepage explains how to do that.

2.3 I own the print version (“JavaScript for impatient programmers”)

2.3.1 Can I get a discount for a digital version?

If you bought the print version, you can get a discount for a digital version. The homepage explains how.

Alas, the reverse is not possible: you cannot get a discount for the print version if you bought a digital version.

2.3.2 How do I submit feedback and corrections?

 	
 Before reporting an error, please go to the online version of “Exploring JavaScript” and check the latest release of this book. The error may already have been corrected online.

 	
 If the error is still there, you can use the comment link at the end of each chapter to report it.

 	
 You can also use the comments to give feedback.

2.4 Notations and conventions

2.4.1 What is a type signature? Why am I sometimes seeing static types in this book?

For example, you may see:

Number.isFinite(num: number): boolean

That is called the type signature of Number.isFinite(). This notation, especially the static types number of num and boolean of the result, are not real JavaScript. The notation is borrowed from the compile-to-JavaScript language TypeScript (which is mostly just JavaScript plus static typing).

Why is this notation being used? It helps give you a quick idea of how a function works. The notation is explained in detail in “Tackling TypeScript”, but is usually relatively intuitive.

2.4.2 What do the notes with icons mean?

 [image: Icon “reading”] Reading instructions

 Explains how to best read the content.

 [image: Icon “external”] External content

 Points to additional, external, content.

 [image: Icon “tip”] Tip

 Gives a tip related to the current content.

 [image: Icon “question”] Question

 Asks and answers a question pertinent to the current content (think FAQ).

 [image: Icon “warning”] Warning

 Warns about pitfalls, etc.

 [image: Icon “details”] Details

 Provides additional details, complementing the current content. It is similar to a footnote.

 [image: Icon “exercise”] Exercise

 Mentions the path of a test-driven exercise that you can do at that point.

3 Why JavaScript?

 	
 3.1 The cons of JavaScript

 	
 3.2 The pros of JavaScript

 	
 3.2.1 Community

 	
 3.2.2 Practically useful

 	
 3.2.3 Language

 	
 3.3 Pro and con of JavaScript: innovation

In this chapter, we examine the pros and cons of JavaScript.

 [image: Icon “reading”] “ECMAScript 6” and “ES6” refer to versions of JavaScript

 ECMAScript is the name of the language standard; the number refers to the version of that standard. For more information, consult “Standardization: JavaScript vs. ECMAScript” (§5.2).

3.1 The cons of JavaScript

Among programmers, JavaScript isn’t always well liked. One reason is that it has a fair amount of quirks. Some of them are just unusual ways of doing something. Others are considered bugs. Either way, learning why JavaScript does something the way it does, helps with dealing with the quirks and with accepting JavaScript (maybe even liking it). Hopefully, this book can be of assistance here.

Additionally, many traditional quirks have been eliminated now. For example:

 	
 Traditionally, JavaScript variables weren’t block-scoped. ES6 introduced let and const, which let you declare block-scoped variables.

 	
 Prior to ES6, implementing object factories and inheritance via function and .prototype was clumsy. ES6 introduced classes, which provide more convenient syntax for these mechanisms.

 	
 Traditionally, JavaScript did not have built-in modules. ES6 added them to the language.

Lastly, JavaScript’s standard library is limited, but:

 	
 There are plans for adding more functionality.

 	
 Many libraries are easily available via the npm software registry.

3.2 The pros of JavaScript

On the plus side, JavaScript offers many benefits.

3.2.1 Community

JavaScript’s popularity means that it’s well supported and well documented. Whenever you create something in JavaScript, you can rely on many people being (potentially) interested. And there is a large pool of JavaScript programmers from which you can hire, if you need to.

No single party controls JavaScript – it is evolved by TC39, a committee comprising many organizations. The language is evolved via an open process that encourages feedback from the public.

3.2.2 Practically useful

With JavaScript, you can write apps for many client platforms. These are a few example technologies:

 	
 Progressive Web Apps can be installed natively on Android and many desktop operating systems.

 	
 Electron lets you build cross-platform desktop apps.

 	
 React Native lets you write apps for iOS and Android that have native user interfaces.

 	
 Node.js provides extensive support for writing shell scripts (in addition to being a platform for web servers).

JavaScript is supported by many server platforms and services – for example:

 	
 Node.js (many of the following services are based on Node.js or support its APIs)

 	
 ZEIT Now

 	
 Microsoft Azure Functions

 	
 AWS Lambda

 	
 Google Cloud Functions

There are many data technologies available for JavaScript: many databases support it and intermediate layers (such as GraphQL) exist. Additionally, the standard data format JSON (JavaScript Object Notation) is based on JavaScript and supported by its standard library.

Lastly, many, if not most, tools for JavaScript are written in JavaScript. That includes IDEs, build tools, and more. As a consequence, you install them the same way you install your libraries and you can customize them in JavaScript.

3.2.3 Language

 	
 Many libraries are available, via the de-facto standard in the JavaScript universe, the npm software registry.

 	
 If you are unhappy with “plain” JavaScript, it is relatively easy to add more features:

 	
 You can compile future and modern language features to current and past versions of JavaScript, via Babel.

 	
 You can add static typing, via TypeScript and Flow.

 	
 You can work with ReasonML, which is, roughly, OCaml with JavaScript syntax. It can be compiled to JavaScript or native code.

 	
 The language is flexible: it is dynamic and supports both object-oriented programming and functional programming.

 	
 JavaScript has become suprisingly fast for such a dynamic language.

 	
 Whenever it isn’t fast enough, you can switch to WebAssembly, a universal virtual machine built into most JavaScript engines. It can run static code at nearly native speeds.

3.3 Pro and con of JavaScript: innovation

There is much innovation in the JavaScript ecosystem: new approaches to implementing user interfaces, new ways of optimizing the delivery of software, and more. The upside is that you will constantly learn new things. The downside is that the constant change can be exhausting at times. Thankfully, things have somewhat slowed down, recently: all of ES6 (which was a considerable modernization of the language) is becoming established, as are certain tools and workflows.

4 The nature of JavaScript

 	
 4.1 JavaScript’s influences

 	
 4.2 The nature of JavaScript

 	
 4.2.1 JavaScript often fails silently

 	
 4.3 Tips for getting started with JavaScript

4.1 JavaScript’s influences

When JavaScript was created in 1995, it was influenced by several programming languages:

 	
 JavaScript’s syntax is largely based on Java.

 	
 Self inspired JavaScript’s prototypal inheritance.

 	
 Closures and environments were borrowed from Scheme.

 	
 AWK influenced JavaScript’s functions (including the keyword function).

 	
 JavaScript’s strings, Arrays, and regular expressions take cues from Perl.

 	
 HyperTalk inspired event handling via onclick in web browsers.

With ECMAScript 6, new influences came to JavaScript:

 	
 Generators were borrowed from Python.

 	
 The syntax of arrow functions came from CoffeeScript.

 	
 C++ contributed the keyword const.

 	
 Destructuring was inspired by Lisp’s destructuring bind.

 	
 Template literals came from the E language (where they are called quasi literals).

4.2 The nature of JavaScript

These are a few traits of the language:

 	
 Its syntax is part of the C family of languages (curly braces, etc.).

 	
 It is a dynamic language: most objects can be changed in various ways at runtime, objects can be created directly, etc.

 	
 It is a dynamically typed language: variables don’t have fixed static types and you can assign any value to a given (mutable) variable.

 	
 It has functional programming features: first-class functions, closures, partial application via bind(), etc.

 	
 It has object-oriented features: mutable state, objects, inheritance, classes, etc.

 	
 It often fails silently: see the next subsection for details.

 	
 It is deployed as source code. But that source code is often minified (rewritten to require less storage). And there are plans for a binary source code format.

 	
 JavaScript is part of the web platform – it is the language built into web browsers. But it is also used elsewhere – for example, in Node.js, for server things, and shell scripting.

 	
 JavaScript engines often optimize less-efficient language mechanisms under the hood. For example, in principle, JavaScript Arrays are dictionaries. But under the hood, engines store Arrays contiguously if they have contiguous indices.

4.2.1 JavaScript often fails silently

JavaScript often fails silently. Let’s look at two examples.

First example: If the operands of an operator don’t have the appropriate types, they are converted as necessary.

> '3' * '5'
15

Second example: If an arithmetic computation fails, you get an error value, not an exception.

> 1 / 0
Infinity

The reason for the silent failures is historical: JavaScript did not have exceptions until ECMAScript 3. Since then, its designers have tried to avoid silent failures.

4.3 Tips for getting started with JavaScript

These are a few tips to help you get started with JavaScript:

 	
 Take your time to really get to know this language. The conventional C-style syntax hides that this is a very unconventional language. Learn especially the quirks and the rationales behind them. Then you will understand and appreciate the language better.

 	
 In addition to details, this book also teaches simple rules of thumb to be safe – for example, “Always use === to determine if two values are equal, never ==.”

 	
 Language tools make it easier to work with JavaScript. For example:

 	
 You can statically type JavaScript via TypeScript.

 	
 You can check for problems and anti-patterns via linters such as ESLint.

 	
 You can format your code automatically via code formatters such as Prettier.

 	
 For more information on JavaScript tooling, see “Next steps: overview of web development”.

 	
 Get in contact with the community:

 	
 Social media services such as Mastodon are popular among JavaScript programmers. As a mode of communication that sits between the spoken and the written word, it is well suited for exchanging knowledge.

 	
 Many cities have regular free meetups where people come together to learn topics related to JavaScript.

 	
 JavaScript conferences are another convenient way of meeting other JavaScript programmers.

 	
 Read books and blogs. Much material is free online!

5 History and evolution of JavaScript

 	
 5.1 How JavaScript was created

 	
 5.2 Standardization: JavaScript vs. ECMAScript

 	
 5.3 Timeline of ECMAScript versions

 	
 5.4 Evolving JavaScript: TC39 (Ecma Technical Committee 39)

 	
 5.5 The TC39 process for proposed ECMAScript features

 	
 5.5.1 Tip: Think in individual features and stages, not ECMAScript versions

 	
 5.5.2 The details of the TC39 process (advanced)

 	
 5.6 How to not break the web while changing JavaScript

 	
 5.7 FAQ: ECMAScript and TC39

 	
 5.7.1 Where can I look up which features were added in a given ECMAScript version?

 	
 5.7.2 How is [my favorite proposed JavaScript feature] doing?

 	
 5.7.3 Why does stage 2.7 have such a peculiar number?

5.1 How JavaScript was created

JavaScript was created in May 1995 in 10 days, by Brendan Eich. Eich worked at Netscape and implemented JavaScript for their web browser, Netscape Navigator.

The idea was that major interactive parts of the client-side web were to be implemented in Java. JavaScript was supposed to be a glue language for those parts and to also make HTML slightly more interactive. Given its role of assisting Java, JavaScript had to look like Java. That ruled out existing solutions such as Perl, Python, TCL, and others.

Initially, JavaScript’s name changed several times:

 	
 Its code name was Mocha.

 	
 In the Netscape Navigator 2.0 betas (September 1995), it was called LiveScript.

 	
 In Netscape Navigator 2.0 beta 3 (December 1995), it got its final name, JavaScript.

5.2 Standardization: JavaScript vs. ECMAScript

There are two standards for JavaScript:

 	
 ECMA-262 is hosted by Ecma International. It is the primary standard.

 	
 ISO/IEC 16262 is hosted by the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC). This is a secondary standard.

The language described by these standards is called ECMAScript, not JavaScript. A different name was chosen because Sun (now Oracle) had a trademark for the latter name. The “ECMA” in “ECMAScript” comes from the organization that hosts the primary standard.

The original name of that organization was ECMA, an acronym for European Computer Manufacturers Association. It was later changed to Ecma International (with “Ecma” being a proper name, not an acronym) because the organization’s activities had expanded beyond Europe. The initial all-caps acronym explains the spelling of ECMAScript.

Often, JavaScript and ECMAScript mean the same thing. Sometimes the following distinction is made:

 	
 The term JavaScript refers to the language and its implementations.

 	
 The term ECMAScript refers to the language standard and language versions.

Therefore, ECMAScript 6 is a version of the language (its 6th edition).

5.3 Timeline of ECMAScript versions

This is a brief timeline of ECMAScript versions:

 	
 ECMAScript 1 (June 1997): First version of the standard.

 	
 ECMAScript 2 (June 1998): Small update to keep ECMA-262 in sync with the ISO standard.

 	
 ECMAScript 3 (December 1999): Adds many core features – “[…] regular expressions, better string handling, new control statements [do-while, switch], try/catch exception handling, […]”

 	
 ECMAScript 4 (abandoned in July 2008): Would have been a massive upgrade (with static typing, modules, namespaces, and more), but ended up being too ambitious and dividing the language’s stewards.

 	
 ECMAScript 5 (December 2009): Brought minor improvements – a few standard library features and strict mode.

 	
 ECMAScript 5.1 (June 2011): Another small update to keep Ecma and ISO standards in sync.

 	
 ECMAScript 6 (June 2015): A large update that fulfilled many of the promises of ECMAScript 4. This version is the first one whose official name – ECMAScript 2015 – is based on the year of publication.

 	
 ECMAScript 2016 (June 2016): First yearly release. The shorter release life cycle resulted in fewer new features compared to the large ES6.

 	
 ECMAScript 2017 (June 2017). Second yearly release.

 	
 Subsequent ECMAScript versions (ES2018, etc.) are always ratified in June.

5.4 Evolving JavaScript: TC39 (Ecma Technical Committee 39)

TC39 is the committee that evolves JavaScript. Its members are, strictly speaking, companies: Adobe, Apple, Facebook, Google, Microsoft, Mozilla, Opera, Twitter, and others. That is, companies that are usually competitors are working together on JavaScript.

Every two months, TC39 has meetings that member-appointed delegates and invited experts attend. The minutes of those meetings are public in a GitHub repository.

Outside of meetings, TC39 also collaborates with various members and groups of the JavaScript community.

5.5 The TC39 process for proposed ECMAScript features

With ECMAScript 6, two issues with the release process used at that time became obvious:

 	
 If too much time passes between releases then features that are ready early, have to wait a long time until they can be released. And features that are ready late, risk being rushed to make the deadline.

 	
 Features were often designed long before they were implemented and used. Design deficiencies related to implementation and use were therefore discovered too late.

In response to these issues, TC39 instituted the new TC39 process:

 	
 ECMAScript features are designed independently and go through six stages: a strawperson stage 0 and five “maturity” stages (1, 2, 2.7, 3, 4).

 	
 Especially the later stages require prototype implementations and real-world testing, leading to feedback loops between designs and implementations.

 	
 ECMAScript versions are released once per year and include all features that have reached stage 4 prior to a release deadline.

The result: smaller, incremental releases, whose features have already been field-tested.

ES2016 was the first ECMAScript version that was designed according to the TC39 process.

5.5.1 Tip: Think in individual features and stages, not ECMAScript versions

Up to and including ES6, it was most common to think about JavaScript in terms of ECMAScript versions – for example, “Does this browser support ES6 yet?”

Starting with ES2016, it’s better to think in individual features: once a feature reaches stage 4, we can safely use it (if it’s supported by the JavaScript engines we are targeting). We don’t have to wait until the next ECMAScript release.

5.5.2 The details of the TC39 process (advanced)

ECMAScript features are designed via proposals that go through the so-called TC39 process. That process comprises six stages:

 	
 Stage 0 means a proposal has yet to enter the actual process. This is where most proposals start.

 	
 Then the proposal goes through the five maturity stages 1, 2, 2.7, 3 and 4. If it reaches stage 4, it is complete and ready for inclusion in the ECMAScript standard.

5.5.2.1 Artifacts associated with an ECMAScript proposal

The following artifacts are associated with an ECMAScript proposal:

 	
 Proposal document: Describes the proposal to JavaScript programmers, with English prose and code examples. Usually the readme of a GitHub repository.

 	
 Specification: Written in Ecmarkup, an HTML and Markdown dialect that is supported by a toolchain. That toolchain checks Ecmarkup and renders it to HTML with features tailored to reading specifications (cross-references, highlighting of variable occurrences, etc.).

 	
 The HTML can also be printed to a PDF.

 	
 If a proposal makes it to stage 4, its specification is integrated into the full ECMAScript specification (which is also written in Ecmarkup).

 	
 Tests: Written in JavaScript that check if an implementation conforms to the specification.

 	
 If a proposal makes it to stage 4, its tests are integrated into Test262, the official ECMAScript conformance test suite.

 	
 Implementations: The functionality of the proposal, implemented in engines and transpilers (such as Babel and TypeScript).

Each stage has entrance criteria regarding the state of the artifacts:

 	Stage	Proposal	Specification	Tests	Implementations

 	0				

 	1	draft			

 	2	finished	draft		

 	2.7		finished		

 	3			finished	prototypes

 	4				2 implementations

5.5.2.2 Roles of the people that manage a proposal

 	
 Author: A proposal is written by one or more authors.

 	
 Champion: Each proposal has one or more TC39 delegates that guide the proposal through the TC39 process. This is especially important if an author has no experience with the process.

 	
 Reviewer: Reviewers give feedback for the specification during stage 2 and must sign off on it before the proposal can reach stage 2.7. They are appointed by TC39 (excluding the authors and champions of the proposal).

 	
 Editor: Someone in charge of managing the ECMAScript specification. The current editors are listed at the beginning of the ECMAScript specification.

5.5.2.3 The stages of a proposal

 	
 Stage 0: ideation and exploration

 	
 Not part of the usual advancement process. Any author can create a draft proposal and assign it stage 0.

 	
 Stage 1: designing a solution

 	
 Entrance criteria:

 	
 Pick champions

 	
 Repository with proposal

 	
 Status:

 	
 Proposal is under consideration.

 	
 Stage 2: refining the solution

 	
 Entrance criteria:

 	
 Proposal is complete.

 	
 Draft of specification.

 	
 Status:

 	
 Proposal is likely (but not guaranteed) to be standardized.

 	
 Stage 2.7: testing and validation

 	
 Entrance criteria:

 	
 Specification is complete and approved by reviewers and editors.

 	
 Status:

 	
 The specification is finished. It’s time to validate it through tests and spec-compliant prototypes.

 	
 No more changes, aside from issues discovered through validation.

 	
 Stage 3: gaining implementation experience

 	
 Entrance criteria:

 	
 Tests are finished.

 	
 Status:

 	
 The proposal is ready to be implemented.

 	
 No changes except if web incompatibilities are discovered.

 	
 Stage 4: integration into draft specification and eventual inclusion in standard

 	
 Entrance criteria:

 	
 Two implementation that pass the tests

 	
 Significant in-the-field experience with shipping implementations

 	
 Pull request for TC39 repository, approved by editors

 	
 Status:

 	
 Proposed feature is complete:

 	
 Its specification is ready to be included in the ECMAScript specification.

 	
 Its tests are ready to be included in the ECMAScript conformance test suite Test262.

Figure 5.1 illustrates the TC39 process.

 [image:]

 Figure 5.1: Each ECMAScript feature proposal goes through stages that are numbered from 0 to 4.

Sources of this section:

 	
 “The TC39 Process” (official document by TC39)

 	
 The TC39 GitHub repository how-we-work, especially the document that explains the work of a proposal champion.

 	
 The colophon of the ECMAScript specification. A colophon is content at the end of a book. It usually contains information about the book’s production.

5.6 How to not break the web while changing JavaScript

One idea that occasionally comes up is to clean up JavaScript by removing old features and quirks. While the appeal of that idea is obvious, it has significant downsides.

Let’s assume we create a new version of JavaScript that is not backward compatible and fixes all of its flaws. As a result, we’d encounter the following problems:

 	
 JavaScript engines become bloated: they need to support both the old and the new version. The same is true for tools such as IDEs and build tools.

 	
 Programmers need to know, and be continually conscious of, the differences between the versions.

 	
 We can either migrate all of an existing code base to the new version (which can be a lot of work). Or we can mix versions and refactoring becomes harder because we can’t move code between versions without changing it.

 	
 We somehow have to specify per piece of code – be it a file or code embedded in a web page – what version it is written in. Every conceivable solution has pros and cons. For example, strict mode is a slightly cleaner version of ES5. One of the reasons why it wasn’t as popular as it should have been: it was a hassle to opt in via a directive at the beginning of a file or a function.

So what is the solution? This is how JavaScript is evolved:

 	
 New versions are always completely backward compatible (but there may occasionally be minor, hardly noticeable clean-ups).

 	
 Old features aren’t removed or fixed. Instead, better versions of them are introduced. One example is declaring variables via let – which is an improved version of var.

 	
 If aspects of the language are changed, it is done inside new syntactic constructs. That is, we opt in implicitly – for example:

 	
 yield is only a keyword inside generators (which were introduced in ES6).

 	
 All code inside modules and classes (both introduced in ES6) is implicitly in strict mode.

5.7 FAQ: ECMAScript and TC39

5.7.1 Where can I look up which features were added in a given ECMAScript version?

There are several places where you can look up what’s new in each ECMAScript version:

 	
 In this book, there is a chapter that lists what’s new in each ECMAScript version. It also links to explanations.

 	
 The TC39 repository has a table with finished proposals that states in which ECMAScript versions they were (or will be) introduced.

 	
 Section “Introduction” of the ECMAScript language specification lists the new features of each ECMAScript version.

 	
 The ECMA-262 repository has a page with releases.

5.7.2 How is [my favorite proposed JavaScript feature] doing?

If you are wondering what stages various proposed features are in, consult the GitHub repository proposals.

5.7.3 Why does stage 2.7 have such a peculiar number?

Stage 2.7 was added in late 2023, after stages 0, 1, 2, 3, 4 had already been in use for years.

 	
 Q: Why not renumber the stages?

 	
 A: Renumbering was not in the cards because it would have made old documents difficult to read.

 	
 Q: Why not another number such as 2.5?

 	
 The .7 reflects that stage 2.7 is closer to stage 3 than to stage 2.

 	
 Q: How about 3a for the new stage and 3b for the old stage 3?

 	
 A: If you read “stage 3” in an old document, it can be confusing as to whether this refers to the new stage 3a or the new stage 3b.

Source: TC39 discussion on 2023-11-30

6 New JavaScript features

 	
 6.1 New in ECMAScript 2024

 	
 6.2 New in ECMAScript 2023

 	
 6.3 New in ECMAScript 2022

 	
 6.4 New in ECMAScript 2021

 	
 6.5 New in ECMAScript 2020

 	
 6.6 New in ECMAScript 2019

 	
 6.7 New in ECMAScript 2018

 	
 6.8 New in ECMAScript 2017

 	
 6.9 New in ECMAScript 2016

 	
 6.10 Source of this chapter

This chapter lists what’s new in recent ECMAScript versions – in reverse chronological order. It ends before ES6 (ES2015): ES2016 was the first truly incremental release of ECMAScript – which is why ES6 has too many features to list here. If you want to get a feeling for earlier releases:

 	
 My book “Exploring ES6” describes what was added in ES6 (ES2015).

 	
 My book “Speaking JavaScript” describes all of the features of ES5 – and is therefore a useful time capsule.

6.1 New in ECMAScript 2024

 	
 Grouping synchronous iterables:

 Map.groupBy() groups the items of an iterable into Map entries whose keys are provided by a callback:

assert.deepEqual(
 Map.groupBy([0, -5, 3, -4, 8, 9], x => Math.sign(x)),
 new Map()
 .set(0, [0])
 .set(-1, [-5,-4])
 .set(1, [3,8,9])
);

 There is also Object.groupBy() which produces an object instead of a Map:

assert.deepEqual(
 Object.groupBy([0, -5, 3, -4, 8, 9], x => Math.sign(x)),
 {
 '0': [0],
 '-1': [-5,-4],
 '1': [3,8,9],
 __proto__: null,
 }
);

 	
 Promise.withResolvers() provides a new way of creating Promises that we want to resolve:

const { promise, resolve, reject } = Promise.withResolvers();

 	
 The new regular expression flag /v (.unicodeSets) enables these features:

 	
 Escapes for Unicode string properties (😵💫 consists of three code points):

// Previously: Unicode code point property `Emoji` via /u
assert.equal(
 /^\p{Emoji}$/u.test('😵💫'), false
);
// New: Unicode string property `RGI_Emoji` via /v
assert.equal(
 /^\p{RGI_Emoji}$/v.test('😵💫'), true
);

 	
 String literals via \q{} in character classes:

> /^[\q{😵💫}]$/v.test('😵💫')
true
> /^[\q{abc|def}]$/v.test('abc')
true

 	
 Set operations for character classes:

> /^[\w--[a-g]]$/v.test('a')
false
> /^[\p{Number}--[0-9]]$/v.test('٣')
true
> /^[\p{RGI_Emoji}--\q{😵💫}]$/v.test('😵💫')
false

 	
 Improved matching with /i if a Unicode property escape is negated via [^···]

 	
 ArrayBuffers get two new features:

 	
 They can be resized in place:

const buf = new ArrayBuffer(2, {maxByteLength: 4});
// `typedArray` starts at offset 2
const typedArray = new Uint8Array(buf, 2);
assert.equal(
 typedArray.length, 0
);
buf.resize(4);
assert.equal(
 typedArray.length, 2
);

 	
 They get a method .transfer() for transferring them.

 	
 SharedArrayBuffers can be resized, but they can only grow and never shrink. They are not transferrable and therefore don’t get the method .transfer() that ArrayBuffers got.

 	
 Two new methods help us ensure that strings are well-formed (w.r.t. UTF-16 code units):

 	
 String method .isWellFormed() checks if a JavaScript string is well-formed and does not contain any lone surrogates.

 	
 String method .toWellFormed() returns a copy of the receiver where each lone surrogate is replaced with the code unit 0xFFFD (which represents the code point with the same number, whose name is “replacement character”). The result is therefore well-formed.

 	
 Atomics.waitAsync() lets us wait asynchronously for a change to shared memory. Its functionality is beyond the scope of this book. See the MDN Web Docs for more information.

6.2 New in ECMAScript 2023

 	
 “Change Array by copy”: Arrays and Typed Arrays get new non-destructive methods that copy receivers before changing them:

 	
 .toReversed() is the non-destructive version of .reverse():

const original = ['a', 'b', 'c'];
const reversed = original.toReversed();
assert.deepEqual(reversed, ['c', 'b', 'a']);
// The original is unchanged
assert.deepEqual(original, ['a', 'b', 'c']);

 	
 .toSorted() is the non-destructive version of .sort():

const original = ['c', 'a', 'b'];
const sorted = original.toSorted();
assert.deepEqual(sorted, ['a', 'b', 'c']);
// The original is unchanged
assert.deepEqual(original, ['c', 'a', 'b']);

 	
 .toSpliced() is the non-destructive version of .splice():

const original = ['a', 'b', 'c', 'd'];
const spliced = original.toSpliced(1, 2, 'x');
assert.deepEqual(spliced, ['a', 'x', 'd']);
// The original is unchanged
assert.deepEqual(original, ['a', 'b', 'c', 'd']);

 	
 .with() is the non-destructive version of setting a value with square brackets:

const original = ['a', 'b', 'c'];
const updated = original.with(1, 'x');
assert.deepEqual(updated, ['a', 'x', 'c']);
// The original is unchanged
assert.deepEqual(original, ['a', 'b', 'c']);

 	
 “Array find from last”: Arrays and Typed Arrays get two new methods:

 	
 .findLast() is similar to .find() but starts searching at the end of an Array:

> ['', 'a', 'b', ''].findLast(s => s.length > 0)
'b'

 	
 .findLastIndex() is similar to .findIndex() but starts searching at the end of an Array:

> ['', 'a', 'b', ''].findLastIndex(s => s.length > 0)
2

 	
 Symbols as WeakMap keys: Before this feature, only objects could be used as keys in WeakMaps. This feature also lets us use symbols – except for registered symbols (created via Symbol.for()).

 	
 “Hashbang grammar”: JavaScript now ignores the first line of a file if it starts with a hash (#) and a bang (!). Some JavaScript runtimes, such as Node.js, have done this for a long time. Now it is also part of the language proper. This is an example of a “hashbang” line:

#!/usr/bin/env node

6.3 New in ECMAScript 2022

 	
 New members of classes:

 	
 Properties (public slots) can now be created via:

 	
 Instance public fields

 	
 Static public fields

 	
 Private slots are new and can be created via:

 	
 Private fields (instance private fields and static private fields)

 	
 Private methods and accessors (non-static and static)

 	
 Static initialization blocks

 	
 Private slot checks (“ergonomic brand checks for private fields”): The following expression checks if obj has a private slot #privateSlot:

#privateSlot in obj

 	
 Top-level await in modules: We can now use await at the top levels of modules and don’t have to enter async functions or methods anymore.

 	
 error.cause: Error and its subclasses now let us specify which error caused the current one:

new Error('Something went wrong', {cause: otherError})

 	
 Method .at() of indexable values lets us read an element at a given index (like the bracket operator []) and supports negative indices (unlike the bracket operator).

> ['a', 'b', 'c'].at(0)
'a'
> ['a', 'b', 'c'].at(-1)
'c'

 The following “indexable” types have method .at():

 	
 string

 	
 Array

 	
 All Typed Array classes: Uint8Array etc.

 	
 RegExp match indices: If we add a flag to a regular expression, using it produces match objects that record the start and end index of each group capture.

 	
 Object.hasOwn(obj, propKey) provides a safe way to check if an object obj has an own property with the key propKey.

6.4 New in ECMAScript 2021

 	
 String.prototype.replaceAll() lets us replace all matches of a regular expression or a string (.replace() only replaces the first occurrence of a string):

> 'abbbaab'.replaceAll('b', 'x')
'axxxaax'

 	
 Promise.any() and AggregateError: Promise.any() returns a Promise that is fulfilled as soon as the first Promise in an iterable of Promises is fulfilled. If there are only rejections, they are put into an AggregateError which becomes the rejection value.

 We use Promise.any() when we are only interested in the first fulfilled Promise among several.

 	
 Logical assignment operators:

a ||= b
a &&= b
a ??= b

 	
 Underscores (_) as separators in:

 	
 Number literals: 123_456.789_012

 	
 Bigint literals: 6_000_000_000_000_000_000_000_000n

 	
 WeakRefs: This feature is beyond the scope of this book. Quoting its proposal states:

 	
 [This proposal] encompasses two major new pieces of functionality:

 	
 Creating weak references to objects with the WeakRef class

 	
 Running user-defined finalizers after objects are garbage-collected, with the FinalizationRegistry class

 	
 Their correct use takes careful thought, and they are best avoided if possible.

 	
 Array.prototype.sort has been stable since ES2019. In ES2021, “[it] was made more precise, reducing the amount of cases that result in an implementation-defined sort order” [source]. For more information, see the pull request for this improvement.

6.5 New in ECMAScript 2020

 	
 New module features:

 	
 Dynamic imports via import(): The normal import statement is static: We can only use it at the top levels of modules and its module specifier is a fixed string. import() changes that. It can be used anywhere (including conditional statements) and we can compute its argument.

 	
 import.meta contains metadata for the current module. Its first widely supported property is import.meta.url which contains a string with the URL of the current module’s file.

 	
 Namespace re-exporting: The following expression imports all exports of module 'mod' in a namespace object ns and exports that object.

export * as ns from 'mod';

 	
 Optional chaining for property accesses and method calls. One example of optional chaining is:

value?.prop

 This expression evaluates to undefined if value is either undefined or null. Otherwise, it evaluates to value.prop. This feature is especially useful in chains of property reads when some of the properties may be missing.

 	
 Nullish coalescing operator (??):

value ?? defaultValue

 This expression is defaultValue if value is either undefined or null and value otherwise. This operator lets us use a default value whenever something is missing.

 Previously the Logical Or operator (||) was used in this case but it has downsides here because it returns the default value whenever the left-hand side is falsy (which isn’t always correct).

 	
 Bigints – arbitrary-precision integers: Bigints are a new primitive type. It supports integer numbers that can be arbitrarily large (storage for them grows as necessary).

 	
 String.prototype.matchAll(): This method throws if flag /g isn’t set and returns an iterable with all match objects for a given string.

 	
 Promise.allSettled() receives an iterable of Promises. It returns a Promise that is fulfilled once all the input Promises are settled. The fulfillment value is an Array with one object per input Promise – either one of:

 	
 { status: 'fulfilled', value: «fulfillment value» }

 	
 { status: 'rejected', reason: «rejection value» }

 	
 globalThis provides a way to access the global object that works both on browsers and server-side platforms such as Node.js and Deno.

 	
 for-in mechanics: This feature is beyond the scope of this book. For more information on it, see its proposal.

 	
 Namespace re-exporting:

export * as ns from './internal.mjs';

6.6 New in ECMAScript 2019

 	
 Array method .flatMap() works like .map() but lets the callback return Arrays of zero or more values instead of single values. The returned Arrays are then concatenated and become the result of .flatMap(). Use cases include:

 	
 Filtering and mapping at the same time

 	
 Mapping single input values to multiple output values

 	
 Array method .flat() converts nested Arrays into flat Arrays. Optionally, we can tell it at which depth of nesting it should stop flattening.

 	
 Object.fromEntries() creates an object from an iterable over entries. Each entry is a two-element Array with a property key and a property value.

 	
 String methods: .trimStart() and .trimEnd() work like .trim() but remove whitespace only at the start or only at the end of a string.

 	
 Optional catch binding: We can now omit the parameter of a catch clause if we don’t use it.

 	
 Symbol.prototype.description is a getter for reading the description of a symbol. Previously, the description was included in the result of .toString() but couldn’t be accessed individually.

 	
 .sort() for Arrays and Typed Arrays is now guaranteed to be stable: If elements are considered equal by sorting, then sorting does not change the order of those elements (relative to each other).

These ES2019 features are beyond the scope of this book:

 	
 JSON superset: See 2ality blog post.

 	
 Well-formed JSON.stringify(): See 2ality blog post.

 	
 Function.prototype.toString() revision: See 2ality blog post.

6.7 New in ECMAScript 2018

 	
 Asynchronous iteration is the asynchronous version of synchronous iteration. It is based on Promises:

 	
 With synchronous iterables, we can immediately access each item. With asynchronous iterables, we have to await before we can access an item.

 	
 With synchronous iterables, we use for-of loops. With asynchronous iterables, we use for-await-of loops.

 	
 Spreading into object literals: By using spreading (...) inside an object literal, we can copy the properties of another object into the current one. One use case is to create a shallow copy of an object obj:

const shallowCopy = {...obj};

 	
 Rest properties (destructuring): When object-destructuring a value, we can now use rest syntax (...) to get all previously unmentioned properties in an object.

const {a, ...remaining} = {a: 1, b: 2, c: 3};
assert.deepEqual(remaining, {b: 2, c: 3});

 	
 Promise.prototype.finally() is related to the finally clause of a try-catch-finally statement – similarly to how the Promise method .then() is related to the try clause and .catch() is related to the catch clause.

 On other words: The callback of .finally() is executed regardless of whether a Promise is fulfilled or rejected.

 	
 New Regular expression features:

 	
 RegExp named capture groups: In addition to accessing groups by number, we can now name them and access them by name:

const matchObj = '---756---'.match(/(?<digits>[0-9]+)/)
assert.equal(matchObj.groups.digits, '756');

 	
 RegExp lookbehind assertions complement lookahead assertions:

 	
 Positive lookbehind: (?<=X) matches if the current location is preceded by 'X'.

 	
 Negative lookbehind: (?<!X) matches if the current location is not preceded by '(?<!X)'.

 	
 s (dotAll) flag for regular expressions. If this flag is active, the dot matches line terminators (by default, it doesn’t).

 	
 RegExp Unicode property escapes give us more power when matching sets of Unicode code points – for example:

> /^\p{Lowercase_Letter}+$/u.test('aüπ')
true
> /^\p{White_Space}+$/u.test('\n \t')
true
> /^\p{Script=Greek}+$/u.test('ΩΔΨ')
true

 	
 Template literal revision allows text with backslashes in tagged templates that is illegal in string literals – for example:

windowsPath`C:\uuu\xxx\111`
latex`\unicode`

6.8 New in ECMAScript 2017

 	
 Async functions (async/await) let us use synchronous-looking syntax to write asynchronous code.

 	
 Object.values() returns an Array with the values of all enumerable string-keyed properties of a given object.

 	
 Object.entries() returns an Array with the key-value pairs of all enumerable string-keyed properties of a given object. Each pair is encoded as a two-element Array.

 	
 String padding: The string methods .padStart() and .padEnd() insert padding text until the receivers are long enough:

> '7'.padStart(3, '0')
'007'
> 'yes'.padEnd(6, '!')
'yes!!!'

 	
 Trailing commas in function parameter lists and calls: Trailing commas have been allowed in Arrays literals since ES3 and in Object literals since ES5. They are now also allowed in function calls and method calls.

 	
 Object.getOwnPropertyDescriptors() lets us define properties via an object with property descriptors:

 	
 The feature “Shared memory and atomics” is beyond the scope of this book. For more information on it, see:

 	
 The documentation on SharedArrayBuffer and Atomics on MDN Web Docs

 	
 The ECMAScript proposal “Shared memory and atomics”

6.9 New in ECMAScript 2016

 	
 Array.prototype.includes() checks if an Array contains a given value.

 	
 Exponentiation operator (**):

> 4 ** 2
16

6.10 Source of this chapter

ECMAScript feature lists were taken from the TC39 page on finished proposals.

7 FAQ: JavaScript

 	
 7.1 What are good references for JavaScript?

 	
 7.2 How do I find out what JavaScript features are supported where?

 	
 7.3 Where can I look up what features are planned for JavaScript?

 	
 7.4 Why does JavaScript fail silently so often?

 	
 7.5 Why can’t we clean up JavaScript, by removing quirks and outdated features?

 	
 7.6 How can I quickly try out a piece of JavaScript code?

7.1 What are good references for JavaScript?

Please see “JavaScript references” (§8.3).

7.2 How do I find out what JavaScript features are supported where?

This book usually mentions if a feature is part of ECMAScript 5 (as required by older browsers) or a newer version. For more detailed information (including pre-ES5 versions), there are several good compatibility tables available online:

 	
 Mozilla’s MDN web docs have tables for each feature that describe relevant ECMAScript versions and browser support.

 	
 “Can I use…” documents what features (including JavaScript language features) are supported by web browsers.

 	
 ECMAScript compatibility tables for various engines

 	
 Node.js compatibility tables

7.3 Where can I look up what features are planned for JavaScript?

Please see the following sources:

 	
 “The TC39 process for proposed ECMAScript features” (§5.5)

 	
 “FAQ: ECMAScript and TC39” (§5.7)

7.4 Why does JavaScript fail silently so often?

JavaScript often fails silently. Let’s look at two examples.

First example: If the operands of an operator don’t have the appropriate types, they are converted as necessary.

> '3' * '5'
15

Second example: If an arithmetic computation fails, you get an error value, not an exception.

> 1 / 0
Infinity

The reason for the silent failures is historical: JavaScript did not have exceptions until ECMAScript 3. Since then, its designers have tried to avoid silent failures.

7.5 Why can’t we clean up JavaScript, by removing quirks and outdated features?

This question is answered in “How to not break the web while changing JavaScript” (§5.6).

7.6 How can I quickly try out a piece of JavaScript code?

“Trying out JavaScript code” (§10.1) explains how to do that.

II First steps

8 Using JavaScript: the big picture

 	
 8.1 What are you learning in this book?

 	
 8.2 The structure of browsers and Node.js

 	
 8.3 JavaScript references

 	
 8.4 Further reading

In this chapter, I’d like to paint the big picture: what are you learning in this book, and how does it fit into the overall landscape of web development?

8.1 What are you learning in this book?

This book teaches the JavaScript language. It focuses on just the language, but offers occasional glimpses at two platforms where JavaScript can be used:

 	
 Web browser

 	
 Node.js

Node.js is important for web development in three ways:

 	
 You can use it to write server-side software in JavaScript.

 	
 You can also use it to write software for the command line (think Unix shell, Windows PowerShell, etc.). Many JavaScript-related tools are based on (and executed via) Node.js.

 	
 Node’s software registry, npm, has become the dominant way of installing tools (such as compilers and build tools) and libraries – even for client-side development.

8.2 The structure of browsers and Node.js

 [image:]

 Figure 8.1: The structure of the two JavaScript platforms web browser and Node.js. The APIs “standard library” and “platform API” are hosted on top of a foundational layer with a JavaScript engine and a platform-specific “core”.

The structures of the two JavaScript platforms web browser and Node.js are similar (figure 8.1):

 	
 The foundational layer consists of the JavaScript engine and platform-specific “core” functionality.

 	
 Two APIs are hosted on top of this foundation:

 	
 The JavaScript standard library is part of JavaScript proper and runs on top of the engine.

 	
 The platform API are also available from JavaScript – it provides access to platform-specific functionality. For example:

 	
 In browsers, you need to use the platform-specific API if you want to do anything related to the user interface: react to mouse clicks, play sounds, etc.

 	
 In Node.js, the platform-specific API lets you read and write files, download data via HTTP, etc.

8.3 JavaScript references

If you have a question about JavaScript, I can recommend the following online resources:

 	
 MDN Web Docs: cover various web technologies such as CSS, HTML, JavaScript, and more. An excellent reference.

 	
 Node.js Docs: document the Node.js API.

 	
 ExploringJS.com: My other books cover various aspects of web development:

 	
 “Deep JavaScript: Theory and techniques” describes JavaScript at a level of detail that is beyond the scope of “Exploring JavaScript”.

 	
 “Tackling TypeScript: Upgrading from JavaScript”

 	
 “Shell scripting with Node.js”

8.4 Further reading

 	
 “Next steps: overview of web development” provides a more comprehensive look at web development.

9 Syntax

 	
 9.1 An overview of JavaScript’s syntax

 	
 9.1.1 Basic constructs

 	
 9.1.2 Modules

 	
 9.1.3 Classes

 	
 9.1.4 Exception handling

 	
 9.1.5 Legal variable and property names

 	
 9.1.6 Casing styles

 	
 9.1.7 Capitalization of names

 	
 9.1.8 More naming conventions

 	
 9.1.9 Where to put semicolons?

 	
 9.2 (Advanced)

 	
 9.3 Hashbang lines (Unix shell scripts)

 	
 9.4 Identifiers

 	
 9.4.1 Valid identifiers (variable names, etc.)

 	
 9.4.2 Reserved words

 	
 9.5 Statement vs. expression

 	
 9.5.1 Statements

 	
 9.5.2 Expressions

 	
 9.5.3 What is allowed where?

 	
 9.6 Ambiguous syntax

 	
 9.6.1 Same syntax: function declaration and function expression

 	
 9.6.2 Same syntax: object literal and block

 	
 9.6.3 Disambiguation

 	
 9.7 Semicolons

 	
 9.7.1 Rule of thumb for semicolons

 	
 9.7.2 Semicolons: control statements

 	
 9.8 Automatic semicolon insertion (ASI)

 	
 9.8.1 ASI triggered unexpectedly

 	
 9.8.2 ASI unexpectedly not triggered

 	
 9.9 Semicolons: best practices

 	
 9.10 Strict mode vs. sloppy mode

 	
 9.10.1 Switching on strict mode

 	
 9.10.2 Improvements in strict mode

9.1 An overview of JavaScript’s syntax

This is a very first look at JavaScript’s syntax. Don’t worry if some things don’t make sense, yet. They will all be explained in more detail later in this book.

This overview is not exhaustive, either. It focuses on the essentials.

9.1.1 Basic constructs

9.1.1.1 Comments

// single-line comment

/*
Comment with
multiple lines
*/

9.1.1.2 Primitive (atomic) values

Booleans:

true
false

Numbers:

1.141
-123

The basic number type is used for both floating point numbers (doubles) and integers.

Bigints:

17n
-49n

The basic number type can only properly represent integers within a range of 53 bits plus sign. Bigints can grow arbitrarily large in size.

Strings:

'abc'
"abc"
`String with interpolated values: ${256} and ${true}`

JavaScript has no extra type for characters. It uses strings to represent them.

9.1.1.3 Assertions

An assertion describes what the result of a computation is expected to look like and throws an exception if those expectations aren’t correct. For example, the following assertion states that the result of the computation 7 plus 1 must be 8:

assert.equal(7 + 1, 8);

assert.equal() is a method call (the object is assert, the method is .equal()) with two arguments: the actual result and the expected result. It is part of a Node.js assertion API that is explained later in this book.

There is also assert.deepEqual() that compares objects deeply.

9.1.1.4 Logging to the console

Logging to the console of a browser or Node.js:

// Printing a value to standard out (another method call)
console.log('Hello!');

// Printing error information to standard error
console.error('Something went wrong!');

9.1.1.5 Operators

// Operators for booleans
assert.equal(true && false, false); // And
assert.equal(true || false, true); // Or

// Operators for numbers
assert.equal(3 + 4, 7);
assert.equal(5 - 1, 4);
assert.equal(3 * 4, 12);
assert.equal(10 / 4, 2.5);

// Operators for bigints
assert.equal(3n + 4n, 7n);
assert.equal(5n - 1n, 4n);
assert.equal(3n * 4n, 12n);
assert.equal(10n / 4n, 2n);

// Operators for strings
assert.equal('a' + 'b', 'ab');
assert.equal('I see ' + 3 + ' monkeys', 'I see 3 monkeys');

// Comparison operators
assert.equal(3 < 4, true);
assert.equal(3 <= 4, true);
assert.equal('abc' === 'abc', true);
assert.equal('abc' !== 'def', true);

JavaScript also has a == comparison operator. I recommend to avoid it – why is explained in “Recommendation: always use strict equality” (§15.4.3).

9.1.1.6 Declaring variables

const creates immutable variable bindings: Each variable must be initialized immediately and we can’t assign a different value later. However, the value itself may be mutable and we may be able to change its contents. In other words: const does not make values immutable.

// Declaring and initializing x (immutable binding):
const x = 8;

// Would cause a TypeError:
// x = 9;

let creates mutable variable bindings:

// Declaring y (mutable binding):
let y;

// We can assign a different value to y:
y = 3 * 5;

// Declaring and initializing z:
let z = 3 * 5;

9.1.1.7 Ordinary function declarations

// add1() has the parameters a and b
function add1(a, b) {
 return a + b;
}
// Calling function add1()
assert.equal(add1(5, 2), 7);

9.1.1.8 Arrow function expressions

Arrow function expressions are used especially as arguments of function calls and method calls:

const add2 = (a, b) => { return a + b };
// Calling function add2()
assert.equal(add2(5, 2), 7);

// Equivalent to add2:
const add3 = (a, b) => a + b;

The previous code contains the following two arrow functions (the terms expression and statement are explained later in this chapter):

// An arrow function whose body is a code block
(a, b) => { return a + b }

// An arrow function whose body is an expression
(a, b) => a + b

9.1.1.9 Plain objects

// Creating a plain object via an object literal
const obj = {
 first: 'Jane', // property
 last: 'Doe', // property
 getFullName() { // property (method)
 return this.first + ' ' + this.last;
 },
};

// Getting a property value
assert.equal(obj.first, 'Jane');
// Setting a property value
obj.first = 'Janey';

// Calling the method
assert.equal(obj.getFullName(), 'Janey Doe');

9.1.1.10 Arrays

// Creating an Array via an Array literal
const arr = ['a', 'b', 'c'];
assert.equal(arr.length, 3);

// Getting an Array element
assert.equal(arr[1], 'b');
// Setting an Array element
arr[1] = 'β';

// Adding an element to an Array:
arr.push('d');

assert.deepEqual(
 arr, ['a', 'β', 'c', 'd']);

9.1.1.11 Control flow statements

Conditional statement:

if (x < 0) {
 x = -x;
}

for-of loop:

const arr = ['a', 'b'];
for (const element of arr) {
 console.log(element);
}

Output:

a
b

9.1.2 Modules

Each module is a single file. Consider, for example, the following two files with modules in them:

file-tools.mjs
main.mjs

The module in file-tools.mjs exports its function isTextFilePath():

export function isTextFilePath(filePath) {
 return filePath.endsWith('.txt');
}

The module in main.mjs imports the whole module path and the function isTextFilePath():

// Import whole module as namespace object `path`
import * as path from 'node:path';
// Import a single export of module file-tools.mjs
import {isTextFilePath} from './file-tools.mjs';

9.1.3 Classes

class Person {
 constructor(name) {
 this.name = name;
 }
 describe() {
 return `Person named ${this.name}`;
 }
 static logNames(persons) {
 for (const person of persons) {
 console.log(person.name);
 }
 }
}

class Employee extends Person {
 constructor(name, title) {
 super(name);
 this.title = title;
 }
 describe() {
 return super.describe() +
 ` (${this.title})`;
 }
}

const jane = new Employee('Jane', 'CTO');
assert.equal(
 jane.describe(),
 'Person named Jane (CTO)');

9.1.4 Exception handling

function throwsException() {
 throw new Error('Problem!');
}

function catchesException() {
 try {
 throwsException();
 } catch (err) {
 assert.ok(err instanceof Error);
 assert.equal(err.message, 'Problem!');
 }
}

Note:

 	
 try-finally and try-catch-finally are also supported.

 	
 We can throw any value, but features such as stack traces are only supported by Error and its subclasses.

9.1.5 Legal variable and property names

The grammatical category of variable names and property names is called identifier.

Identifiers are allowed to have the following characters:

 	
 Unicode letters: A–Z, a–z (etc.)

 	
 $, _

 	
 Unicode digits: 0–9 (etc.)

 	
 Variable names can’t start with a digit

Some words have special meaning in JavaScript and are called reserved. Examples include: if, true, const.

Reserved words can’t be used as variable names:

const if = 123;
 // SyntaxError: Unexpected token if

But they are allowed as names of properties:

> const obj = { if: 123 };
> obj.if
123

9.1.6 Casing styles

Common casing styles for concatenating words are:

 	
 Camel case: threeConcatenatedWords

 	
 Underscore case (also called snake case): three_concatenated_words

 	
 Dash case (also called kebab case): three-concatenated-words

9.1.7 Capitalization of names

In general, JavaScript uses camel case, except for constants.

Lowercase:

 	
 Functions, variables: myFunction

 	
 Methods: obj.myMethod

 	
 CSS:

 	
 CSS names: my-utility-class (dash case)

 	
 Corresponding JavaScript names: myUtilityClass

 	
 Module file names are usually dash-cased:

import * as theSpecialLibrary from './the-special-library.mjs';

Uppercase:

 	
 Classes: MyClass

All-caps:

 	
 Constants (as shared between modules etc.): MY_CONSTANT (underscore case)

9.1.8 More naming conventions

The following naming conventions are popular in JavaScript.

If the name of a parameter starts with an underscore (or is an underscore) it means that this parameter is not used – for example:

arr.map((_x, i) => i)

If the name of a property of an object starts with an underscore then that property is considered private:

class ValueWrapper {
 constructor(value) {
 this._value = value;
 }
}

9.1.9 Where to put semicolons?

At the end of a statement:

const x = 123;
func();

But not if that statement ends with a curly brace:

while (false) {
 // ···
} // no semicolon

function func() {
 // ···
} // no semicolon

However, adding a semicolon after such a statement is not a syntax error – it is interpreted as an empty statement:

// Function declaration followed by empty statement:
function func() {
 // ···
};

9.2 (Advanced)

All remaining sections of this chapter are advanced.

9.3 Hashbang lines (Unix shell scripts)

In a Unix shell script, we can add a first line that starts with #! to tell Unix which executable should be used to run the script. These two characters have several names, including hashbang, sharp-exclamation, sha-bang (“sha” as in “sharp”) and shebang. Otherwise, hashbang lines are treated as comments by most shell scripting languages and JavaScript does so, too. This is a common hashbang line for Node.js:

#!/usr/bin/env node

If we want to pass arguments to node, we have to use the env option -S (to be safe, some Unixes don’t need it):

#!/usr/bin/env -S node --enable-source-maps --no-warnings=ExperimentalWarning

9.4 Identifiers

9.4.1 Valid identifiers (variable names, etc.)

First character:

 	
 Unicode letter (including accented characters such as é and ü and characters from non-latin alphabets, such as α)

 	
 $

 	
 _

Subsequent characters:

 	
 Legal first characters

 	
 Unicode digits (including Eastern Arabic numerals)

 	
 Some other Unicode marks and punctuations

Examples:

const ε = 0.0001;
const строка = '';
let _tmp = 0;
const $foo2 = true;

9.4.2 Reserved words

Reserved words can’t be variable names, but they can be property names.

All JavaScript keywords are reserved words:

 await break case catch class const continue debugger default delete do else export extends finally for function if import in instanceof let new return static super switch this throw try typeof var void while with yield

The following tokens are also keywords, but currently not used in the language:

 enum implements package protected interface private public

The following literals are reserved words:

 true false null

Technically, these words are not reserved, but you should avoid them, too, because they effectively are keywords:

 Infinity NaN undefined async

You shouldn’t use the names of global variables (String, Math, etc.) for your own variables and parameters, either.

9.5 Statement vs. expression

In this section, we explore how JavaScript distinguishes two kinds of syntactic constructs: statements and expressions. Afterward, we’ll see that that can cause problems because the same syntax can mean different things, depending on where it is used.

 [image: Icon “details”] We pretend there are only statements and expressions

 For the sake of simplicity, we pretend that there are only statements and expressions in JavaScript.

9.5.1 Statements

A statement is a piece of code that can be executed and performs some kind of action. For example, if is a statement:

let myStr;
if (myBool) {
 myStr = 'Yes';
} else {
 myStr = 'No';
}

One more example of a statement: a function declaration.

function twice(x) {
 return x + x;
}

9.5.2 Expressions

An expression is a piece of code that can be evaluated to produce a value. For example, the code between the parentheses is an expression:

let myStr = (myBool ? 'Yes' : 'No');

The operator _?_:_ used between the parentheses is called the ternary operator. It is the expression version of the if statement.

Let’s look at more examples of expressions. We enter expressions and the REPL evaluates them for us:

> 'ab' + 'cd'
'abcd'
> Number('123')
123
> true || false
true

9.5.3 What is allowed where?

The current location within JavaScript source code determines which kind of syntactic constructs you are allowed to use:

 	
 The body of a function must be a sequence of statements:

function max(x, y) {
 if (x > y) {
 return x;
 } else {
 return y;
 }
}

 	
 The arguments of a function call or a method call must be expressions:

console.log('ab' + 'cd', Number('123'));

However, expressions can be used as statements. Then they are called expression statements. The opposite is not true: when the context requires an expression, you can’t use a statement.

The following code demonstrates that any expression bar() can be either expression or statement – it depends on the context:

function f() {
 console.log(bar()); // bar() is expression
 bar(); // bar(); is (expression) statement
}

9.6 Ambiguous syntax

JavaScript has several programming constructs that are syntactically ambiguous: the same syntax is interpreted differently, depending on whether it is used in statement context or in expression context. This section explores the phenomenon and the pitfalls it causes.

9.6.1 Same syntax: function declaration and function expression

A function declaration is a statement:

function id(x) {
 return x;
}

A function expression is an expression (right-hand side of =):

const id = function me(x) {
 return x;
};

9.6.2 Same syntax: object literal and block

In the following code, {} is an object literal: an expression that creates an empty object.

const obj = {};

This is an empty code block (a statement):

{
}

9.6.3 Disambiguation

The ambiguities are only a problem in statement context: If the JavaScript parser encounters ambiguous syntax, it doesn’t know if it’s a plain statement or an expression statement. For example:

 	
 If a statement starts with function: Is it a function declaration or a function expression?

 	
 If a statement starts with {: Is it an object literal or a code block?

To resolve the ambiguity, statements starting with function or { are never interpreted as expressions. If you want an expression statement to start with either one of these tokens, you must wrap it in parentheses:

(function (x) { console.log(x) })('abc');

Output:

abc

In this code:

 	
 We first create a function via a function expression:

function (x) { console.log(x) }

 	
 Then we invoke that function: ('abc')

The code fragment shown in (1) is only interpreted as an expression because we wrap it in parentheses. If we didn’t, we would get a syntax error because then JavaScript expects a function declaration and complains about the missing function name. Additionally, you can’t put a function call immediately after a function declaration.

Later in this book, we’ll see more examples of pitfalls caused by syntactic ambiguity:

 	
 Assigning via object destructuring

 	
 Returning an object literal from an arrow function

9.7 Semicolons

9.7.1 Rule of thumb for semicolons

Each statement is terminated by a semicolon:

const x = 3;
someFunction('abc');
i++;

except statements ending with blocks:

function foo() {
 // ···
}
if (y > 0) {
 // ···
}

The following case is slightly tricky:

const func = () => {}; // semicolon!

The whole const declaration (a statement) ends with a semicolon, but inside it, there is an arrow function expression. That is, it’s not the statement per se that ends with a curly brace; it’s the embedded arrow function expression. That’s why there is a semicolon at the end.

9.7.2 Semicolons: control statements

The body of a control statement is itself a statement. For example, this is the syntax of the while loop:

while (condition)
 statement

The body can be a single statement:

while (a > 0) a--;

But blocks are also statements and therefore legal bodies of control statements:

while (a > 0) {
 a--;
}

If you want a loop to have an empty body, your first option is an empty statement (which is just a semicolon):

while (processNextItem() > 0);

Your second option is an empty block:

while (processNextItem() > 0) {}

9.8 Automatic semicolon insertion (ASI)

While I recommend to always write semicolons, most of them are optional in JavaScript. The mechanism that makes this possible is called automatic semicolon insertion (ASI). In a way, it corrects syntax errors.

ASI works as follows. Parsing of a statement continues until there is either:

 	
 A semicolon

 	
 A line terminator followed by an illegal token

In other words, ASI can be seen as inserting semicolons at line breaks. The next subsections cover the pitfalls of ASI.

9.8.1 ASI triggered unexpectedly

The good news about ASI is that – if you don’t rely on it and always write semicolons – there is only one pitfall that you need to be aware of. It is that JavaScript forbids line breaks after some tokens. If you do insert a line break, a semicolon will be inserted, too.

The token where this is most practically relevant is return. Consider, for example, the following code:

return
{
 first: 'jane'
};

This code is parsed as:

return;
{
 first: 'jane';
}
;

That is:

 	
 Return statement without operand: return;

 	
 Start of code block: {

 	
 Expression statement 'jane'; with label first:

 	
 End of code block: }

 	
 Empty statement: ;

Why does JavaScript do this? It protects against accidentally returning a value in a line after a return.

9.8.2 ASI unexpectedly not triggered

In some cases, ASI is not triggered when you think it should be. That makes life more complicated for people who don’t like semicolons because they need to be aware of those cases. The following are three examples. There are more.

Example 1: Unintended function call.

a = b + c
(d + e).print()

Parsed as:

a = b + c(d + e).print();

Example 2: Unintended division.

a = b
/hi/g.exec(c).map(d)

Parsed as:

a = b / hi / g.exec(c).map(d);

Example 3: Unintended property access.

someFunction()
['ul', 'ol'].map(x => x + x)

Executed as:

const propKey = ('ul','ol'); // comma operator
assert.equal(propKey, 'ol');

someFunction()[propKey].map(x => x + x);

9.9 Semicolons: best practices

I recommend that you always write semicolons:

 	
 I like the visual structure it gives code – you clearly see where a statement ends.

 	
 There are less rules to keep in mind.

 	
 The majority of JavaScript programmers use semicolons.

However, there are also many people who don’t like the added visual clutter of semicolons. If you are one of them: Code without them is legal. I recommend that you use tools to help you avoid mistakes. The following are two examples:

 	
 The automatic code formatter Prettier can be configured to not use semicolons. It then automatically fixes problems. For example, if it encounters a line that starts with a square bracket, it prefixes that line with a semicolon.

 	
 The static checker ESLint has a rule that you tell your preferred style (always semicolons or as few semicolons as possible) and that warns you about critical issues.

9.10 Strict mode vs. sloppy mode

Starting with ECMAScript 5, JavaScript has two modes in which JavaScript can be executed:

 	
 Normal “sloppy” mode is the default in scripts (code fragments that are a precursor to modules and supported by browsers).

 	
 Strict mode is the default in modules and classes, and can be switched on in scripts (how is explained later). In this mode, several pitfalls of normal mode are removed and more exceptions are thrown.

You’ll rarely encounter sloppy mode in modern JavaScript code, which is almost always located in modules. In this book, I assume that strict mode is always switched on.

9.10.1 Switching on strict mode

In script files and CommonJS modules, you switch on strict mode for a complete file, by putting the following code in the first line:

'use strict';

The neat thing about this “directive” is that ECMAScript versions before 5 simply ignore it: it’s an expression statement that does nothing.

You can also switch on strict mode for just a single function:

function functionInStrictMode() {
 'use strict';
}

9.10.2 Improvements in strict mode

Let’s look at three things that strict mode does better than sloppy mode. Just in this one section, all code fragments are executed in sloppy mode.

9.10.2.1 Sloppy mode pitfall: changing an undeclared variable creates a global variable

In non-strict mode, changing an undeclared variable creates a global variable.

function sloppyFunc() {
 undeclaredVar1 = 123;
}
sloppyFunc();
// Created global variable `undeclaredVar1`:
assert.equal(undeclaredVar1, 123);

Strict mode does it better and throws a ReferenceError. That makes it easier to detect typos.

function strictFunc() {
 'use strict';
 undeclaredVar2 = 123;
}
assert.throws(
 () => strictFunc(),
 {
 name: 'ReferenceError',
 message: 'undeclaredVar2 is not defined',
 });

The assert.throws() states that its first argument, a function, throws a ReferenceError when it is called.

9.10.2.2 Function declarations are block-scoped in strict mode, function-scoped in sloppy mode

In strict mode, a variable created via a function declaration only exists within the innermost enclosing block:

function strictFunc() {
 'use strict';
 {
 function foo() { return 123 }
 }
 return foo(); // ReferenceError
}
assert.throws(
 () => strictFunc(),
 {
 name: 'ReferenceError',
 message: 'foo is not defined',
 });

In sloppy mode, function declarations are function-scoped:

function sloppyFunc() {
 {
 function foo() { return 123 }
 }
 return foo(); // works
}
assert.equal(sloppyFunc(), 123);

9.10.2.3 Sloppy mode doesn’t throw exceptions when changing immutable data

In strict mode, you get an exception if you try to change immutable data:

function strictFunc() {
 'use strict';
 true.prop = 1; // TypeError
}
assert.throws(
 () => strictFunc(),
 {
 name: 'TypeError',
 message: "Cannot create property 'prop' on boolean 'true'",
 });

In sloppy mode, the assignment fails silently:

function sloppyFunc() {
 true.prop = 1; // fails silently
 return true.prop;
}
assert.equal(sloppyFunc(), undefined);

 [image: Icon “external”] Further reading: sloppy mode

 For more information on how sloppy mode differs from strict mode, see MDN.

10 Consoles: interactive JavaScript command lines

 	
 10.1 Trying out JavaScript code

 	
 10.1.1 Browser consoles

 	
 10.1.2 The Node.js REPL

 	
 10.1.3 Other options

 	
 10.2 The console.* API: printing data and more

 	
 10.2.1 Printing values: console.log() (stdout)

 	
 10.2.2 Printing error information: console.error() (stderr)

 	
 10.2.3 Printing nested objects via JSON.stringify()

10.1 Trying out JavaScript code

You have many options for quickly running pieces of JavaScript code. The following subsections describe a few of them.

10.1.1 Browser consoles

Web browsers have so-called consoles: interactive command lines to which you can print text via console.log() and where you can run pieces of code. How to open the console differs from browser to browser. Figure 10.1 shows the console of Google Chrome.

To find out how to open the console in your web browser, you can do a web search for “console «name-of-your-browser»”. These are pages for a few commonly used web browsers:

 	
 Apple Safari

 	
 Google Chrome

 	
 Microsoft Edge

 	
 Mozilla Firefox

 [image:]

 Figure 10.1: The console of the web browser “Google Chrome” is open (in the bottom half of window) while visiting a web page.

10.1.2 The Node.js REPL

REPL stands for read-eval-print loop and basically means command line. To use it, you must first start Node.js from an operating system command line, via the command node. Then an interaction with it looks as depicted in figure 10.2: The text after > is input from the user; everything else is output from Node.js.

 [image:]

 Figure 10.2: Starting and using the Node.js REPL (interactive command line).

 [image: Icon “reading”] Reading: REPL interactions

 I occasionally demonstrate JavaScript via REPL interactions. Then I also use greater-than symbols (>) to mark input – for example:

> 3 + 5
8

10.1.3 Other options

Other options include:

 	
 There are many web apps that let you experiment with JavaScript in web browsers – for example, Babel’s REPL.

 	
 There are also native apps and IDE plugins for running JavaScript.

 [image: Icon “warning”] Consoles often run in non-strict mode

 In modern JavaScript, most code (e.g., modules) is executed in strict mode. However, consoles often run in non-strict mode. Therefore, you may occasionally get slightly different results when using a console to execute code from this book.

10.2 The console.* API: printing data and more

In browsers, the console is something you can bring up that is normally hidden. For Node.js, the console is the terminal that Node.js is currently running in.

The full console.* API is documented on MDN web docs and on the Node.js website. It is not part of the JavaScript language standard, but much functionality is supported by both browsers and Node.js.

In this chapter, we only look at the following two methods for printing data (“printing” means displaying in the console):

 	
 console.log()

 	
 console.error()

10.2.1 Printing values: console.log() (stdout)

There are two variants of this operation:

console.log(...values: Array<any>): void
console.log(pattern: string, ...values: Array<any>): void

10.2.1.1 Printing multiple values

The first variant prints (text representations of) values on the console:

console.log('abc', 123, true);

Output:

abc 123 true

At the end, console.log() always prints a newline. Therefore, if you call it with zero arguments, it just prints a newline.

10.2.1.2 Printing a string with substitutions

The second variant performs string substitution:

console.log('Test: %s %j', 123, 'abc');

Output:

Test: 123 "abc"

These are some of the directives you can use for substitutions:

 	
 %s converts the corresponding value to a string and inserts it.

console.log('%s %s', 'abc', 123);

 Output:

abc 123

 	
 %o inserts a string representation of an object.

console.log('%o', {foo: 123, bar: 'abc'});

 Output:

{ foo: 123, bar: 'abc' }

 	
 %j converts a value to a JSON string and inserts it.

console.log('%j', {foo: 123, bar: 'abc'});

 Output:

{"foo":123,"bar":"abc"}

 	
 %% inserts a single %.

console.log('%s%%', 99);

 Output:

99%

10.2.2 Printing error information: console.error() (stderr)

console.error() works the same as console.log(), but what it logs is considered error information. For Node.js, that means that the output goes to stderr instead of stdout on Unix.

10.2.3 Printing nested objects via JSON.stringify()

JSON.stringify() is occasionally useful for printing nested objects:

console.log(JSON.stringify({first: 'Jane', last: 'Doe'}, null, 2));

Output:

{
 "first": "Jane",
 "last": "Doe"
}

11 Assertion API

 	
 11.1 Assertions in software development

 	
 11.2 How assertions are used in this book

 	
 11.2.1 Documenting results in code examples via assertions

 	
 11.2.2 Implementing test-driven exercises via assertions

 	
 11.3 Normal comparison vs. deep comparison

 	
 11.4 Quick reference: module assert

 	
 11.4.1 Normal equality: assert.equal()

 	
 11.4.2 Deep equality: assert.deepEqual()

 	
 11.4.3 Expecting exceptions: assert.throws()

 	
 11.4.4 Always fail: assert.fail()

11.1 Assertions in software development

In software development, assertions state facts about values or pieces of code that must be true. If they aren’t, an exception is thrown. Node.js supports assertions via its built-in module assert – for example:

import assert from 'node:assert/strict';
assert.equal(3 + 5, 8);

This assertion states that the expected result of 3 plus 5 is 8. The import statement uses the recommended strict version of assert.

11.2 How assertions are used in this book

In this book, assertions are used in two ways: to document results in code examples and to implement test-driven exercises.

11.2.1 Documenting results in code examples via assertions

In code examples, assertions express expected results. Take, for example, the following function:

function id(x) {
 return x;
}

id() returns its parameter. We can show it in action via an assertion:

assert.equal(id('abc'), 'abc');

In the examples, I usually omit the statement for importing assert.

The motivation behind using assertions is:

 	
 We can specify precisely what is expected.

 	
 Code examples can be tested automatically, which ensures that they really work.

11.2.2 Implementing test-driven exercises via assertions

The exercises for this book are test-driven, via the test framework Mocha. Checks inside the tests are made via methods of assert.

The following is an example of such a test:

// For the exercise, we must implement the function hello().
// The test checks if we have done it properly.
test('First exercise', () => {
 assert.equal(hello('world'), 'Hello world!');
 assert.equal(hello('Jane'), 'Hello Jane!');
 assert.equal(hello('John'), 'Hello John!');
 assert.equal(hello(''), 'Hello !');
});

For more information, see “Getting started with exercises” (§12).

11.3 Normal comparison vs. deep comparison

The strict equal() uses === to compare values. Therefore, an object is only equal to itself – even if another object has the same content (because === does not compare the contents of objects, only their identities):

assert.notEqual({foo: 1}, {foo: 1});

deepEqual() is a better choice for comparing objects:

assert.deepEqual({foo: 1}, {foo: 1});

This method works for Arrays, too:

assert.notEqual(['a', 'b', 'c'], ['a', 'b', 'c']);
assert.deepEqual(['a', 'b', 'c'], ['a', 'b', 'c']);

11.4 Quick reference: module assert

For the full documentation, see the Node.js docs.

11.4.1 Normal equality: assert.equal()

 	
 assert.equal(actual, expected, message?)

 actual === expected must be true. If not, an AssertionError is thrown.

assert.equal(3+3, 6);

 	
 assert.notEqual(actual, expected, message?)

 actual !== expected must be true. If not, an AssertionError is thrown.

assert.notEqual(3+3, 22);

The optional last parameter message can be used to explain what is asserted. If the assertion fails, the message is used to set up the AssertionError that is thrown.

let e;
try {
 const x = 3;
 assert.equal(x, 8, 'x must be equal to 8')
} catch (err) {
 assert.equal(
 String(err),
 'AssertionError [ERR_ASSERTION]: x must be equal to 8');
}

11.4.2 Deep equality: assert.deepEqual()

 	
 assert.deepEqual(actual, expected, message?)

 actual must be deeply equal to expected. If not, an AssertionError is thrown.

assert.deepEqual([1,2,3], [1,2,3]);
assert.deepEqual([], []);

// To .equal(), an object is only equal to itself:
assert.notEqual([], []);

 	
 assert.notDeepEqual(actual, expected, message?)

 actual must not be deeply equal to expected. If it is, an AssertionError is thrown.

assert.notDeepEqual([1,2,3], [1,2]);

11.4.3 Expecting exceptions: assert.throws()

If we want to (or expect to) receive an exception, we need assert.throws(): This function calls its first parameter, the function callback, and only succeeds if it throws an exception. Additional parameters can be used to specify what that exception must look like.

 	
 assert.throws(callback, message?): void

assert.throws(
 () => {
 null.prop;
 }
);

 	
 assert.throws(callback, errorClass, message?): void

assert.throws(
 () => {
 null.prop;
 },
 TypeError
);

 	
 assert.throws(callback, errorRegExp, message?): void

assert.throws(
 () => {
 null.prop;
 },
 /^TypeError: Cannot read properties of null \(reading 'prop'\)$/
);

 	
 assert.throws(callback, errorObject, message?): void

assert.throws(
 () => {
 null.prop;
 },
 {
 name: 'TypeError',
 message: "Cannot read properties of null (reading 'prop')",
 }
);

11.4.4 Always fail: assert.fail()

 	
 assert.fail(messageOrError?)

 By default, it throws an AssertionError when it is called. That is occasionally useful for unit testing. messageOrError can be:

 	
 A string. That enables to override the default error message.

 	
 An instance of Error (or a subclass). That enables us to throw a different value.

try {
 functionThatShouldThrow();
 assert.fail();
} catch (_) {
 // Success
}

12 Getting started with exercises

 	
 12.1 Exercises

 	
 12.1.1 Installing the exercises

 	
 12.1.2 Running exercises

 	
 12.2 Unit tests in JavaScript

 	
 12.2.1 A typical test

 	
 12.2.2 Asynchronous tests in Mocha

Throughout most chapters, there are boxes that point to exercises. These are a paid feature, but a comprehensive preview is available. This chapter explains how to get started with them.

12.1 Exercises

12.1.1 Installing the exercises

To install the exercises:

 	
 Download and unzip exploring-js-code.zip

 	
 Follow the instructions in README.txt

12.1.2 Running exercises

 	
 Exercises are referred to by path in this book.

 	
 For example: exercises/exercises/first_module_test.mjs

 	
 Within each file:

 	
 The first line contains the command for running the exercise.

 	
 The following lines describe what you have to do.

12.2 Unit tests in JavaScript

All exercises in this book are tests that are run via the test framework Mocha. This section gives a brief introduction.

12.2.1 A typical test

Typical test code is split into two parts:

 	
 Part 1: the code to be tested.

 	
 Part 2: the tests for the code.

Take, for example, the following two files:

 	
 id.mjs (code to be tested)

 	
 id_test.mjs (tests)

12.2.1.1 Part 1: the code

The code itself resides in id.mjs:

export function id(x) {
 return x;
}

The key thing here is: everything we want to test must be exported. Otherwise, the test code can’t access it.

12.2.1.2 Part 2: the tests

 [image: Icon “reading”] Don’t worry about the exact details of tests

 You don’t need to worry about the exact details of tests: They are always implemented for you. Therefore, you only need to read them, but not write them.

The tests for the code reside in id_test.mjs:

// npm t demos/exercises/id_test.mjs
suite('id_test.mjs');

import assert from 'node:assert/strict'; // (A)
import {id} from './id.mjs'; // (B)

test('My test', () => { // (C)
 assert.equal(id('abc'), 'abc'); // (D)
});

The core of this test file is line D – an assertion: assert.equal() specifies that the expected result of id('abc') is 'abc'.

As for the other lines:

 	
 The comment at the very beginning shows the shell command for running the test.

 	
 Line A: We import the Node.js assertion library (in strict assertion mode).

 	
 Line B: We import the function to test.

 	
 Line C: We define a test. This is done by calling the function test():

 	
 First parameter: the name of the test.

 	
 Second parameter: the test code, which is provided via an arrow function. The parameter t gives us access to AVA’s testing API (assertions, etc.).

To run the test, we execute the following in a command line:

npm t demos/exercises/id_test.mjs

The t is an abbreviation for test. That is, the long version of this command is:

npm test demos/exercises/id_test.mjs

 [image: Icon “exercise”] Exercise: Your first exercise

 The following exercise gives you a first taste of what exercises are like:

 	
 exercises/exercises/first_module_test.mjs

12.2.2 Asynchronous tests in Mocha

 [image: Icon “reading”] Reading

 You may want to postpone reading this section until you get to the chapters on asynchronous programming.

Writing tests for asynchronous code requires extra work: The test receives its results later and has to signal to Mocha that it isn’t finished yet when it returns. The following subsections examine three ways of doing so.

12.2.2.1 Asynchronicity via callbacks

If the callback we pass to test() has a parameter (e.g., done), Mocha switches to callback-based asynchronicity. When we are done with our asynchronous work, we have to call done:

test('divideCallback', (done) => {
 divideCallback(8, 4, (error, result) => {
 if (error) {
 done(error);
 } else {
 assert.strictEqual(result, 2);
 done();
 }
 });
});

This is what divideCallback() looks like:

function divideCallback(x, y, callback) {
 if (y === 0) {
 callback(new Error('Division by zero'));
 } else {
 callback(null, x / y);
 }
}

12.2.2.2 Asynchronicity via Promises

If a test returns a Promise, Mocha switches to Promise-based asynchronicity. A test is considered successful if the Promise is fulfilled and failed if the Promise is rejected or if a settlement takes longer than a timeout.

test('dividePromise 1', () => {
 return dividePromise(8, 4)
 .then(result => {
 assert.strictEqual(result, 2);
 });
});

dividePromise() is implemented as follows:

function dividePromise(x, y) {
 return new Promise((resolve, reject) => {
 if (y === 0) {
 reject(new Error('Division by zero'));
 } else {
 resolve(x / y);
 }
 });
}

12.2.2.3 Async functions as test “bodies”

Async functions always return Promises. Therefore, an async function is a convenient way of implementing an asynchronous test. The following code is equivalent to the previous example.

test('dividePromise 2', async () => {
 const result = await dividePromise(8, 4);
 assert.strictEqual(result, 2);
 // No explicit return necessary!
});

We don’t need to explicitly return anything: The implicitly returned undefined is used to fulfill the Promise returned by this async function. And if the test code throws an exception, then the async function takes care of rejecting the returned Promise.

III Variables and values

13 Variables and assignment

 	
 13.1 let

 	
 13.2 const

 	
 13.2.1 const and immutability

 	
 13.2.2 const and loops

 	
 13.3 Deciding between const and let

 	
 13.4 The scope of a variable

 	
 13.4.1 Shadowing variables

 	
 13.5 (Advanced)

 	
 13.6 Terminology: static vs. dynamic

 	
 13.6.1 Static phenomenon: scopes of variables

 	
 13.6.2 Dynamic phenomenon: function calls

 	
 13.7 Global variables and the global object

 	
 13.7.1 globalThis [ES2020]

 	
 13.8 Declarations: scope and activation

 	
 13.8.1 const and let: temporal dead zone

 	
 13.8.2 Function declarations and early activation

 	
 13.8.3 Class declarations are not activated early

 	
 13.8.4 var: hoisting (partial early activation)

 	
 13.9 Closures

 	
 13.9.1 Bound variables vs. free variables

 	
 13.9.2 What is a closure?

 	
 13.9.3 Example: A factory for incrementors

 	
 13.9.4 Use cases for closures

These are JavaScript’s main ways of declaring variables:

 	
 let declares mutable variables.

 	
 const declares constants (immutable variables).

Before ES6, there was also var. But it has several quirks, so it’s best to avoid it in modern JavaScript. You can read more about it in Speaking JavaScript.

13.1 let

Variables declared via let are mutable:

let i;
i = 0;
i = i + 1;
assert.equal(i, 1);

You can also declare and assign at the same time:

let i = 0;

13.2 const

Variables declared via const are immutable. You must always initialize immediately:

const i = 0; // must initialize

assert.throws(
 () => { i = i + 1 },
 {
 name: 'TypeError',
 message: 'Assignment to constant variable.',
 }
);

13.2.1 const and immutability

In JavaScript, const only means that the binding (the association between variable name and variable value) is immutable. The value itself may be mutable, like obj in the following example.

const obj = { prop: 0 };

// Allowed: changing properties of `obj`
obj.prop = obj.prop + 1;
assert.equal(obj.prop, 1);

// Not allowed: assigning to `obj`
assert.throws(
 () => { obj = {} },
 {
 name: 'TypeError',
 message: 'Assignment to constant variable.',
 }
);

13.2.2 const and loops

You can use const with for-of loops, where a fresh binding is created for each iteration:

const arr = ['hello', 'world'];
for (const elem of arr) {
 console.log(elem);
}

Output:

hello
world

In plain for loops, you must use let, however:

const arr = ['hello', 'world'];
for (let i=0; i<arr.length; i++) {
 const elem = arr[i];
 console.log(elem);
}

13.3 Deciding between const and let

I recommend the following rules to decide between const and let:

 	
 const indicates an immutable binding and that a variable never changes its value. Prefer it.

 	
 let indicates that the value of a variable changes. Use it only when you can’t use const.

 [image: Icon “exercise”] Exercise: const

 exercises/variables-assignment/const_exrc.mjs

13.4 The scope of a variable

The scope of a variable is the region of a program where it can be accessed. Consider the following code.

{ // // Scope A. Accessible: x
 const x = 0;
 assert.equal(x, 0);
 { // Scope B. Accessible: x, y
 const y = 1;
 assert.equal(x, 0);
 assert.equal(y, 1);
 { // Scope C. Accessible: x, y, z
 const z = 2;
 assert.equal(x, 0);
 assert.equal(y, 1);
 assert.equal(z, 2);
 }
 }
}
// Outside. Not accessible: x, y, z
assert.throws(
 () => console.log(x),
 {
 name: 'ReferenceError',
 message: 'x is not defined',
 }
);

 	
 Scope A is the (direct) scope of x.

 	
 Scopes B and C are inner scopes of scope A.

 	
 Scope A is an outer scope of scope B and scope C.

Each variable is accessible in its direct scope and all scopes nested within that scope.

The variables declared via const and let are called block-scoped because their scopes are always the innermost surrounding blocks.

13.4.1 Shadowing variables

You can’t declare the same variable twice at the same level:

assert.throws(
 () => {
 eval('let x = 1; let x = 2;');
 },
 {
 name: 'SyntaxError',
 message: "Identifier 'x' has already been declared",
 });

 [image: Icon “details”] Why eval()?

 eval() delays parsing (and therefore the SyntaxError), until the callback of assert.throws() is executed. If we didn’t use it, we’d already get an error when this code is parsed and assert.throws() wouldn’t even be executed.

You can, however, nest a block and use the same variable name x that you used outside the block:

const x = 1;
assert.equal(x, 1);
{
 const x = 2;
 assert.equal(x, 2);
}
assert.equal(x, 1);

Inside the block, the inner x is the only accessible variable with that name. The inner x is said to shadow the outer x. Once you leave the block, you can access the old value again.

13.5 (Advanced)

All remaining sections are advanced.

13.6 Terminology: static vs. dy