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Highlights:
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What is not covered by this book?
Isn’t this book too long for impatient people?
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FAQ: book and supplementary material
This chapter answers questions you may have and gives tips for reading this book.
How to read this book
In which order should I read the content in this book?
This book is three books in one:
The quizzes and exercises play an important part in helping you practice and retain what you have learned.
Why are some chapters and sections marked with “(advanced)”?
Several chapters and sections are marked with “(advanced)”. The idea is that you can initially skip them. That is, you can get a quick working knowledge of JavaScript by only reading the basic (non-advanced) content.
As your knowledge evolves, you can later come back to some or all of the advanced content.
Why are some chapters marked with “(bonus)”?
The bonus chapters are only available in the paid versions of this book (print and ebook). They are listed in the full table of contents.
I own a digital version
How do I submit feedback and corrections?
The HTML version of this book (online, or ad-free archive in the paid version) has a link at the end of each chapter that enables you to give feedback.
How do I get updates for the downloads I bought at Payhip?
The receipt email for the purchase includes a link. You’ll always be able to download the latest version of the files at that location.
If you opted into emails while buying, you’ll get an email whenever there is new content. To opt in later, you must contact Payhip (see bottom of payhip.com).
Can I upgrade from package “Ebooks” to package “Ebooks + exercises + quizzes”?
Yes. The instructions for doing so are on the homepage of this book.
I own the print version
Can I get a discount for a digital version?
If you bought the print version, you can get a discount for a digital version. The homepage of the print version explains how.
Alas, the reverse is not possible: you cannot get a discount for the print version if you bought a digital version.
Can I submit an error or see submitted errors?
On the homepage of the print version, you can submit errors and see submitted errors.
Is there an online list with the URLs in this book?
The homepage of the print version has a list with all the URLs that you see in the footnotes of the print version.
Notations and conventions
What is a type signature? Why am I seeing static types in this book?
For example, you may see:
Number.isFinite(num: number): boolean
That is called the type signature of Number.isFinite(). This notation, especially the static types number of num and boolean of the result, are not real JavaScript. The notation is borrowed from the compile-to-JavaScript language TypeScript (which is mostly just JavaScript plus static typing).
Why is this notation being used? It helps give you a quick idea of how a function works. The notation is explained in detail in “Tackling TypeScript”, but is usually relatively intuitive.
What do the notes with icons mean?
Reading instructions
Explains how to best read the content.
External content
Points to additional, external, content.
Tip
Gives a tip related to the current content.
Question
Asks and answers a question pertinent to the current content (think FAQ).
Warning
Warns about pitfalls, etc.
Details
Provides additional details, complementing the current content. It is similar to a footnote.
Exercise
Mentions the path of a test-driven exercise that you can do at that point.
Quiz
Indicates that there is a quiz for the current (part of a) chapter.
History and evolution of JavaScript
How JavaScript was created
JavaScript was created in May 1995 in 10 days, by Brendan Eich. Eich worked at Netscape and implemented JavaScript for their web browser, Netscape Navigator.
The idea was that major interactive parts of the client-side web were to be implemented in Java. JavaScript was supposed to be a glue language for those parts and to also make HTML slightly more interactive. Given its role of assisting Java, JavaScript had to look like Java. That ruled out existing solutions such as Perl, Python, TCL, and others.
Initially, JavaScript’s name changed several times:
Standardizing JavaScript
There are two standards for JavaScript:
The language described by these standards is called ECMAScript, not JavaScript. A different name was chosen because Sun (now Oracle) had a trademark for the latter name. The “ECMA” in “ECMAScript” comes from the organization that hosts the primary standard.
The original name of that organization was ECMA, an acronym for European Computer Manufacturers Association. It was later changed to Ecma International (with “Ecma” being a proper name, not an acronym) because the organization’s activities had expanded beyond Europe. The initial all-caps acronym explains the spelling of ECMAScript.
In principle, JavaScript and ECMAScript mean the same thing. Sometimes the following distinction is made:
Therefore, ECMAScript 6 is a version of the language (its 6th edition).
Timeline of ECMAScript versions
This is a brief timeline of ECMAScript versions:
Ecma Technical Committee 39 (TC39)
TC39 is the committee that evolves JavaScript. Its members are, strictly speaking, companies: Adobe, Apple, Facebook, Google, Microsoft, Mozilla, Opera, Twitter, and others. That is, companies that are usually fierce competitors are working together for the good of the language.
Every two months, TC39 has meetings that member-appointed delegates and invited experts attend. The minutes of those meetings are public in a GitHub repository.
The TC39 process
With ECMAScript 6, two issues with the release process used at that time became obvious:
If too much time passes between releases then features that are ready early, have to wait a long time until they can be released. And features that are ready late, risk being rushed to make the deadline.
Features were often designed long before they were implemented and used. Design deficiencies related to implementation and use were therefore discovered too late.
In response to these issues, TC39 instituted the new TC39 process:
The result: smaller, incremental releases, whose features have already been field-tested. Fig. 1 illustrates the TC39 process.
Figure 1: Each ECMAScript feature proposal goes through stages that are numbered from 0 to 4. Champions are TC39 members that support the authors of a feature. Test 262 is a suite of tests that checks JavaScript engines for compliance with the language specification.
ES2016 was the first ECMAScript version that was designed according to the TC39 process.
Tip: Think in individual features and stages, not ECMAScript versions
Up to and including ES6, it was most common to think about JavaScript in terms of ECMAScript versions – for example, “Does this browser support ES6 yet?”
Starting with ES2016, it’s better to think in individual features: once a feature reaches stage 4, you can safely use it (if it’s supported by the JavaScript engines you are targeting). You don’t have to wait until the next ECMAScript release.
FAQ: TC39 process
How is [my favorite proposed feature] doing?
If you are wondering what stages various proposed features are in, consult the GitHub repository proposals.
Is there an official list of ECMAScript features?
Yes, the TC39 repo lists finished proposals and mentions in which ECMAScript versions they were introduced.
Evolving JavaScript: Don’t break the web
One idea that occasionally comes up is to clean up JavaScript by removing old features and quirks. While the appeal of that idea is obvious, it has significant downsides.
Let’s assume we create a new version of JavaScript that is not backward compatible and fix all of its flaws. As a result, we’d encounter the following problems:
So what is the solution? Can we have our cake and eat it? The approach that was chosen for ES6 is called “One JavaScript”:
Quiz
See quiz app.
New JavaScript features
This chapter lists what’s new in ES2016–ES2022 in reverse chronological order. It starts after ES2015 (ES6) because that release has too many features to list here.
New in ECMAScript 2022
ES2022 will probably become a standard in June 2022. The following proposals have reached stage 4 and are scheduled to be part of that standard:
New members of classes:
Private slot checks (“ergonomic brand checks for private fields”): The following expression checks if obj has a private slot #privateSlot:
#privateSlot in obj
Top-level await in modules: We can now use await at the top levels of modules and don’t have to enter async functions or methods anymore.
error.cause: Error and its subclasses now let us specify which error caused the current one:
new Error('Something went wrong', {cause: otherError})
Method .at() of indexable values lets us read an element at a given index (like the bracket operator []) and supports negative indices (unlike the bracket operator).
> ['a', 'b', 'c'].at(0)
'a'
> ['a', 'b', 'c'].at(-1)
'c'
The following “indexable” types have method .at():
RegExp match indices: If we add a flag to a regular expression, using it produces match objects that record the start and end index of each group capture.
Object.hasOwn(obj, propKey) provides a safe way to check if an object obj has an own property with the key propKey. In contrast to Object.prototype.hasOwnProperty, it works with all objects.
More features may still be added to ES2022
If that happens, this book will be updated accordingly.
New in ECMAScript 2021
The following features were added in ECMAScript 2021:
String.prototype.replaceAll() lets us replace all matches of a regular expression or a string (.replace() only replaces the first occurrence of a string):
> 'abbbaab'.replaceAll('b', 'x')
'axxxaax'
Promise.any() and AggregateError: Promise.any() returns a Promise that is fulfilled as soon as the first Promise in an iterable of Promises is fulfilled. If there are only rejections, they are put into an AggregateError which becomes the rejection value.
We use Promise.any() when we are only interested in the first fulfilled Promise among several.
a ||= b
a &&= b
a ??= b
Underscores (_) as separators in:
WeakRefs: This feature is beyond the scope of this book. For more information on it, see its proposal.
New in ECMAScript 2020
The following features were added in ECMAScript 2020:
New module features:
Dynamic imports via import(): The normal import statement is static: We can only use it at the top levels of modules and its module specifier is a fixed string. import() changes that. It can be used anywhere (including conditional statements) and we can compute its argument.
import.meta contains metadata for the current module. Its first widely supported property is import.meta.url which contains a string with the URL of the current module’s file.
Namespace re-exporting: The following expression imports all exports of module 'mod' in a namespace object ns and exports that object.
export * as ns from 'mod';
Optional chaining for property accesses and method calls. One example of optional chaining is:
value.?prop
This expression evaluates to undefined if value is either undefined or null. Otherwise, it evaluates to value.prop. This feature is especially useful in chains of property reads when some of the properties may be missing.
Nullish coalescing operator (??):
value ?? defaultValue
This expression is defaultValue if value is either undefined or null and value otherwise. This operator lets us use a default value whenever something is missing.
Previously the Logical Or operator (||) was used in this case but it has downsides here because it returns the default value whenever the left-hand side is falsy (which isn’t always correct).
Bigints – arbitrary-precision integers: Bigints are a new primitive type. It supports integer numbers that can be arbitrarily large (storage for them grows as necessary).
String.prototype.matchAll(): This method throws if flag /g isn’t set and returns an iterable with all match objects for a given string.
Promise.allSettled() receives an iterable of Promises. It returns a Promise that is fulfilled once all the input Promises are settled. The fulfillment value is an Array with one object per input Promise – either one of:
globalThis provides a way to access the global object that works both on browsers and server-side platforms such as Node.js and Deno.
for-in mechanics: This feature is beyond the scope of this book. For more information on it, see its proposal.
New in ECMAScript 2019
The following features were added in ECMAScript 2019:
Array method .flatMap() works like .map() but lets the callback return Arrays of zero or more values instead of single values. The returned Arrays are then concatenated and become the result of .flatMap(). Use cases include:
Array method .flat() converts nested Arrays into flat Arrays. Optionally, we can tell it at which depth of nesting it should stop flattening.
Object.fromEntries() creates an object from an iterable over entries. Each entry is a two-element Array with a property key and a property value.
String methods: .trimStart() and .trimEnd() work like .trim() but remove whitespace only at the start or only at the end of a string.
Optional catch binding: We can now omit the parameter of a catch clause if we don’t use it.
Symbol.prototype.description is a getter for reading the description of a symbol. Previously, the description was included in the result of .toString() but couldn’t be accessed individually.
These new ES2019 features are beyond the scope of this book:
New in ECMAScript 2018
The following features were added in ECMAScript 2018:
Asynchronous iteration is the asynchronous version of synchronous iteration. It is based on Promises:
Spreading into object literals: By using spreading (...) inside an object literal, we can copy the properties of another object into the current one. One use case is to create a shallow copy of an object obj:
const shallowCopy = {...obj};
Rest properties (destructuring): When object-destructuring a value, we can now use rest syntax (...) to get all previously unmentioned properties in an object.
const {a, ...remaining} = {a: 1, b: 2, c: 3};
assert.deepEqual(remaining, {b: 2, c: 3});
Promise.prototype.finally() is related to the finally clause of a try-catch-finally statement – similarly to how the Promise method .then() is related to the try clause and .catch() is related to the catch clause.
On other words: The callback of .finally() is executed regardless of whether a Promise is fulfilled or rejected.
New Regular expression features:
RegExp named capture groups: In addition to accessing groups by number, we can now name them and access them by name:
const matchObj = '---756---'.match(/(?<digits>[0-9]+)/)
assert.equal(matchObj.groups.digits, '756');
RegExp lookbehind assertions complement lookahead assertions:
s (dotAll) flag for regular expressions. If this flag is active, the dot matches line terminators (by default, it doesn’t).
RegExp Unicode property escapes give us more power when matching sets of Unicode code points – for example:
> /^\p{Lowercase_Letter}+$/u.test('aüπ')
true
> /^\p{White_Space}+$/u.test('\n \t')
true
> /^\p{Script=Greek}+$/u.test('ΩΔΨ')
true
Template literal revision allows text with backslashes in tagged templates that is illegal in string literals – for example:
windowsPath`C:\uuu\xxx\111`
latex`\unicode`
New in ECMAScript 2017
The following features were added in ECMAScript 2017:
Async functions (async/await) let us use synchronous-looking syntax to write asynchronous code.
Object.values() returns an Array with the values of all enumerable string-keyed properties of a given object.
Object.entries() returns an Array with the key-value pairs of all enumerable string-keyed properties of a given object. Each pair is encoded as a two-element Array.
String padding: The string methods .padStart() and .padEnd() insert padding text until the receivers are long enough:
> '7'.padStart(3, '0')
'007'
> 'yes'.padEnd(6, '!')
'yes!!!'
Trailing commas in function parameter lists and calls: Trailing commas have been allowed in Arrays literals since ES3 and in Object literals since ES5. They are now also allowed in function calls and method calls.
The following two features are beyond the scope of this book:
New in ECMAScript 2016
The following features were added in ECMAScript 2016:
Array.prototype.includes() checks if an Array contains a given value.
> 4 ** 2
16
Source of this chapter
ECMAScript feature lists were taken from the TC39 page on finished proposals.
FAQ: JavaScript
What are good references for JavaScript?
Please consult §6.3 “JavaScript references”.
How do I find out what JavaScript features are supported where?
This book usually mentions if a feature is part of ECMAScript 5 (as required by older browsers) or a newer version. For more detailed information (including pre-ES5 versions), there are several good compatibility tables available online:
Where can I look up what features are planned for JavaScript?
Please consult the following sources:
Why does JavaScript fail silently so often?
JavaScript often fails silently. Let’s look at two examples.
First example: If the operands of an operator don’t have the appropriate types, they are converted as necessary.
> '3' * '5'
15
Second example: If an arithmetic computation fails, you get an error value, not an exception.
> 1 / 0
Infinity
The reason for the silent failures is historical: JavaScript did not have exceptions until ECMAScript 3. Since then, its designers have tried to avoid silent failures.
Why can’t we clean up JavaScript, by removing quirks and outdated features?
This question is answered in §3.7 “Evolving JavaScript: Don’t break the web”.
How can I quickly try out a piece of JavaScript code?
§8.1 “Trying out JavaScript code” explains how to do that.
Using JavaScript: the big picture
In this chapter, I’d like to paint the big picture: what are you learning in this book, and how does it fit into the overall landscape of web development?
What are you learning in this book?
This book teaches the JavaScript language. It focuses on just the language, but offers occasional glimpses at two platforms where JavaScript can be used:
Node.js is important for web development in three ways:
The structure of browsers and Node.js
Figure 2: The structure of the two JavaScript platforms web browser and Node.js. The APIs “standard library” and “platform API” are hosted on top of a foundational layer with a JavaScript engine and a platform-specific “core”.
The structures of the two JavaScript platforms web browser and Node.js are similar (fig. 2):
JavaScript references
When you have a question about a JavaScript, a web search usually helps. I can recommend the following online sources:
Further reading
Syntax
An overview of JavaScript’s syntax
This is a very first look at JavaScript’s syntax. Don’t worry if some things don’t make sense, yet. They will all be explained in more detail later in this book.
This overview is not exhaustive, either. It focuses on the essentials.
Basic constructs
Comments
// single-line comment
/*
Comment with
multiple lines
*/
Primitive (atomic) values
Booleans:
true
false
Numbers:
1.141
-123
The basic number type is used for both floating point numbers (doubles) and integers.
Bigints:
17n
-49n
The basic number type can only properly represent integers within a range of 53 bits plus sign. Bigints can grow arbitrarily large in size.
Strings:
'abc'
"abc"
`String with interpolated values: ${256} and ${true}`
JavaScript has no extra type for characters. It uses strings to represent them.
Assertions
An assertion describes what the result of a computation is expected to look like and throws an exception if those expectations aren’t correct. For example, the following assertion states that the result of the computation 7 plus 1 must be 8:
assert.equal(7 + 1, 8);
assert.equal() is a method call (the object is assert, the method is .equal()) with two arguments: the actual result and the expected result. It is part of a Node.js assertion API that is explained later in this book.
There is also assert.deepEqual() that compares objects deeply.
Logging to the console
Logging to the console of a browser or Node.js:
// Printing a value to standard out (another method call)
console.log('Hello!');
// Printing error information to standard error
console.error('Something went wrong!');
Operators
// Operators for booleans
assert.equal(true && false, false); // And
assert.equal(true || false, true); // Or
// Operators for numbers
assert.equal(3 + 4, 7);
assert.equal(5 - 1, 4);
assert.equal(3 * 4, 12);
assert.equal(10 / 4, 2.5);
// Operators for bigints
assert.equal(3n + 4n, 7n);
assert.equal(5n - 1n, 4n);
assert.equal(3n * 4n, 12n);
assert.equal(10n / 4n, 2n);
// Operators for strings
assert.equal('a' + 'b', 'ab');
assert.equal('I see ' + 3 + ' monkeys', 'I see 3 monkeys');
// Comparison operators
assert.equal(3 < 4, true);
assert.equal(3 <= 4, true);
assert.equal('abc' === 'abc', true);
assert.equal('abc' !== 'def', true);
JavaScript also has a == comparison operator. I recommend to avoid it – why is explained in §13.4.3 “Recommendation: always use strict equality”.
Declaring variables
const creates immutable variable bindings: Each variable must be initialized immediately and we can’t assign a different value later. However, the value itself may be mutable and we may be able to change its contents. In other words: const does not make values immutable.
// Declaring and initializing x (immutable binding):
const x = 8;
// Would cause a TypeError:
// x = 9;
let creates mutable variable bindings:
// Declaring y (mutable binding):
let y;
// We can assign a different value to y:
y = 3 * 5;
// Declaring and initializing z:
let z = 3 * 5;
Ordinary function declarations
// add1() has the parameters a and b
function add1(a, b) {
return a + b;
}
// Calling function add1()
assert.equal(add1(5, 2), 7);
Arrow function expressions
Arrow function expressions are used especially as arguments of function calls and method calls:
const add2 = (a, b) => { return a + b };
// Calling function add2()
assert.equal(add2(5, 2), 7);
// Equivalent to add2:
const add3 = (a, b) => a + b;
The previous code contains the following two arrow functions (the terms expression and statement are explained later in this chapter):
// An arrow function whose body is a code block
(a, b) => { return a + b }
// An arrow function whose body is an expression
(a, b) => a + b
Plain objects
// Creating a plain object via an object literal
const obj = {
first: 'Jane', // property
last: 'Doe', // property
getFullName() { // property (method)
return this.first + ' ' + this.last;
},
};
// Getting a property value
assert.equal(obj.first, 'Jane');
// Setting a property value
obj.first = 'Janey';
// Calling the method
assert.equal(obj.getFullName(), 'Janey Doe');
Arrays
// Creating an Array via an Array literal
const arr = ['a', 'b', 'c'];
assert.equal(arr.length, 3);
// Getting an Array element
assert.equal(arr[1], 'b');
// Setting an Array element
arr[1] = 'β';
// Adding an element to an Array:
arr.push('d');
assert.deepEqual(
arr, ['a', 'β', 'c', 'd']);
Control flow statements
Conditional statement:
if (x < 0) {
x = -x;
}
for-of loop:
const arr = ['a', 'b'];
for (const element of arr) {
console.log(element);
}
// Output:
// 'a'
// 'b'
Modules
Each module is a single file. Consider, for example, the following two files with modules in them:
file-tools.mjs
main.mjs
The module in file-tools.mjs exports its function isTextFilePath():
export function isTextFilePath(filePath) {
return filePath.endsWith('.txt');
}
The module in main.mjs imports the whole module path and the function isTextFilePath():
// Import whole module as namespace object `path`
import * as path from 'path';
// Import a single export of module file-tools.mjs
import {isTextFilePath} from './file-tools.mjs';
Classes
class Person {
constructor(name) {
this.name = name;
}
describe() {
return `Person named ${this.name}`;
}
static logNames(persons) {
for (const person of persons) {
console.log(person.name);
}
}
}
class Employee extends Person {
constructor(name, title) {
super(name);
this.title = title;
}
describe() {
return super.describe() +
` (${this.title})`;
}
}
const jane = new Employee('Jane', 'CTO');
assert.equal(
jane.describe(),
'Person named Jane (CTO)');
Exception handling
function throwsException() {
throw new Error('Problem!');
}
function catchesException() {
try {
throwsException();
} catch (err) {
assert.ok(err instanceof Error);
assert.equal(err.message, 'Problem!');
}
}
Note:
Legal variable and property names
The grammatical category of variable names and property names is called identifier.
Identifiers are allowed to have the following characters:
Some words have special meaning in JavaScript and are called reserved. Examples include: if, true, const.
Reserved words can’t be used as variable names:
const if = 123;
// SyntaxError: Unexpected token if
But they are allowed as names of properties:
> const obj = { if: 123 };
> obj.if
123
Casing styles
Common casing styles for concatenating words are:
Capitalization of names
In general, JavaScript uses camel case, except for constants.
Lowercase:
Uppercase:
More naming conventions
The following naming conventions are popular in JavaScript.
If the name of a parameter starts with an underscore (or is an underscore) it means that this parameter is not used – for example:
arr.map((_x, i) => i)
If the name of a property of an object starts with an underscore then that property is considered private:
class ValueWrapper {
constructor(value) {
this._value = value;
}
}
Where to put semicolons?
At the end of a statement:
const x = 123;
func();
But not if that statement ends with a curly brace:
while (false) {
// ···
} // no semicolon
function func() {
// ···
} // no semicolon
However, adding a semicolon after such a statement is not a syntax error – it is interpreted as an empty statement:
// Function declaration followed by empty statement:
function func() {
// ···
};
Quiz: basic
See quiz app.
(Advanced)
All remaining sections of this chapter are advanced.
Identifiers
Valid identifiers (variable names, etc.)
First character:
Subsequent characters:
Examples:
const ε = 0.0001;
const строка = '';
let _tmp = 0;
const $foo2 = true;
Reserved words
Reserved words can’t be variable names, but they can be property names.
All JavaScript keywords are reserved words:
await break case catch class const continue debugger default delete do else export extends finally for function if import in instanceof let new return static super switch this throw try typeof var void while with yield
The following tokens are also keywords, but currently not used in the language:
enum implements package protected interface private public
The following literals are reserved words:
true false null
Technically, these words are not reserved, but you should avoid them, too, because they effectively are keywords:
Infinity NaN undefined async
You shouldn’t use the names of global variables (String, Math, etc.) for your own variables and parameters, either.
Statement vs. expression
In this section, we explore how JavaScript distinguishes two kinds of syntactic constructs: statements and expressions. Afterward, we’ll see that that can cause problems because the same syntax can mean different things, depending on where it is used.
We pretend there are only statements and expressions
For the sake of simplicity, we pretend that there are only statements and expressions in JavaScript.
Statements
A statement is a piece of code that can be executed and performs some kind of action. For example, if is a statement:
let myStr;
if (myBool) {
myStr = 'Yes';
} else {
myStr = 'No';
}
One more example of a statement: a function declaration.
function twice(x) {
return x + x;
}
Expressions
An expression is a piece of code that can be evaluated to produce a value. For example, the code between the parentheses is an expression:
let myStr = (myBool ? 'Yes' : 'No');
The operator _?_:_ used between the parentheses is called the ternary operator. It is the expression version of the if statement.
Let’s look at more examples of expressions. We enter expressions and the REPL evaluates them for us:
> 'ab' + 'cd'
'abcd'
> Number('123')
123
> true || false
true
What is allowed where?
The current location within JavaScript source code determines which kind of syntactic constructs you are allowed to use:
The body of a function must be a sequence of statements:
function max(x, y) {
if (x > y) {
return x;
} else {
return y;
}
}
The arguments of a function call or a method call must be expressions:
console.log('ab' + 'cd', Number('123'));
However, expressions can be used as statements. Then they are called expression statements. The opposite is not true: when the context requires an expression, you can’t use a statement.
The following code demonstrates that any expression bar() can be either expression or statement – it depends on the context:
function f() {
console.log(bar()); // bar() is expression
bar(); // bar(); is (expression) statement
}
Ambiguous syntax
JavaScript has several programming constructs that are syntactically ambiguous: the same syntax is interpreted differently, depending on whether it is used in statement context or in expression context. This section explores the phenomenon and the pitfalls it causes.
Same syntax: function declaration and function expression
A function declaration is a statement:
function id(x) {
return x;
}
A function expression is an expression (right-hand side of =):
const id = function me(x) {
return x;
};
Same syntax: object literal and block
In the following code, {} is an object literal: an expression that creates an empty object.
const obj = {};
This is an empty code block (a statement):
{
}
Disambiguation
The ambiguities are only a problem in statement context: If the JavaScript parser encounters ambiguous syntax, it doesn’t know if it’s a plain statement or an expression statement. For example:
To resolve the ambiguity, statements starting with function or { are never interpreted as expressions. If you want an expression statement to start with either one of these tokens, you must wrap it in parentheses:
(function (x) { console.log(x) })('abc');
// Output:
// 'abc'
In this code:
We first create a function via a function expression:
function (x) { console.log(x) }
Then we invoke that function: ('abc')
The code fragment shown in (1) is only interpreted as an expression because we wrap it in parentheses. If we didn’t, we would get a syntax error because then JavaScript expects a function declaration and complains about the missing function name. Additionally, you can’t put a function call immediately after a function declaration.
Later in this book, we’ll see more examples of pitfalls caused by syntactic ambiguity:
Semicolons
Rule of thumb for semicolons
Each statement is terminated by a semicolon:
const x = 3;
someFunction('abc');
i++;
except statements ending with blocks:
function foo() {
// ···
}
if (y > 0) {
// ···
}
The following case is slightly tricky:
const func = () => {}; // semicolon!
The whole const declaration (a statement) ends with a semicolon, but inside it, there is an arrow function expression. That is, it’s not the statement per se that ends with a curly brace; it’s the embedded arrow function expression. That’s why there is a semicolon at the end.
Semicolons: control statements
The body of a control statement is itself a statement. For example, this is the syntax of the while loop:
while (condition)
statement
The body can be a single statement:
while (a > 0) a--;
But blocks are also statements and therefore legal bodies of control statements:
while (a > 0) {
a--;
}
If you want a loop to have an empty body, your first option is an empty statement (which is just a semicolon):
while (processNextItem() > 0);
Your second option is an empty block:
while (processNextItem() > 0) {}
Automatic semicolon insertion (ASI)
While I recommend to always write semicolons, most of them are optional in JavaScript. The mechanism that makes this possible is called automatic semicolon insertion (ASI). In a way, it corrects syntax errors.
ASI works as follows. Parsing of a statement continues until there is either:
In other words, ASI can be seen as inserting semicolons at line breaks. The next subsections cover the pitfalls of ASI.
ASI triggered unexpectedly
The good news about ASI is that – if you don’t rely on it and always write semicolons – there is only one pitfall that you need to be aware of. It is that JavaScript forbids line breaks after some tokens. If you do insert a line break, a semicolon will be inserted, too.
The token where this is most practically relevant is return. Consider, for example, the following code:
return
{
first: 'jane'
};
This code is parsed as:
return;
{
first: 'jane';
}
;
That is:
Why does JavaScript do this? It protects against accidentally returning a value in a line after a return.
ASI unexpectedly not triggered
In some cases, ASI is not triggered when you think it should be. That makes life more complicated for people who don’t like semicolons because they need to be aware of those cases. The following are three examples. There are more.
Example 1: Unintended function call.
a = b + c
(d + e).print()
Parsed as:
a = b + c(d + e).print();
Example 2: Unintended division.
a = b
/hi/g.exec(c).map(d)
Parsed as:
a = b / hi / g.exec(c).map(d);
Example 3: Unintended property access.
someFunction()
['ul', 'ol'].map(x => x + x)
Executed as:
const propKey = ('ul','ol'); // comma operator
assert.equal(propKey, 'ol');
someFunction()[propKey].map(x => x + x);
Semicolons: best practices
I recommend that you always write semicolons:
However, there are also many people who don’t like the added visual clutter of semicolons. If you are one of them: Code without them is legal. I recommend that you use tools to help you avoid mistakes. The following are two examples:
Strict mode vs. sloppy mode
Starting with ECMAScript 5, JavaScript has two modes in which JavaScript can be executed:
You’ll rarely encounter sloppy mode in modern JavaScript code, which is almost always located in modules. In this book, I assume that strict mode is always switched on.
Switching on strict mode
In script files and CommonJS modules, you switch on strict mode for a complete file, by putting the following code in the first line:
'use strict';
The neat thing about this “directive” is that ECMAScript versions before 5 simply ignore it: it’s an expression statement that does nothing.
You can also switch on strict mode for just a single function:
function functionInStrictMode() {
'use strict';
}
Improvements in strict mode
Let’s look at three things that strict mode does better than sloppy mode. Just in this one section, all code fragments are executed in sloppy mode.
Sloppy mode pitfall: changing an undeclared variable creates a global variable
In non-strict mode, changing an undeclared variable creates a global variable.
function sloppyFunc() {
undeclaredVar1 = 123;
}
sloppyFunc();
// Created global variable `undeclaredVar1`:
assert.equal(undeclaredVar1, 123);
Strict mode does it better and throws a ReferenceError. That makes it easier to detect typos.
function strictFunc() {
'use strict';
undeclaredVar2 = 123;
}
assert.throws(
() => strictFunc(),
{
name: 'ReferenceError',
message: 'undeclaredVar2 is not defined',
});
The assert.throws() states that its first argument, a function, throws a ReferenceError when it is called.
Function declarations are block-scoped in strict mode, function-scoped in sloppy mode
In strict mode, a variable created via a function declaration only exists within the innermost enclosing block:
function strictFunc() {
'use strict';
{
function foo() { return 123 }
}
return foo(); // ReferenceError
}
assert.throws(
() => strictFunc(),
{
name: 'ReferenceError',
message: 'foo is not defined',
});
In sloppy mode, function declarations are function-scoped:
function sloppyFunc() {
{
function foo() { return 123 }
}
return foo(); // works
}
assert.equal(sloppyFunc(), 123);
Sloppy mode doesn’t throw exceptions when changing immutable data
In strict mode, you get an exception if you try to change immutable data:
function strictFunc() {
'use strict';
true.prop = 1; // TypeError
}
assert.throws(
() => strictFunc(),
{
name: 'TypeError',
message: "Cannot create property 'prop' on boolean 'true'",
});
In sloppy mode, the assignment fails silently:
function sloppyFunc() {
true.prop = 1; // fails silently
return true.prop;
}
assert.equal(sloppyFunc(), undefined);
Further reading: sloppy mode
For more information on how sloppy mode differs from strict mode, see MDN.
Quiz: advanced
See quiz app.
Consoles: interactive JavaScript command lines
Trying out JavaScript code
You have many options for quickly running pieces of JavaScript code. The following subsections describe a few of them.
Browser consoles
Web browsers have so-called consoles: interactive command lines to which you can print text via console.log() and where you can run pieces of code. How to open the console differs from browser to browser. Fig. 3 shows the console of Google Chrome.
To find out how to open the console in your web browser, you can do a web search for “console «name-of-your-browser»”. These are pages for a few commonly used web browsers:
Figure 3: The console of the web browser “Google Chrome” is open (in the bottom half of window) while visiting a web page.
The Node.js REPL
REPL stands for read-eval-print loop and basically means command line. To use it, you must first start Node.js from an operating system command line, via the command node. Then an interaction with it looks as depicted in fig. 4: The text after > is input from the user; everything else is output from Node.js.
Figure 4: Starting and using the Node.js REPL (interactive command line).
Reading: REPL interactions
I occasionally demonstrate JavaScript via REPL interactions. Then I also use greater-than symbols (>) to mark input – for example:
> 3 + 5
8
Other options
Other options include:
There are many web apps that let you experiment with JavaScript in web browsers – for example, Babel’s REPL.
There are also native apps and IDE plugins for running JavaScript.
Consoles often run in non-strict mode
In modern JavaScript, most code (e.g., modules) is executed in strict mode. However, consoles often run in non-strict mode. Therefore, you may occasionally get slightly different results when using a console to execute code from this book.
The console.* API: printing data and more
In browsers, the console is something you can bring up that is normally hidden. For Node.js, the console is the terminal that Node.js is currently running in.
The full console.* API is documented on MDN web docs and on the Node.js website. It is not part of the JavaScript language standard, but much functionality is supported by both browsers and Node.js.
In this chapter, we only look at the following two methods for printing data (“printing” means displaying in the console):
Printing values: console.log() (stdout)
There are two variants of this operation:
console.log(...values: any[]): void
console.log(pattern: string, ...values: any[]): void
Printing multiple values
The first variant prints (text representations of) values on the console:
console.log('abc', 123, true);
// Output:
// abc 123 true
At the end, console.log() always prints a newline. Therefore, if you call it with zero arguments, it just prints a newline.
Printing a string with substitutions
The second variant performs string substitution:
console.log('Test: %s %j', 123, 'abc');
// Output:
// Test: 123 "abc"
These are some of the directives you can use for substitutions:
%s converts the corresponding value to a string and inserts it.
console.log('%s %s', 'abc', 123);
// Output:
// abc 123
%o inserts a string representation of an object.
console.log('%o', {foo: 123, bar: 'abc'});
// Output:
// { foo: 123, bar: 'abc' }
%j converts a value to a JSON string and inserts it.
console.log('%j', {foo: 123, bar: 'abc'});
// Output:
// {"foo":123,"bar":"abc"}
%% inserts a single %.
console.log('%s%%', 99);
// Output:
// 99%
Printing error information: console.error() (stderr)
console.error() works the same as console.log(), but what it logs is considered error information. For Node.js, that means that the output goes to stderr instead of stdout on Unix.
Printing nested objects via JSON.stringify()
JSON.stringify() is occasionally useful for printing nested objects:
console.log(JSON.stringify({first: 'Jane', last: 'Doe'}, null, 2));
Output:
{
"first": "Jane",
"last": "Doe"
}
Assertion API
Assertions in software development
In software development, assertions state facts about values or pieces of code that must be true. If they aren’t, an exception is thrown. Node.js supports assertions via its built-in module assert – for example:
import * as assert from 'assert/strict';
assert.equal(3 + 5, 8);
This assertion states that the expected result of 3 plus 5 is 8. The import statement uses the recommended strict version of assert.
How assertions are used in this book
In this book, assertions are used in two ways: to document results in code examples and to implement test-driven exercises.
Documenting results in code examples via assertions
In code examples, assertions express expected results. Take, for example, the following function:
function id(x) {
return x;
}
id() returns its parameter. We can show it in action via an assertion:
assert.equal(id('abc'), 'abc');
In the examples, I usually omit the statement for importing assert.
The motivation behind using assertions is:
Implementing test-driven exercises via assertions
The exercises for this book are test-driven, via the test framework Mocha. Checks inside the tests are made via methods of assert.
The following is an example of such a test:
// For the exercise, you must implement the function hello().
// The test checks if you have done it properly.
test('First exercise', () => {
assert.equal(hello('world'), 'Hello world!');
assert.equal(hello('Jane'), 'Hello Jane!');
assert.equal(hello('John'), 'Hello John!');
assert.equal(hello(''), 'Hello !');
});
For more information, consult §10 “Getting started with quizzes and exercises”.
Normal comparison vs. deep comparison
The strict equal() uses === to compare values. Therefore, an object is only equal to itself – even if another object has the same content (because === does not compare the contents of objects, only their identities):
assert.notEqual({foo: 1}, {foo: 1});
deepEqual() is a better choice for comparing objects:
assert.deepEqual({foo: 1}, {foo: 1});
This method works for Arrays, too:
assert.notEqual(['a', 'b', 'c'], ['a', 'b', 'c']);
assert.deepEqual(['a', 'b', 'c'], ['a', 'b', 'c']);
Quick reference: module assert
For the full documentation, see the Node.js docs.
Normal equality
function equal(actual: any, expected: any, message?: string): void
actual === expected must be true. If not, an AssertionError is thrown.
assert.equal(3+3, 6);
function notEqual(actual: any, expected: any, message?: string): void
actual !== expected must be true. If not, an AssertionError is thrown.
assert.notEqual(3+3, 22);
The optional last parameter message can be used to explain what is asserted. If the assertion fails, the message is used to set up the AssertionError that is thrown.
let e;
try {
const x = 3;
assert.equal(x, 8, 'x must be equal to 8')
} catch (err) {
assert.equal(
String(err),
'AssertionError [ERR_ASSERTION]: x must be equal to 8');
}
Deep equality
function deepEqual(actual: any, expected: any, message?: string): void
actual must be deeply equal to expected. If not, an AssertionError is thrown.
assert.deepEqual([1,2,3], [1,2,3]);
assert.deepEqual([], []);
// To .equal(), an object is only equal to itself:
assert.notEqual([], []);
function notDeepEqual(actual: any, expected: any, message?: string): void
actual must not be deeply equal to expected. If it is, an AssertionError is thrown.
assert.notDeepEqual([1,2,3], [1,2]);
Expecting exceptions
If you want to (or expect to) receive an exception, you need throws(): This function calls its first parameter, the function block, and only succeeds if it throws an exception. Additional parameters can be used to specify what that exception must look like.
function throws(block: Function, message?: string): void
assert.throws(
() => {
null.prop;
}
);
function throws(block: Function, error: Function, message?: string): void
assert.throws(
() => {
null.prop;
},
TypeError
);
function throws(block: Function, error: RegExp, message?: string): void
assert.throws(
() => {
null.prop;
},
/^TypeError: Cannot read properties of null \(reading 'prop'\)$/
);
function throws(block: Function, error: Object, message?: string): void
assert.throws(
() => {
null.prop;
},
{
name: 'TypeError',
message: "Cannot read properties of null (reading 'prop')",
}
);
Another tool function
function fail(message: string | Error): never
Always throws an AssertionError when it is called. That is occasionally useful for unit testing.
try {
functionThatShouldThrow();
assert.fail();
} catch (_) {
// Success
}
Quiz
See quiz app.
Getting started with quizzes and exercises
Throughout most chapters, there are quizzes and exercises. These are a paid feature, but a comprehensive preview is available. This chapter explains how to get started with them.
Quizzes
Installation:
Running the quiz app:
Exercises
Installing the exercises
To install the exercises:
Running exercises
Unit tests in JavaScript
All exercises in this book are tests that are run via the test framework Mocha. This section gives a brief introduction.
A typical test
Typical test code is split into two parts:
Take, for example, the following two files:
Part 1: the code
The code itself resides in id.mjs:
export function id(x) {
return x;
}
The key thing here is: everything we want to test must be exported. Otherwise, the test code can’t access it.
Part 2: the tests
Don’t worry about the exact details of tests
You don’t need to worry about the exact details of tests: They are always implemented for you. Therefore, you only need to read them, but not write them.
The tests for the code reside in id_test.mjs:
// npm t demos/quizzes-exercises/id_test.mjs
suite('id_test.mjs');
import * as assert from 'assert/strict'; // (A)
import {id} from './id.mjs'; // (B)
test('My test', () => { // (C)
assert.equal(id('abc'), 'abc'); // (D)
});
The core of this test file is line D – an assertion: assert.equal() specifies that the expected result of id('abc') is 'abc'.
As for the other lines:
To run the test, we execute the following in a command line:
npm t demos/quizzes-exercises/id_test.mjs
The t is an abbreviation for test. That is, the long version of this command is:
npm test demos/quizzes-exercises/id_test.mjs
Exercise: Your first exercise
The following exercise gives you a first taste of what exercises are like:
exercises/quizzes-exercises/first_module_test.mjs
Asynchronous tests in Mocha
Reading
You may want to postpone reading this section until you get to the chapters on asynchronous programming.
Writing tests for asynchronous code requires extra work: The test receives its results later and has to signal to Mocha that it isn’t finished yet when it returns. The following subsections examine three ways of doing so.
Asynchronicity via callbacks
If the callback we pass to test() has a parameter (e.g., done), Mocha switches to callback-based asynchronicity. When we are done with our asynchronous work, we have to call done:
test('divideCallback', (done) => {
divideCallback(8, 4, (error, result) => {
if (error) {
done(error);
} else {
assert.strictEqual(result, 2);
done();
}
});
});
This is what divideCallback() looks like:
function divideCallback(x, y, callback) {
if (y === 0) {
callback(new Error('Division by zero'));
} else {
callback(null, x / y);
}
}
Asynchronicity via Promises
If a test returns a Promise, Mocha switches to Promise-based asynchronicity. A test is considered successful if the Promise is fulfilled and failed if the Promise is rejected or if a settlement takes longer than a timeout.
test('dividePromise 1', () => {
return dividePromise(8, 4)
.then(result => {
assert.strictEqual(result, 2);
});
});
dividePromise() is implemented as follows:
function dividePromise(x, y) {
return new Promise((resolve, reject) => {
if (y === 0) {
reject(new Error('Division by zero'));
} else {
resolve(x / y);
}
});
}
Async functions as test “bodies”
Async functions always return Promises. Therefore, an async function is a convenient way of implementing an asynchronous test. The following code is equivalent to the previous example.
test('dividePromise 2', async () => {
const result = await dividePromise(8, 4);
assert.strictEqual(result, 2);
// No explicit return necessary!
});
We don’t need to explicitly return anything: The implicitly returned undefined is used to fulfill the Promise returned by this async function. And if the test code throws an exception, then the async function takes care of rejecting the returned Promise.
Variables and assignment
These are JavaScript’s main ways of declaring variables:
Before ES6, there was also var. But it has several quirks, so it’s best to avoid it in modern JavaScript. You can read more about it in Speaking JavaScript.
let
Variables declared via let are mutable:
let i;
i = 0;
i = i + 1;
assert.equal(i, 1);
You can also declare and assign at the same time:
let i = 0;
const
Variables declared via const are immutable. You must always initialize immediately:
const i = 0; // must initialize
assert.throws(
() => { i = i + 1 },
{
name: 'TypeError',
message: 'Assignment to constant variable.',
}
);
const and immutability
In JavaScript, const only means that the binding (the association between variable name and variable value) is immutable. The value itself may be mutable, like obj in the following example.
const obj = { prop: 0 };
// Allowed: changing properties of `obj`
obj.prop = obj.prop + 1;
assert.equal(obj.prop, 1);
// Not allowed: assigning to `obj`
assert.throws(
() => { obj = {} },
{
name: 'TypeError',
message: 'Assignment to constant variable.',
}
);
const and loops
You can use const with for-of loops, where a fresh binding is created for each iteration:
const arr = ['hello', 'world'];
for (const elem of arr) {
console.log(elem);
}
// Output:
// 'hello'
// 'world'
In plain for loops, you must use let, however:
const arr = ['hello', 'world'];
for (let i=0; i<arr.length; i++) {
const elem = arr[i];
console.log(elem);
}
Deciding between const and let
I recommend the following rules to decide between const and let:
Exercise: const
exercises/variables-assignment/const_exrc.mjs
The scope of a variable
The scope of a variable is the region of a program where it can be accessed. Consider the following code.
{ // // Scope A. Accessible: x
const x = 0;
assert.equal(x, 0);
{ // Scope B. Accessible: x, y
const y = 1;
assert.equal(x, 0);
assert.equal(y, 1);
{ // Scope C. Accessible: x, y, z
const z = 2;
assert.equal(x, 0);
assert.equal(y, 1);
assert.equal(z, 2);
}
}
}
// Outside. Not accessible: x, y, z
assert.throws(
() => console.log(x),
{
name: 'ReferenceError',
message: 'x is not defined',
}
);
Each variable is accessible in its direct scope and all scopes nested within that scope.
The variables declared via const and let are called block-scoped because their scopes are always the innermost surrounding blocks.
Shadowing variables
You can’t declare the same variable twice at the same level:
assert.throws(
() => {
eval('let x = 1; let x = 2;');
},
{
name: 'SyntaxError',
message: "Identifier 'x' has already been declared",
});
Why eval()?
eval() delays parsing (and therefore the SyntaxError), until the callback of assert.throws() is executed. If we didn’t use it, we’d already get an error when this code is parsed and assert.throws() wouldn’t even be executed.
You can, however, nest a block and use the same variable name x that you used outside the block:
const x = 1;
assert.equal(x, 1);
{
const x = 2;
assert.equal(x, 2);
}
assert.equal(x, 1);
Inside the block, the inner x is the only accessible variable with that name. The inner x is said to shadow the outer x. Once you leave the block, you can access the old value again.
Quiz: basic
See quiz app.
(Advanced)
All remaining sections are advanced.
Terminology: static vs. dynamic
These two adjectives describe phenomena in programming languages:
Let’s look at examples for these two terms.
Static phenomenon: scopes of variables
Variable scopes are a static phenomenon. Consider the following code:
function f() {
const x = 3;
// ···
}
x is statically (or lexically) scoped. That is, its scope is fixed and doesn’t change at runtime.
Variable scopes form a static tree (via static nesting).
Dynamic phenomenon: function calls
Function calls are a dynamic phenomenon. Consider the following code:
function g(x) {}
function h(y) {
if (Math.random()) g(y); // (A)
}
Whether or not the function call in line A happens, can only be decided at runtime.
Function calls form a dynamic tree (via dynamic calls).
Global variables and the global object
JavaScript’s variable scopes are nested. They form a tree:
The root is also called the global scope. In web browsers, the only location where one is directly in that scope is at the top level of a script. The variables of the global scope are called global variables and accessible everywhere. There are two kinds of global variables:
The following HTML fragment demonstrates globalThis and the two kinds of global variables.
<script>
const declarativeVariable = 'd';
var objectVariable = 'o';
</script>
<script>
// All scripts share the same top-level scope:
console.log(declarativeVariable); // 'd'
console.log(objectVariable); // 'o'
// Not all declarations create properties of the global object:
console.log(globalThis.declarativeVariable); // undefined
console.log(globalThis.objectVariable); // 'o'
</script>
Each ECMAScript module has its own scope. Therefore, variables that exist at the top level of a module are not global. Fig. 5 illustrates how the various scopes are related.
Figure 5: The global scope is JavaScript’s outermost scope. It has two kinds of variables: object variables (managed via the global object) and normal declarative variables. Each ECMAScript module has its own scope which is contained in the global scope.
globalThis [ES2020]
The global variable globalThis is the new standard way of accessing the global object. It got its name from the fact that it has the same value as this in global scope.
globalThis does not always directly point to the global object
For example, in browsers, there is an indirection. That indirection is normally not noticable, but it is there and can be observed.
Alternatives to globalThis
Older ways of accessing the global object depend on the platform:
Use cases for globalThis
The global object is now considered a mistake that JavaScript can’t get rid of, due to backward compatibility. It affects performance negatively and is generally confusing.
ECMAScript 6 introduced several features that make it easier to avoid the global object – for example:
It is usually better to access global object variables via variables and not via properties of globalThis. The former has always worked the same on all JavaScript platforms.
Tutorials on the web occasionally access global variables globVar via window.globVar. But the prefix “window.” is not necessary and I recommend to omit it:
window.encodeURIComponent(str); // no
encodeURIComponent(str); // yes
Therefore, there are relatively few use cases for globalThis – for example:
Declarations: scope and activation
These are two key aspects of declarations:
Tbl. 1 summarizes how various declarations handle these aspects.
Scope | Activation | Duplicates | Global prop. | |
---|---|---|---|---|
const | Block | decl. (TDZ) | ✘ | ✘ |
let | Block | decl. (TDZ) | ✘ | ✘ |
function | Block (*) | start | ✔ | ✔ |
class | Block | decl. (TDZ) | ✘ | ✘ |
import | Module | same as export | ✘ | ✘ |
var | Function | start, partially | ✔ | ✔ |
import is described in §27.5 “ECMAScript modules”. The following sections describe the other constructs in more detail.
const and let: temporal dead zone
For JavaScript, TC39 needed to decide what happens if you access a constant in its direct scope, before its declaration:
{
console.log(x); // What happens here?
const x;
}
Some possible approaches are:
Approach 1 was rejected because there is no precedent in the language for this approach. It would therefore not be intuitive to JavaScript programmers.
Approach 2 was rejected because then x wouldn’t be a constant – it would have different values before and after its declaration.
let uses the same approach 3 as const, so that both work similarly and it’s easy to switch between them.
The time between entering the scope of a variable and executing its declaration is called the temporal dead zone (TDZ) of that variable:
The following code illustrates the temporal dead zone:
if (true) { // entering scope of `tmp`, TDZ starts
// `tmp` is uninitialized:
assert.throws(() => (tmp = 'abc'), ReferenceError);
assert.throws(() => console.log(tmp), ReferenceError);
let tmp; // TDZ ends
assert.equal(tmp, undefined);
}
The next example shows that the temporal dead zone is truly temporal (related to time):
if (true) { // entering scope of `myVar`, TDZ starts
const func = () => {
console.log(myVar); // executed later
};
// We are within the TDZ:
// Accessing `myVar` causes `ReferenceError`
let myVar = 3; // TDZ ends
func(); // OK, called outside TDZ
}
Even though func() is located before the declaration of myVar and uses that variable, we can call func(). But we have to wait until the temporal dead zone of myVar is over.
Function declarations and early activation
More information on functions
In this section, we are using functions – before we had a chance to learn them properly. Hopefully, everything still makes sense. Whenever it doesn’t, please see §25 “Callable values”.
A function declaration is always executed when entering its scope, regardless of where it is located within that scope. That enables you to call a function foo() before it is declared:
assert.equal(foo(), 123); // OK
function foo() { return 123; }
The early activation of foo() means that the previous code is equivalent to:
function foo() { return 123; }
assert.equal(foo(), 123);
If you declare a function via const or let, then it is not activated early. In the following example, you can only use bar() after its declaration.
assert.throws(
() => bar(), // before declaration
ReferenceError);
const bar = () => { return 123; };
assert.equal(bar(), 123); // after declaration
Calling ahead without early activation
Even if a function g() is not activated early, it can be called by a preceding function f() (in the same scope) if we adhere to the following rule: f() must be invoked after the declaration of g().
const f = () => g();
const g = () => 123;
// We call f() after g() was declared:
assert.equal(f(), 123);
The functions of a module are usually invoked after its complete body is executed. Therefore, in modules, you rarely need to worry about the order of functions.
Lastly, note how early activation automatically keeps the aforementioned rule: when entering a scope, all function declarations are executed first, before any calls are made.
A pitfall of early activation
If you rely on early activation to call a function before its declaration, then you need to be careful that it doesn’t access data that isn’t activated early.
funcDecl();
const MY_STR = 'abc';
function funcDecl() {
assert.throws(
() => MY_STR,
ReferenceError);
}
The problem goes away if you make the call to funcDecl() after the declaration of MY_STR.
The pros and cons of early activation
We have seen that early activation has a pitfall and that you can get most of its benefits without using it. Therefore, it is better to avoid early activation. But I don’t feel strongly about this and, as mentioned before, often use function declarations because I like their syntax.
Class declarations are not activated early
Even though they are similar to function declarations in some ways, class declarations are not activated early:
assert.throws(
() => new MyClass(),
ReferenceError);
class MyClass {}
assert.equal(new MyClass() instanceof MyClass, true);
Why is that? Consider the following class declaration:
class MyClass extends Object {}
The operand of extends is an expression. Therefore, you can do things like this:
const identity = x => x;
class MyClass extends identity(Object) {}
Evaluating such an expression must be done at the location where it is mentioned. Anything else would be confusing. That explains why class declarations are not activated early.
var: hoisting (partial early activation)
var is an older way of declaring variables that predates const and let (which are preferred now). Consider the following var declaration.
var x = 123;
This declaration has two parts:
The following code demonstrates the effects of var:
function f() {
// Partial early activation:
assert.equal(x, undefined);
if (true) {
var x = 123;
// The assignment is executed in place:
assert.equal(x, 123);
}
// Scope is function, not block:
assert.equal(x, 123);
}
Closures
Before we can explore closures, we need to learn about bound variables and free variables.
Bound variables vs. free variables
Per scope, there is a set of variables that are mentioned. Among these variables we distinguish:
Consider the following code:
function func(x) {
const y = 123;
console.log(z);
}
In the body of func(), x and y are bound variables. z is a free variable.
What is a closure?
What is a closure then?
A closure is a function plus a connection to the variables that exist at its “birth place”.
What is the point of keeping this connection? It provides the values for the free variables of the function – for example:
function funcFactory(value) {
return () => {
return value;
};
}
const func = funcFactory('abc');
assert.equal(func(), 'abc'); // (A)
funcFactory returns a closure that is assigned to func. Because func has the connection to the variables at its birth place, it can still access the free variable value when it is called in line A (even though it “escaped” its scope).
All functions in JavaScript are closures
Static scoping is supported via closures in JavaScript. Therefore, every function is a closure.
Example: A factory for incrementors
The following function returns incrementors (a name that I just made up). An incrementor is a function that internally stores a number. When it is called, it updates that number by adding the argument to it and returns the new value.
function createInc(startValue) {
return (step) => { // (A)
startValue += step;
return startValue;
};
}
const inc = createInc(5);
assert.equal(inc(2), 7);
We can see that the function created in line A keeps its internal number in the free variable startValue. This time, we don’t just read from the birth scope, we use it to store data that we change and that persists across function calls.
We can create more storage slots in the birth scope, via local variables:
function createInc(startValue) {
let index = -1;
return (step) => {
startValue += step;
index++;
return [index, startValue];
};
}
const inc = createInc(5);
assert.deepEqual(inc(2), [0, 7]);
assert.deepEqual(inc(2), [1, 9]);
assert.deepEqual(inc(2), [2, 11]);
Use cases for closures
What are closures good for?
For starters, they are simply an implementation of static scoping. As such, they provide context data for callbacks.
They can also be used by functions to store state that persists across function calls. createInc() is an example of that.
And they can provide private data for objects (produced via literals or classes). The details of how that works are explained in Exploring ES6.
Quiz: advanced
See quiz app.
Values
In this chapter, we’ll examine what kinds of values JavaScript has.
Supporting tool: ===
In this chapter, we’ll occasionally use the strict equality operator. a === b evaluates to true if a and b are equal. What exactly that means is explained in §13.4.2 “Strict equality (=== and !==)”.
What’s a type?
For this chapter, I consider types to be sets of values – for example, the type boolean is the set { false, true }.
JavaScript’s type hierarchy
Figure 6: A partial hierarchy of JavaScript’s types. Missing are the classes for errors, the classes associated with primitive types, and more. The diagram hints at the fact that not all objects are instances of Object.
Fig. 6 shows JavaScript’s type hierarchy. What do we learn from that diagram?
The types of the language specification
The ECMAScript specification only knows a total of eight types. The names of those types are (I’m using TypeScript’s names, not the spec’s names):
Primitive values vs. objects
The specification makes an important distinction between values:
In contrast to Java (that inspired JavaScript here), primitive values are not second-class citizens. The difference between them and objects is more subtle. In a nutshell:
Other than that, primitive values and objects are quite similar: they both have properties (key-value entries) and can be used in the same locations.
Next, we’ll look at primitive values and objects in more depth.
Primitive values (short: primitives)
Primitives are immutable
You can’t change, add, or remove properties of primitives:
const str = 'abc';
assert.equal(str.length, 3);
assert.throws(
() => { str.length = 1 },
/^TypeError: Cannot assign to read only property 'length'/
);
Primitives are passed by value
Primitives are passed by value: variables (including parameters) store the contents of the primitives. When assigning a primitive value to a variable or passing it as an argument to a function, its content is copied.
const x = 123;
const y = x;
// `y` is the same as any other number 123
assert.equal(y, 123);
Observing the difference between passing by value and passing by reference
Due to primitive values being immutable and compared by value (see next subsection), there is no way to observe the difference between passing by value and passing by identity (as used for objects in JavaScript).
Primitives are compared by value
Primitives are compared by value: when comparing two primitive values, we compare their contents.
assert.equal(123 === 123, true);
assert.equal('abc' === 'abc', true);
To see what’s so special about this way of comparing, read on and find out how objects are compared.
Objects
Objects are covered in detail in §28 “Objects” and the following chapter. Here, we mainly focus on how they differ from primitive values.
Let’s first explore two common ways of creating objects:
Object literal:
const obj = {
first: 'Jane',
last: 'Doe',
};
The object literal starts and ends with curly braces {}. It creates an object with two properties. The first property has the key 'first' (a string) and the value 'Jane'. The second property has the key 'last' and the value 'Doe'. For more information on object literals, consult §28.3.1 “Object literals: properties”.
Array literal:
const fruits = ['strawberry', 'apple'];
The Array literal starts and ends with square brackets []. It creates an Array with two elements: 'strawberry' and 'apple'. For more information on Array literals, consult [content not included].
Objects are mutable by default
By default, you can freely change, add, and remove the properties of objects:
const obj = {};
obj.count = 2; // add a property
assert.equal(obj.count, 2);
obj.count = 3; // change a property
assert.equal(obj.count, 3);
Objects are passed by identity
Objects are passed by identity (my term): variables (including parameters) store the identities of objects.
The identity of an object is like a pointer (or a transparent reference) to the object’s actual data on the heap (think shared main memory of a JavaScript engine).
When assigning an object to a variable or passing it as an argument to a function, its identity is copied. Each object literal creates a fresh object on the heap and returns its identity.
const a = {}; // fresh empty object
// Pass the identity in `a` to `b`:
const b = a;
// Now `a` and `b` point to the same object
// (they “share” that object):
assert.equal(a === b, true);
// Changing `a` also changes `b`:
a.name = 'Tessa';
assert.equal(b.name, 'Tessa');
JavaScript uses garbage collection to automatically manage memory:
let obj = { prop: 'value' };
obj = {};
Now the old value { prop: 'value' } of obj is garbage (not used anymore). JavaScript will automatically garbage-collect it (remove it from memory), at some point in time (possibly never if there is enough free memory).
Details: passing by identity
“Passing by identity” means that the identity of an object (a transparent reference) is passed by value. This approach is also called “passing by sharing”.
Objects are compared by identity
Objects are compared by identity (my term): two variables are only equal if they contain the same object identity. They are not equal if they refer to different objects with the same content.
const obj = {}; // fresh empty object
assert.equal(obj === obj, true); // same identity
assert.equal({} === {}, false); // different identities, same content
The operators typeof and instanceof: what’s the type of a value?
The two operators typeof and instanceof let you determine what type a given value x has:
if (typeof x === 'string') ···
if (x instanceof Array) ···
How do they differ?
Rule of thumb: typeof is for primitive values; instanceof is for objects
typeof
x | typeof x |
---|---|
undefined | 'undefined' |
null | 'object' |
Boolean | 'boolean' |
Number | 'number' |
Bigint | 'bigint' |
String | 'string' |
Symbol | 'symbol' |
Function | 'function' |
All other objects | 'object' |
Tbl. 2 lists all results of typeof. They roughly correspond to the 7 types of the language specification. Alas, there are two differences, and they are language quirks:
These are a few examples of using typeof:
> typeof undefined
'undefined'
> typeof 123n
'bigint'
> typeof 'abc'
'string'
> typeof {}
'object'
Exercises: Two exercises on typeof
exercises/values/typeof_exrc.mjs
instanceof
This operator answers the question: has a value x been created by a class C?
x instanceof C
For example:
> (function() {}) instanceof Function
true
> ({}) instanceof Object
true
> [] instanceof Array
true
Primitive values are not instances of anything:
> 123 instanceof Number
false
> '' instanceof String
false
> '' instanceof Object
false
Exercise: instanceof
exercises/values/instanceof_exrc.mjs
Classes and constructor functions
JavaScript’s original factories for objects are constructor functions: ordinary functions that return “instances” of themselves if you invoke them via the new operator.
ES6 introduced classes, which are mainly better syntax for constructor functions.
In this book, I’m using the terms constructor function and class interchangeably.
Classes can be seen as partitioning the single type object of the specification into subtypes – they give us more types than the limited 7 ones of the specification. Each class is the type of the objects that were created by it.
Constructor functions associated with primitive types
Each primitive type (except for the spec-internal types for undefined and null) has an associated constructor function (think class):
Each of these functions plays several roles – for example, Number:
You can use it as a function and convert values to numbers:
assert.equal(Number('123'), 123);
Number.prototype provides the properties for numbers – for example, method .toString():
assert.equal((123).toString, Number.prototype.toString);
Number is a namespace/container object for tool functions for numbers – for example:
assert.equal(Number.isInteger(123), true);
Lastly, you can also use Number as a class and create number objects. These objects are different from real numbers and should be avoided.
assert.notEqual(new Number(123), 123);
assert.equal(new Number(123).valueOf(), 123);
Wrapping primitive values
The constructor functions related to primitive types are also called wrapper types because they provide the canonical way of converting primitive values to objects. In the process, primitive values are “wrapped” in objects.
const prim = true;
assert.equal(typeof prim, 'boolean');
assert.equal(prim instanceof Boolean, false);
const wrapped = Object(prim);
assert.equal(typeof wrapped, 'object');
assert.equal(wrapped instanceof Boolean, true);
assert.equal(wrapped.valueOf(), prim); // unwrap
Wrapping rarely matters in practice, but it is used internally in the language specification, to give primitives properties.
Converting between types
There are two ways in which values are converted to other types in JavaScript:
Explicit conversion between types
The function associated with a primitive type explicitly converts values to that type:
> Boolean(0)
false
> Number('123')
123
> String(123)
'123'
You can also use Object() to convert values to objects:
> typeof Object(123)
'object'
The following table describes in more detail how this conversion works:
x | Object(x) |
---|---|
undefined | {} |
null | {} |
boolean | new Boolean(x) |
number | new Number(x) |
bigint | An instance of BigInt (new throws TypeError ) |
string | new String(x) |
symbol | An instance of Symbol (new throws TypeError ) |
object | x |
Coercion (automatic conversion between types)
For many operations, JavaScript automatically converts the operands/parameters if their types don’t fit. This kind of automatic conversion is called coercion.
For example, the multiplication operator coerces its operands to numbers:
> '7' * '3'
21
Many built-in functions coerce, too. For example, Number.parseInt() coerces its parameter to a string before parsing it. That explains the following result:
> Number.parseInt(123.45)
123
The number 123.45 is converted to the string '123.45' before it is parsed. Parsing stops before the first non-digit character, which is why the result is 123.
Exercise: Converting values to primitives
exercises/values/conversion_exrc.mjs
Quiz
See quiz app.
Operators
Making sense of operators
JavaScript’s operators may seem quirky. With the following two rules, they are easier to understand:
Operators coerce their operands to appropriate types
If an operator gets operands that don’t have the proper types, it rarely throws an exception. Instead, it coerces (automatically converts) the operands so that it can work with them. Let’s look at two examples.
First, the multiplication operator can only work with numbers. Therefore, it converts strings to numbers before computing its result.
> '7' * '3'
21
Second, the square brackets operator ([ ]) for accessing the properties of an object can only handle strings and symbols. All other values are coerced to string:
const obj = {};
obj['true'] = 123;
// Coerce true to the string 'true'
assert.equal(obj[true], 123);
Most operators only work with primitive values
As mentioned before, most operators only work with primitive values. If an operand is an object, it is usually coerced to a primitive value – for example:
> [1,2,3] + [4,5,6]
'1,2,34,5,6'
Why? The plus operator first coerces its operands to primitive values:
> String([1,2,3])
'1,2,3'
> String([4,5,6])
'4,5,6'
Next, it concatenates the two strings:
> '1,2,3' + '4,5,6'
'1,2,34,5,6'
The plus operator (+)
The plus operator works as follows in JavaScript:
String mode lets us use + to assemble strings:
> 'There are ' + 3 + ' items'
'There are 3 items'
Number mode means that if neither operand is a string (or an object that becomes a string) then everything is coerced to numbers:
> 4 + true
5
Number(true) is 1.
Assignment operators
The plain assignment operator
The plain assignment operator is used to change storage locations:
x = value; // assign to a previously declared variable
obj.propKey = value; // assign to a property
arr[index] = value; // assign to an Array element
Initializers in variable declarations can also be viewed as a form of assignment:
const x = value;
let y = value;
Compound assignment operators
JavaScript supports the following assignment operators:
Logical assignment operators [ES2021]
Logical assignment operators work differently from other compound assignment operators:
Assignment operator | Equivalent to | Only assigns if a is |
---|---|---|
a ||= b | a || (a = b) | Falsy |
a &&= b | a && (a = b) | Truthy |
a ??= b | a ?? (a = b) | Nullish |
Why is a ||= b equivalent to the following expression?
a || (a = b)
Why not to this expression?
a = a || b
The former expression has the benefit of short-circuiting: The assignment is only evaluated if a evaluates to false. Therefore, the assignment is only performed if it’s necessary. In contrast, the latter expression always performs an assignment.
For more on ??=, see §14.4.5 “The nullish coalescing assignment operator (??=) [ES2021]”.
The remaining compound assignment operators
For operators op other than || && ??, the following two ways of assigning are equivalent:
myvar op= value
myvar = myvar op value
If, for example, op is +, then we get the operator += that works as follows.
let str = '';
str += '<b>';
str += 'Hello!';
str += '</b>';
assert.equal(str, '<b>Hello!</b>');
Equality: == vs. ===
JavaScript has two kinds of equality operators: loose equality (==) and strict equality (===). The recommendation is to always use the latter.
Other names for == and ===
Loose equality (== and !=)
Loose equality is one of JavaScript’s quirks. It often coerces operands. Some of those coercions make sense:
> '123' == 123
true
> false == 0
true
Others less so:
> '' == 0
true
Objects are coerced to primitives if (and only if!) the other operand is primitive:
> [1, 2, 3] == '1,2,3'
true
> ['1', '2', '3'] == '1,2,3'
true
If both operands are objects, they are only equal if they are the same object:
> [1, 2, 3] == ['1', '2', '3']
false
> [1, 2, 3] == [1, 2, 3]
false
> const arr = [1, 2, 3];
> arr == arr
true
Lastly, == considers undefined and null to be equal:
> undefined == null
true
Strict equality (=== and !==)
Strict equality never coerces. Two values are only equal if they have the same type. Let’s revisit our previous interaction with the == operator and see what the === operator does:
> false === 0
false
> '123' === 123
false
An object is only equal to another value if that value is the same object:
> [1, 2, 3] === '1,2,3'
false
> ['1', '2', '3'] === '1,2,3'
false
> [1, 2, 3] === ['1', '2', '3']
false
> [1, 2, 3] === [1, 2, 3]
false
> const arr = [1, 2, 3];
> arr === arr
true
The === operator does not consider undefined and null to be equal:
> undefined === null
false
Recommendation: always use strict equality
I recommend to always use ===. It makes your code easier to understand and spares you from having to think about the quirks of ==.
Let’s look at two use cases for == and what I recommend to do instead.
Use case for ==: comparing with a number or a string
== lets you check if a value x is a number or that number as a string – with a single comparison:
if (x == 123) {
// x is either 123 or '123'
}
I prefer either of the following two alternatives:
if (x === 123 || x === '123') ···
if (Number(x) === 123) ···
You can also convert x to a number when you first encounter it.
Use case for ==: comparing with undefined or null
Another use case for == is to check if a value x is either undefined or null:
if (x == null) {
// x is either null or undefined
}
The problem with this code is that you can’t be sure if someone meant to write it that way or if they made a typo and meant === null.
I prefer either of the following two alternatives:
if (x === undefined || x === null) ···
if (!x) ···
A downside of the second alternative is that it accepts values other than undefined and null, but it is a well-established pattern in JavaScript (to be explained in detail in §15.3 “Truthiness-based existence checks”).
The following three conditions are also roughly equivalent:
if (x != null) ···
if (x !== undefined && x !== null) ···
if (x) ···
Even stricter than ===: Object.is()
Method Object.is() compares two values:
> Object.is(123, 123)
true
> Object.is(123, '123')
false
It is even stricter than ===. For example, it considers NaN, the error value for computations involving numbers, to be equal to itself:
> Object.is(NaN, NaN)
true
> NaN === NaN
false
That is occasionally useful. For example, you can use it to implement an improved version of the Array method .indexOf():
const myIndexOf = (arr, elem) => {
return arr.findIndex(x => Object.is(x, elem));
};
myIndexOf() finds NaN in an Array, while .indexOf() doesn’t:
> myIndexOf([0,NaN,2], NaN)
1
> [0,NaN,2].indexOf(NaN)
-1
The result -1 means that .indexOf() couldn’t find its argument in the Array.
Ordering operators
Operator | name |
---|---|
< | less than |
<= | Less than or equal |
> | Greater than |
>= | Greater than or equal |
JavaScript’s ordering operators (tbl. 3) work for both numbers and strings:
> 5 >= 2
true
> 'bar' < 'foo'
true
<= and >= are based on strict equality.
The ordering operators don’t work well for human languages
The ordering operators don’t work well for comparing text in a human language, e.g., when capitalization or accents are involved. The details are explained in §20.6 “Comparing strings”.
Various other operators
The following operators are covered elsewhere in this book:
The next two subsections discuss two operators that are rarely used.
Comma operator
The comma operator has two operands, evaluates both of them and returns the second one:
> 'a', 'b'
'b'
For more information on this operator, see Speaking JavaScript.
void operator
The void operator evaluates its operand and returns undefined:
> void (3 + 2)
undefined
For more information on this operator, see Speaking JavaScript.
Quiz
See quiz app.
The non-values undefined and null
Many programming languages have one “non-value” called null. It indicates that a variable does not currently point to an object – for example, when it hasn’t been initialized yet.
In contrast, JavaScript has two of them: undefined and null.
undefined vs. null
Both values are very similar and often used interchangeably. How they differ is therefore subtle. The language itself makes the following distinction:
Programmers may make the following distinction:
Occurrences of undefined and null
The following subsections describe where undefined and null appear in the language. We’ll encounter several mechanisms that are explained in more detail later in this book.
Occurrences of undefined
Uninitialized variable myVar:
let myVar;
assert.equal(myVar, undefined);
Parameter x is not provided:
function func(x) {
return x;
}
assert.equal(func(), undefined);
Property .unknownProp is missing:
const obj = {};
assert.equal(obj.unknownProp, undefined);
If we don’t explicitly specify the result of a function via a return statement, JavaScript returns undefined for us:
function func() {}
assert.equal(func(), undefined);
Occurrences of null
The prototype of an object is either an object or, at the end of a chain of prototypes, null. Object.prototype does not have a prototype:
> Object.getPrototypeOf(Object.prototype)
null
If we match a regular expression (such as /a/) against a string (such as 'x'), we either get an object with matching data (if matching was successful) or null (if matching failed):
> /a/.exec('x')
null
The JSON data format does not support undefined, only null:
> JSON.stringify({a: undefined, b: null})
'{"b":null}'
Checking for undefined or null
Checking for either:
if (x === null) ···
if (x === undefined) ···
Does x have a value?
if (x !== undefined && x !== null) {
// ···
}
if (x) { // truthy?
// x is neither: undefined, null, false, 0, NaN, ''
}
Is x either undefined or null?
if (x === undefined || x === null) {
// ···
}
if (!x) { // falsy?
// x is: undefined, null, false, 0, NaN, ''
}
Truthy means “is true if coerced to boolean”. Falsy means “is false if coerced to boolean”. Both concepts are explained properly in §15.2 “Falsy and truthy values”.
The nullish coalescing operator (??) for default values [ES2020]
Sometimes we receive a value and only want to use it if it isn’t either null or undefined. Otherwise, we’d like to use a default value, as a fallback. We can do that via the nullish coalescing operator (??):
const valueToUse = receivedValue ?? defaultValue;
The following two expressions are equivalent:
a ?? b
a !== undefined && a !== null ? a : b
Example: counting matches
The following code shows a real-world example:
function countMatches(regex, str) {
const matchResult = str.match(regex); // null or Array
return (matchResult ?? []).length;
}
assert.equal(
countMatches(/a/g, 'ababa'), 3);
assert.equal(
countMatches(/b/g, 'ababa'), 2);
assert.equal(
countMatches(/x/g, 'ababa'), 0);
If there are one or more matches for regex inside str, then .match() returns an Array. If there are no matches, it unfortunately returns null (and not the empty Array). We fix that via the ?? operator.
We also could have used optional chaining:
return matchResult?.length ?? 0;
Example: specifying a default value for a property
function getTitle(fileDesc) {
return fileDesc.title ?? '(Untitled)';
}
const files = [
{path: 'index.html', title: 'Home'},
{path: 'tmp.html'},
];
assert.deepEqual(
files.map(f => getTitle(f)),
['Home', '(Untitled)']);
Using destructuring for default values
In some cases, destructuring can also be used for default values – for example:
function getTitle(fileDesc) {
const {title = '(Untitled)'} = fileDesc;
return title;
}
Legacy approach: using logical Or (||) for default values
Before ECMAScript 2020 and the nullish coalescing operator, logical Or was used for default values. That has a downside.
|| works as expected for undefined and null:
> undefined || 'default'
'default'
> null || 'default'
'default'
But it also returns the default for all other falsy values – for example:
> false || 'default'
'default'
> 0 || 'default'
'default'
> 0n || 'default'
'default'
> '' || 'default'
'default'
Compare that to how ?? works:
> undefined ?? 'default'
'default'
> null ?? 'default'
'default'
> false ?? 'default'
false
> 0 ?? 'default'
0
> 0n ?? 'default'
0n
> '' ?? 'default'
''
The nullish coalescing assignment operator (??=) [ES2021]
??= is a logical assignment operator. The following two expressions are roughly equivalent:
a ??= b
a ?? (a = b)
That means that ??= is short-circuiting: The assignment is only made if a is undefined or null.
Example: using ??= to add missing properties
const books = [
{
isbn: '123',
},
{
title: 'ECMAScript Language Specification',
isbn: '456',
},
];
// Add property .title where it’s missing
for (const book of books) {
book.title ??= '(Untitled)';
}
assert.deepEqual(
books,
[
{
isbn: '123',
title: '(Untitled)',
},
{
title: 'ECMAScript Language Specification',
isbn: '456',
},
]);
undefined and null don’t have properties
undefined and null are the only two JavaScript values where we get an exception if we try to read a property. To explore this phenomenon, let’s use the following function, which reads (“gets”) property .foo and returns the result.
function getFoo(x) {
return x.foo;
}
If we apply getFoo() to various values, we can see that it only fails for undefined and null:
> getFoo(undefined)
TypeError: Cannot read properties of undefined (reading 'foo')
> getFoo(null)
TypeError: Cannot read properties of null (reading 'foo')
> getFoo(true)
undefined
> getFoo({})
undefined
The history of undefined and null
In Java (which inspired many aspects of JavaScript), initialization values depend on the static type of a variable:
In JavaScript, each variable can hold both object values and primitive values. Therefore, if null means “not an object”, JavaScript also needs an initialization value that means “neither an object nor a primitive value”. That initialization value is undefined.
Quiz
See quiz app.
Booleans
The primitive type boolean comprises two values – false and true:
> typeof false
'boolean'
> typeof true
'boolean'
Converting to boolean
The meaning of “converting to [type]”
“Converting to [type]” is short for “Converting arbitrary values to values of type [type]”.
These are three ways in which you can convert an arbitrary value x to a boolean.
Boolean(x)
Most descriptive; recommended.
x ? true : false
Uses the conditional operator (explained later in this chapter).
!!x
Uses the logical Not operator (!). This operator coerces its operand to boolean. It is applied a second time to get a non-negated result.
Tbl. 4 describes how various values are converted to boolean.
x | Boolean(x) |
---|---|
undefined | false |
null | false |
boolean | x (no change) |
number | 0 → false, NaN → false |
Other numbers → true | |
bigint | 0 → false |
Other numbers → true | |
string | '' → false |
Other strings → true | |
symbol | true |
object | Always true |
Falsy and truthy values
When checking the condition of an if statement, a while loop, or a do-while loop, JavaScript works differently than you may expect. Take, for example, the following condition:
if (value) {}
In many programming languages, this condition is equivalent to:
if (value === true) {}
However, in JavaScript, it is equivalent to:
if (Boolean(value) === true) {}
That is, JavaScript checks if value is true when converted to boolean. This kind of check is so common that the following names were introduced:
Each value is either truthy or falsy. Consulting tbl. 4, we can make an exhaustive list of falsy values:
All other values (including all objects) are truthy:
> Boolean('abc')
true
> Boolean([])
true
> Boolean({})
true
Checking for truthiness or falsiness
if (x) {
// x is truthy
}
if (!x) {
// x is falsy
}
if (x) {
// x is truthy
} else {
// x is falsy
}
const result = x ? 'truthy' : 'falsy';
The conditional operator that is used in the last line, is explained later in this chapter.
Exercise: Truthiness
exercises/booleans/truthiness_exrc.mjs
Truthiness-based existence checks
In JavaScript, if you read something that doesn’t exist (e.g., a missing parameter or a missing property), you usually get undefined as a result. In these cases, an existence check amounts to comparing a value with undefined. For example, the following code checks if object obj has the property .prop:
if (obj.prop !== undefined) {
// obj has property .prop
}
Due to undefined being falsy, we can shorten this check to:
if (obj.prop) {
// obj has property .prop
}
Pitfall: truthiness-based existence checks are imprecise
Truthiness-based existence checks have one pitfall: they are not very precise. Consider this previous example:
if (obj.prop) {
// obj has property .prop
}
The body of the if statement is skipped if:
However, it is also skipped if:
In practice, this rarely causes problems, but you have to be aware of this pitfall.
Use case: was a parameter provided?
A truthiness check is often used to determine if the caller of a function provided a parameter:
function func(x) {
if (!x) {
throw new Error('Missing parameter x');
}
// ···
}
On the plus side, this pattern is established and short. It correctly throws errors for undefined and null.
On the minus side, there is the previously mentioned pitfall: the code also throws errors for all other falsy values.
An alternative is to check for undefined:
if (x === undefined) {
throw new Error('Missing parameter x');
}
Use case: does a property exist?
Truthiness checks are also often used to determine if a property exists:
function readFile(fileDesc) {
if (!fileDesc.path) {
throw new Error('Missing property: .path');
}
// ···
}
readFile({ path: 'foo.txt' }); // no error
This pattern is also established and has the usual caveat: it not only throws if the property is missing, but also if it exists and has any of the falsy values.
If you truly want to check if the property exists, you have to use the in operator:
if (! ('path' in fileDesc)) {
throw new Error('Missing property: .path');
}
Conditional operator (? :)
The conditional operator is the expression version of the if statement. Its syntax is:
«condition» ? «thenExpression» : «elseExpression»
It is evaluated as follows:
The conditional operator is also called ternary operator because it has three operands.
Examples:
> true ? 'yes' : 'no'
'yes'
> false ? 'yes' : 'no'
'no'
> '' ? 'yes' : 'no'
'no'
The following code demonstrates that whichever of the two branches “then” and “else” is chosen via the condition, only that branch is evaluated. The other branch isn’t.
const x = (true ? console.log('then') : console.log('else'));
// Output:
// 'then'
Binary logical operators: And (x && y), Or (x || y)
The binary logical operators && and || are value-preserving and short-circuiting.
Value-preservation
Value-preservation means that operands are interpreted as booleans but returned unchanged:
> 12 || 'hello'
12
> 0 || 'hello'
'hello'
Short-circuiting
Short-circuiting means if the first operand already determines the result, then the second operand is not evaluated. The only other operator that delays evaluating its operands is the conditional operator. Usually, all operands are evaluated before performing an operation.
For example, logical And (&&) does not evaluate its second operand if the first one is falsy:
const x = false && console.log('hello');
// No output
If the first operand is truthy, console.log() is executed:
const x = true && console.log('hello');
// Output:
// 'hello'
Logical And (x && y)
The expression a && b (“a And b”) is evaluated as follows:
In other words, the following two expressions are roughly equivalent:
a && b
!a ? a : b
Examples:
> false && true
false
> false && 'abc'
false
> true && false
false
> true && 'abc'
'abc'
> '' && 'abc'
''
Logical Or (||)
The expression a || b (“a Or b”) is evaluated as follows:
In other words, the following two expressions are roughly equivalent:
a || b
a ? a : b
Examples:
> true || false
true
> true || 'abc'
true
> false || true
true
> false || 'abc'
'abc'
> 'abc' || 'def'
'abc'
Legacy use case for logical Or (||): providing default values
ECMAScript 2020 introduced the nullish coalescing operator (??) for default values. Before that, logical Or was used for this purpose:
const valueToUse = receivedValue || defaultValue;
See §14.4 “The nullish coalescing operator (??) for default values [ES2020]” for more information on ?? and the downsides of || in this case.
Legacy exercise: Default values via the Or operator (||)
exercises/booleans/default_via_or_exrc.mjs
Logical Not (!)
The expression !x (“Not x”) is evaluated as follows:
Examples:
> !false
true
> !true
false
> !0
true
> !123
false
> !''
true
> !'abc'
false
Quiz
See quiz app.
Numbers
JavaScript has two kinds of numeric values:
This chapter covers numbers. Bigints are covered later in this book.
Numbers are used for both floating point numbers and integers
The type number is used for both integers and floating point numbers in JavaScript:
98
123.45
However, all numbers are doubles, 64-bit floating point numbers implemented according to the IEEE Standard for Floating-Point Arithmetic (IEEE 754).
Integer numbers are simply floating point numbers without a decimal fraction:
> 98 === 98.0
true
Note that, under the hood, most JavaScript engines are often able to use real integers, with all associated performance and storage size benefits.
Number literals
Let’s examine literals for numbers.
Integer literals
Several integer literals let us express integers with various bases:
// Binary (base 2)
assert.equal(0b11, 3); // ES6
// Octal (base 8)
assert.equal(0o10, 8); // ES6
// Decimal (base 10)
assert.equal(35, 35);
// Hexadecimal (base 16)
assert.equal(0xE7, 231);
Floating point literals
Floating point numbers can only be expressed in base 10.
Fractions:
> 35.0
35
Exponent: eN means ×10N
> 3e2
300
> 3e-2
0.03
> 0.3e2
30
Syntactic pitfall: properties of integer literals
Accessing a property of an integer literal entails a pitfall: If the integer literal is immediately followed by a dot, then that dot is interpreted as a decimal dot:
7.toString(); // syntax error
There are four ways to work around this pitfall:
7.0.toString()
(7).toString()
7..toString()
7 .toString() // space before dot
Underscores (_) as separators in number literals [ES2021]
Grouping digits to make long numbers more readable has a long tradition. For example:
Since ES2021, we can use underscores as separators in number literals:
const inhabitantsOfLondon = 1_335_000;
const distanceEarthSunInKm = 149_600_000;
With other bases, grouping is important, too:
const fileSystemPermission = 0b111_111_000;
const bytes = 0b1111_10101011_11110000_00001101;
const words = 0xFAB_F00D;
We can also use the separator in fractions and exponents:
const massOfElectronInKg = 9.109_383_56e-31;
const trillionInShortScale = 1e1_2;
Where can we put separators?
The locations of separators are restricted in two ways:
We can only put underscores between two digits. Therefore, all of the following number literals are illegal:
3_.141
3._141
1_e12
1e_12
_1464301 // valid variable name!
1464301_
0_b111111000
0b_111111000
We can’t use more than one underscore in a row:
123__456 // two underscores – not allowed
The motivation behind these restrictions is to keep parsing simple and to avoid strange edge cases.
Parsing numbers with separators
The following functions for parsing numbers do not support separators:
For example:
> Number('123_456')
NaN
> Number.parseInt('123_456')
123
The rationale is that numeric separators are for code. Other kinds of input should be processed differently.
Arithmetic operators
Binary arithmetic operators
Tbl. 5 lists JavaScript’s binary arithmetic operators.
Operator | Name | Example | |
---|---|---|---|
n + m | Addition | ES1 | 3 + 4 → 7 |
n - m | Subtraction | ES1 | 9 - 1 → 8 |
n * m | Multiplication | ES1 | 3 * 2.25 → 6.75 |
n / m | Division | ES1 | 5.625 / 5 → 1.125 |
n % m | Remainder | ES1 | 8 % 5 → 3 |
-8 % 5 → -3 | |||
n ** m | Exponentiation | ES2016 | 4 ** 2 → 16 |
% is a remainder operator
% is a remainder operator, not a modulo operator. Its result has the sign of the first operand:
> 5 % 3
2
> -5 % 3
-2
For more information on the difference between remainder and modulo, see the blog post “Remainder operator vs. modulo operator (with JavaScript code)” on 2ality.
Unary plus (+) and negation (-)
Tbl. 6 summarizes the two operators unary plus (+) and negation (-).
Operator | Name | Example | |
---|---|---|---|
+n | Unary plus | ES1 | +(-7) → -7 |
-n | Unary negation | ES1 | -(-7) → 7 |
Both operators coerce their operands to numbers:
> +'5'
5
> +'-12'
-12
> -'9'
-9
Thus, unary plus lets us convert arbitrary values to numbers.
Incrementing (++) and decrementing (--)
The incrementation operator ++ exists in a prefix version and a suffix version. In both versions, it destructively adds one to its operand. Therefore, its operand must be a storage location that can be changed.
The decrementation operator -- works the same, but subtracts one from its operand. The next two examples explain the difference between the prefix and the suffix version.
Tbl. 7 summarizes the incrementation and decrementation operators.
Operator | Name | Example | |
---|---|---|---|
v++ | Increment | ES1 | let v=0; [v++, v] → [0, 1] |
++v | Increment | ES1 | let v=0; [++v, v] → [1, 1] |
v-- | Decrement | ES1 | let v=1; [v--, v] → [1, 0] |
--v | Decrement | ES1 | let v=1; [--v, v] → [0, 0] |
Next, we’ll look at examples of these operators in use.
Prefix ++ and prefix -- change their operands and then return them.
let foo = 3;
assert.equal(++foo, 4);
assert.equal(foo, 4);
let bar = 3;
assert.equal(--bar, 2);
assert.equal(bar, 2);
Suffix ++ and suffix -- return their operands and then change them.
let foo = 3;
assert.equal(foo++, 3);
assert.equal(foo, 4);
let bar = 3;
assert.equal(bar--, 3);
assert.equal(bar, 2);
Operands: not just variables
We can also apply these operators to property values:
const obj = { a: 1 };
++obj.a;
assert.equal(obj.a, 2);
And to Array elements:
const arr = [ 4 ];
arr[0]++;
assert.deepEqual(arr, [5]);
Exercise: Number operators
exercises/numbers-math/is_odd_test.mjs
Converting to number
These are three ways of converting values to numbers:
Recommendation: use the descriptive Number(). Tbl. 8 summarizes how it works.
x | Number(x) |
---|---|
undefined | NaN |
null | 0 |
boolean | false → 0, true → 1 |
number | x (no change) |
bigint | -1n → -1, 1n → 1 , etc. |
string | '' → 0 |
Other → parsed number, ignoring leading/trailing whitespace | |
symbol | Throws TypeError |
object | Configurable (e.g. via .valueOf() ) |
Examples:
assert.equal(Number(123.45), 123.45);
assert.equal(Number(''), 0);
assert.equal(Number('\n 123.45 \t'), 123.45);
assert.equal(Number('xyz'), NaN);
assert.equal(Number(-123n), -123);
How objects are converted to numbers can be configured – for example, by overriding .valueOf():
> Number({ valueOf() { return 123 } })
123
Exercise: Converting to number
exercises/numbers-math/parse_number_test.mjs
Error values
Two number values are returned when errors happen:
Error value: NaN
NaN is an abbreviation of “not a number”. Ironically, JavaScript considers it to be a number:
> typeof NaN
'number'
When is NaN returned?
NaN is returned if a number can’t be parsed:
> Number('$$$')
NaN
> Number(undefined)
NaN
NaN is returned if an operation can’t be performed:
> Math.log(-1)
NaN
> Math.sqrt(-1)
NaN
NaN is returned if an operand or argument is NaN (to propagate errors):
> NaN - 3
NaN
> 7 ** NaN
NaN
Checking for NaN
NaN is the only JavaScript value that is not strictly equal to itself:
const n = NaN;
assert.equal(n === n, false);
These are several ways of checking if a value x is NaN:
const x = NaN;
assert.equal(Number.isNaN(x), true); // preferred
assert.equal(Object.is(x, NaN), true);
assert.equal(x !== x, true);
In the last line, we use the comparison quirk to detect NaN.
Finding NaN in Arrays
Some Array methods can’t find NaN:
> [NaN].indexOf(NaN)
-1
Others can:
> [NaN].includes(NaN)
true
> [NaN].findIndex(x => Number.isNaN(x))
0
> [NaN].find(x => Number.isNaN(x))
NaN
Alas, there is no simple rule of thumb. We have to check for each method how it handles NaN.
Error value: Infinity
When is the error value Infinity returned?
Infinity is returned if a number is too large:
> Math.pow(2, 1023)
8.98846567431158e+307
> Math.pow(2, 1024)
Infinity
Infinity is returned if there is a division by zero:
> 5 / 0
Infinity
> -5 / 0
-Infinity
Infinity as a default value
Infinity is larger than all other numbers (except NaN), making it a good default value:
function findMinimum(numbers) {
let min = Infinity;
for (const n of numbers) {
if (n < min) min = n;
}
return min;
}
assert.equal(findMinimum([5, -1, 2]), -1);
assert.equal(findMinimum([]), Infinity);
Checking for Infinity
These are two common ways of checking if a value x is Infinity:
const x = Infinity;
assert.equal(x === Infinity, true);
assert.equal(Number.isFinite(x), false);
Exercise: Comparing numbers
exercises/numbers-math/find_max_test.mjs
The precision of numbers: careful with decimal fractions
Internally, JavaScript floating point numbers are represented with base 2 (according to the IEEE 754 standard). That means that decimal fractions (base 10) can’t always be represented precisely:
> 0.1 + 0.2
0.30000000000000004
> 1.3 * 3
3.9000000000000004
> 1.4 * 100000000000000
139999999999999.98
We therefore need to take rounding errors into consideration when performing arithmetic in JavaScript.
Read on for an explanation of this phenomenon.
Quiz: basic
See quiz app.
(Advanced)
All remaining sections of this chapter are advanced.
Background: floating point precision
In JavaScript, computations with numbers don’t always produce correct results – for example:
> 0.1 + 0.2
0.30000000000000004
To understand why, we need to explore how JavaScript represents floating point numbers internally. It uses three integers to do so, which take up a total of 64 bits of storage (double precision):
Component | Size | Integer range |
---|---|---|
Sign | 1 bit | [0, 1] |
Fraction | 52 bits | [0, 252 −1] |
Exponent | 11 bits | [−1023, 1024] |
The floating point number represented by these integers is computed as follows:
(–1)sign × 0b1.fraction × 2exponent
This representation can’t encode a zero because its second component (involving the fraction) always has a leading 1. Therefore, a zero is encoded via the special exponent −1023 and a fraction 0.
A simplified representation of floating point numbers
To make further discussions easier, we simplify the previous representation:
The new representation works like this:
mantissa × 10exponent
Let’s try out this representation for a few floating point numbers.
For the integer −123, we mainly need the mantissa:
> -123 * (10 ** 0)
-123
For the number 1.5, we imagine there being a point after the mantissa. We use a negative exponent to move that point one digit to the left:
> 15 * (10 ** -1)
1.5
For the number 0.25, we move the point two digits to the left:
> 25 * (10 ** -2)
0.25
Representations with negative exponents can also be written as fractions with positive exponents in the denominators:
> 15 * (10 ** -1) === 15 / (10 ** 1)
true
> 25 * (10 ** -2) === 25 / (10 ** 2)
true
These fractions help with understanding why there are numbers that our encoding cannot represent:
1/10 can be represented. It already has the required format: a power of 10 in the denominator.
1/2 can be represented as 5/10. We turned the 2 in the denominator into a power of 10 by multiplying the numerator and denominator by 5.
1/4 can be represented as 25/100. We turned the 4 in the denominator into a power of 10 by multiplying the numerator and denominator by 25.
1/3 cannot be represented. There is no way to turn the denominator into a power of 10. (The prime factors of 10 are 2 and 5. Therefore, any denominator that only has these prime factors can be converted to a power of 10, by multiplying both the numerator and denominator by enough twos and fives. If a denominator has a different prime factor, then there’s nothing we can do.)
To conclude our excursion, we switch back to base 2:
Now we can see why 0.1 + 0.2 doesn’t produce a correct result: internally, neither of the two operands can be represented precisely.
The only way to compute precisely with decimal fractions is by internally switching to base 10. For many programming languages, base 2 is the default and base 10 an option. For example, Java has the class BigDecimal and Python has the module decimal. There are plans to add something similar to JavaScript: the ECMAScript proposal “Decimal”.
Integer numbers in JavaScript
Integer numbers are normal (floating point) numbers without decimal fractions:
> 1 === 1.0
true
> Number.isInteger(1.0)
true
In this section, we’ll look at a few tools for working with these pseudo-integers. JavaScript also supports bigints, which are real integers.
Converting to integer
The recommended way of converting numbers to integers is to use one of the rounding methods of the Math object:
Math.floor(n): returns the largest integer i ≤ n
> Math.floor(2.1)
2
> Math.floor(2.9)
2
Math.ceil(n): returns the smallest integer i ≥ n
> Math.ceil(2.1)
3
> Math.ceil(2.9)
3
Math.round(n): returns the integer that is “closest” to n with __.5 being rounded up – for example:
> Math.round(2.4)
2
> Math.round(2.5)
3
Math.trunc(n): removes any decimal fraction (after the point) that n has, therefore turning it into an integer.
> Math.trunc(2.1)
2
> Math.trunc(2.9)
2
For more information on rounding, consult §17.3 “Rounding”.
Ranges of integer numbers in JavaScript
These are important ranges of integer numbers in JavaScript:
Safe integers
This is the range of integer numbers that are safe in JavaScript (53 bits plus a sign):
[–(253)+1, 253–1]
An integer is safe if it is represented by exactly one JavaScript number. Given that JavaScript numbers are encoded as a fraction multiplied by 2 to the power of an exponent, higher integers can also be represented, but then there are gaps between them.
For example (18014398509481984 is 254):
> 18014398509481984
18014398509481984
> 18014398509481985
18014398509481984
> 18014398509481986
18014398509481984
> 18014398509481987
18014398509481988
The following properties of Number help determine if an integer is safe:
assert.equal(Number.MAX_SAFE_INTEGER, (2 ** 53) - 1);
assert.equal(Number.MIN_SAFE_INTEGER, -Number.MAX_SAFE_INTEGER);
assert.equal(Number.isSafeInteger(5), true);
assert.equal(Number.isSafeInteger('5'), false);
assert.equal(Number.isSafeInteger(5.1), false);
assert.equal(Number.isSafeInteger(Number.MAX_SAFE_INTEGER), true);
assert.equal(Number.isSafeInteger(Number.MAX_SAFE_INTEGER+1), false);
Exercise: Detecting safe integers
exercises/numbers-math/is_safe_integer_test.mjs
Safe computations
Let’s look at computations involving unsafe integers.
The following result is incorrect and unsafe, even though both of its operands are safe:
> 9007199254740990 + 3
9007199254740992
The following result is safe, but incorrect. The first operand is unsafe; the second operand is safe:
> 9007199254740995 - 10
9007199254740986
Therefore, the result of an expression a op b is correct if and only if:
isSafeInteger(a) && isSafeInteger(b) && isSafeInteger(a op b)
That is, both operands and the result must be safe.
Bitwise operators
Internally, bitwise operators work with 32-bit integers
Internally, JavaScript’s bitwise operators work with 32-bit integers. They produce their results in the following steps:
The types of operands and results
For each bitwise operator, this book mentions the types of its operands and its result. Each type is always one of the following two:
Type | Description | Size | Range |
---|---|---|---|
Int32 | signed 32-bit integer | 32 bits incl. sign | [−231, 231 ) |
Uint32 | unsigned 32-bit integer | 32 bits | [0, 232 ) |
Considering the previously mentioned steps, I recommend to pretend that bitwise operators internally work with unsigned 32-bit integers (step “computation”) and that Int32 and Uint32 only affect how JavaScript numbers are converted to and from integers (steps “input” and “output”).
Displaying JavaScript numbers as unsigned 32-bit integers
While exploring the bitwise operators, it occasionally helps to display JavaScript numbers as unsigned 32-bit integers in binary notation. That’s what b32() does (whose implementation is shown later):
assert.equal(
b32(-1),
'11111111111111111111111111111111');
assert.equal(
b32(1),
'00000000000000000000000000000001');
assert.equal(
b32(2 ** 31),
'10000000000000000000000000000000');
Bitwise Not
Operation | Name | Type signature | |
---|---|---|---|
~num | Bitwise Not, ones’ complement | Int32 → Int32 | ES1 |
The bitwise Not operator (tbl. 9) inverts each binary digit of its operand:
> b32(~0b100)
'11111111111111111111111111111011'
This so-called ones’ complement is similar to a negative for some arithmetic operations. For example, adding an integer to its ones’ complement is always -1:
> 4 + ~4
-1
> -11 + ~-11
-1
Binary bitwise operators
Operation | Name | Type signature | |
---|---|---|---|
num1 & num2 | Bitwise And | Int32 × Int32 → Int32 | ES1 |
num1 ¦ num2 | Bitwise Or | Int32 × Int32 → Int32 | ES1 |
num1 ^ num2 | Bitwise Xor | Int32 × Int32 → Int32 | ES1 |
The binary bitwise operators (tbl. 10) combine the bits of their operands to produce their results:
> (0b1010 & 0b0011).toString(2).padStart(4, '0')
'0010'
> (0b1010 | 0b0011).toString(2).padStart(4, '0')
'1011'
> (0b1010 ^ 0b0011).toString(2).padStart(4, '0')
'1001'
Bitwise shift operators
Operation | Name | Type signature | |
---|---|---|---|
num << count | Left shift | Int32 × Uint32 → Int32 | ES1 |
num >> count | Signed right shift | Int32 × Uint32 → Int32 | ES1 |
num >>> count | Unsigned right shift | Uint32 × Uint32 → Uint32 | ES1 |
The shift operators (tbl. 11) move binary digits to the left or to the right:
> (0b10 << 1).toString(2)
'100'
>> preserves highest bit, >>> doesn’t:
> b32(0b10000000000000000000000000000010 >> 1)
'11000000000000000000000000000001'
> b32(0b10000000000000000000000000000010 >>> 1)
'01000000000000000000000000000001'
b32(): displaying unsigned 32-bit integers in binary notation
We have now used b32() a few times. The following code is an implementation of it:
/**
* Return a string representing n as a 32-bit unsigned integer,
* in binary notation.
*/
function b32(n) {
// >>> ensures highest bit isn’t interpreted as a sign
return (n >>> 0).toString(2).padStart(32, '0');
}
assert.equal(
b32(6),
'00000000000000000000000000000110');
n >>> 0 means that we are shifting n zero bits to the right. Therefore, in principle, the >>> operator does nothing, but it still coerces n to an unsigned 32-bit integer:
> 12 >>> 0
12
> -12 >>> 0
4294967284
> (2**32 + 1) >>> 0
1
Quick reference: numbers
Global functions for numbers
JavaScript has the following four global functions for numbers:
However, it is better to use the corresponding methods of Number (Number.isFinite(), etc.), which have fewer pitfalls. They were introduced with ES6 and are discussed below.
Static properties of Number
.EPSILON: number [ES6]
The difference between 1 and the next representable floating point number. In general, a machine epsilon provides an upper bound for rounding errors in floating point arithmetic.
.MAX_SAFE_INTEGER: number [ES6]
The largest integer that JavaScript can represent unambiguously (253−1).
.MAX_VALUE: number [ES1]
The largest positive finite JavaScript number.
.MIN_SAFE_INTEGER: number [ES6]
The smallest integer that JavaScript can represent unambiguously (−253+1).
.MIN_VALUE: number [ES1]
The smallest positive JavaScript number. Approximately 5 × 10−324.
.NaN: number [ES1]
The same as the global variable NaN.
.NEGATIVE_INFINITY: number [ES1]
The same as -Number.POSITIVE_INFINITY.
.POSITIVE_INFINITY: number [ES1]
The same as the global variable Infinity.
Static methods of Number
.isFinite(num: number): boolean [ES6]
Returns true if num is an actual number (neither Infinity nor -Infinity nor NaN).
> Number.isFinite(Infinity)
false
> Number.isFinite(-Infinity)
false
> Number.isFinite(NaN)
false
> Number.isFinite(123)
true
.isInteger(num: number): boolean [ES6]
Returns true if num is a number and does not have a decimal fraction.
> Number.isInteger(-17)
true
> Number.isInteger(33)
true
> Number.isInteger(33.1)
false
> Number.isInteger('33')
false
> Number.isInteger(NaN)
false
> Number.isInteger(Infinity)
false
.isNaN(num: number): boolean [ES6]
Returns true if num is the value NaN:
> Number.isNaN(NaN)
true
> Number.isNaN(123)
false
> Number.isNaN('abc')
false
.isSafeInteger(num: number): boolean [ES6]
Returns true if num is a number and unambiguously represents an integer.
.parseFloat(str: string): number [ES6]
Coerces its parameter to string and parses it as a floating point number. For converting strings to numbers, Number() (which ignores leading and trailing whitespace) is usually a better choice than Number.parseFloat() (which ignores leading whitespace and illegal trailing characters and can hide problems).
> Number.parseFloat(' 123.4#')
123.4
> Number(' 123.4#')
NaN
.parseInt(str: string, radix=10): number [ES6]
Coerces its parameter to string and parses it as an integer, ignoring leading whitespace and illegal trailing characters:
> Number.parseInt(' 123#')
123
The parameter radix specifies the base of the number to be parsed:
> Number.parseInt('101', 2)
5
> Number.parseInt('FF', 16)
255
Do not use this method to convert numbers to integers: coercing to string is inefficient. And stopping before the first non-digit is not a good algorithm for removing the fraction of a number. Here is an example where it goes wrong:
> Number.parseInt(1e21, 10) // wrong
1
It is better to use one of the rounding functions of Math to convert a number to an integer:
> Math.trunc(1e21) // correct
1e+21
Methods of Number.prototype
(Number.prototype is where the methods of numbers are stored.)
.toExponential(fractionDigits?: number): string [ES3]
Returns a string that represents the number via exponential notation. With fractionDigits, we can specify, how many digits should be shown of the number that is multiplied with the exponent (the default is to show as many digits as necessary).
Example: number too small to get a positive exponent via .toString().
> 1234..toString()
'1234'
> 1234..toExponential() // 3 fraction digits
'1.234e+3'
> 1234..toExponential(5)
'1.23400e+3'
> 1234..toExponential(1)
'1.2e+3'
Example: fraction not small enough to get a negative exponent via .toString().
> 0.003.toString()
'0.003'
> 0.003.toExponential()
'3e-3'
.toFixed(fractionDigits=0): string [ES3]
Returns an exponent-free representation of the number, rounded to fractionDigits digits.
> 0.00000012.toString() // with exponent
'1.2e-7'
> 0.00000012.toFixed(10) // no exponent
'0.0000001200'
> 0.00000012.toFixed()
'0'
If the number is 1021 or greater, even .toFixed() uses an exponent:
> (10 ** 21).toFixed()
'1e+21'
.toPrecision(precision?: number): string [ES3]
Works like .toString(), but precision specifies how many digits should be shown. If precision is missing, .toString() is used.
> 1234..toPrecision(3) // requires exponential notation
'1.23e+3'
> 1234..toPrecision(4)
'1234'
> 1234..toPrecision(5)
'1234.0'
> 1.234.toPrecision(3)
'1.23'
.toString(radix=10): string [ES1]
Returns a string representation of the number.
By default, we get a base 10 numeral as a result:
> 123.456.toString()
'123.456'
If we want the numeral to have a different base, we can specify it via radix:
> 4..toString(2) // binary (base 2)
'100'
> 4.5.toString(2)
'100.1'
> 255..toString(16) // hexadecimal (base 16)
'ff'
> 255.66796875.toString(16)
'ff.ab'
> 1234567890..toString(36)
'kf12oi'
Number.parseInt() provides the inverse operation: it converts a string that contains an integer (no fraction!) numeral with a given base, to a number.
> Number.parseInt('kf12oi', 36)
1234567890
Sources
Quiz: advanced
See quiz app.
Math
Math is an object with data properties and methods for processing numbers. You can see it as a poor man’s module: It was created long before JavaScript had modules.
Data properties
Math.E: number [ES1]
Euler’s number, base of the natural logarithms, approximately 2.7182818284590452354.
Math.LN10: number [ES1]
The natural logarithm of 10, approximately 2.302585092994046.
Math.LN2: number [ES1]
The natural logarithm of 2, approximately 0.6931471805599453.
Math.LOG10E: number [ES1]
The logarithm of e to base 10, approximately 0.4342944819032518.
Math.LOG2E: number [ES1]
The logarithm of e to base 2, approximately 1.4426950408889634.
Math.PI: number [ES1]
The mathematical constant π, ratio of a circle’s circumference to its diameter, approximately 3.1415926535897932.
Math.SQRT1_2: number [ES1]
The square root of 1/2, approximately 0.7071067811865476.
Math.SQRT2: number [ES1]
The square root of 2, approximately 1.4142135623730951.
Exponents, roots, logarithms
Math.cbrt(x: number): number [ES6]
Returns the cube root of x.
> Math.cbrt(8)
2
Math.exp(x: number): number [ES1]
Returns ex (e being Euler’s number). The inverse of Math.log().
> Math.exp(0)
1
> Math.exp(1) === Math.E
true
Math.expm1(x: number): number [ES6]
Returns Math.exp(x)-1. The inverse of Math.log1p(). Very small numbers (fractions close to 0) are represented with a higher precision. Therefore, this function returns more precise values whenever .exp() returns values close to 1.
Math.log(x: number): number [ES1]
Returns the natural logarithm of x (to base e, Euler’s number). The inverse of Math.exp().
> Math.log(1)
0
> Math.log(Math.E)
1
> Math.log(Math.E ** 2)
2
Math.log1p(x: number): number [ES6]
Returns Math.log(1 + x). The inverse of Math.expm1(). Very small numbers (fractions close to 0) are represented with a higher precision. Therefore, you can provide this function with a more precise argument whenever the argument for .log() is close to 1.
Math.log10(x: number): number [ES6]
Returns the logarithm of x to base 10. The inverse of 10 ** x.
> Math.log10(1)
0
> Math.log10(10)
1
> Math.log10(100)
2
Math.log2(x: number): number [ES6]
Returns the logarithm of x to base 2. The inverse of 2 ** x.
> Math.log2(1)
0
> Math.log2(2)
1
> Math.log2(4)
2
Math.pow(x: number, y: number): number [ES1]
Returns xy, x to the power of y. The same as x ** y.
> Math.pow(2, 3)
8
> Math.pow(25, 0.5)
5
Math.sqrt(x: number): number [ES1]
Returns the square root of x. The inverse of x ** 2.
> Math.sqrt(9)
3
Rounding
Rounding means converting an arbitrary number to an integer (a number without a decimal fraction). The following functions implement different approaches to rounding.
Math.ceil(x: number): number [ES1]
Returns the smallest (closest to −∞) integer i with x ≤ i.
> Math.ceil(2.1)
3
> Math.ceil(2.9)
3
Math.floor(x: number): number [ES1]
Returns the largest (closest to +∞) integer i with i ≤ x.
> Math.floor(2.1)
2
> Math.floor(2.9)
2
Math.round(x: number): number [ES1]
Returns the integer that is closest to x. If the decimal fraction of x is .5 then .round() rounds up (to the integer closer to positive infinity):
> Math.round(2.4)
2
> Math.round(2.5)
3
Math.trunc(x: number): number [ES6]
Removes the decimal fraction of x and returns the resulting integer.
> Math.trunc(2.1)
2
> Math.trunc(2.9)
2
Tbl. 12 shows the results of the rounding functions for a few representative inputs.
-2.9 | -2.5 | -2.1 | 2.1 | 2.5 | 2.9 | |
---|---|---|---|---|---|---|
Math.floor | -3 | -3 | -3 | 2 | 2 | 2 |
Math.ceil | -2 | -2 | -2 | 3 | 3 | 3 |
Math.round | -3 | -2 | -2 | 2 | 3 | 3 |
Math.trunc | -2 | -2 | -2 | 2 | 2 | 2 |
Trigonometric Functions
All angles are specified in radians. Use the following two functions to convert between degrees and radians.
function degreesToRadians(degrees) {
return degrees / 180 * Math.PI;
}
assert.equal(degreesToRadians(90), Math.PI/2);
function radiansToDegrees(radians) {
return radians / Math.PI * 180;
}
assert.equal(radiansToDegrees(Math.PI), 180);
Math.acos(x: number): number [ES1]
Returns the arc cosine (inverse cosine) of x.
> Math.acos(0)
1.5707963267948966
> Math.acos(1)
0
Math.acosh(x: number): number [ES6]
Returns the inverse hyperbolic cosine of x.
Math.asin(x: number): number [ES1]
Returns the arc sine (inverse sine) of x.
> Math.asin(0)
0
> Math.asin(1)
1.5707963267948966
Math.asinh(x: number): number [ES6]
Returns the inverse hyperbolic sine of x.
Math.atan(x: number): number [ES1]
Returns the arc tangent (inverse tangent) of x.
Math.atanh(x: number): number [ES6]
Returns the inverse hyperbolic tangent of x.
Math.atan2(y: number, x: number): number [ES1]
Returns the arc tangent of the quotient y/x.
Math.cos(x: number): number [ES1]
Returns the cosine of x.
> Math.cos(0)
1
> Math.cos(Math.PI)
-1
Math.cosh(x: number): number [ES6]
Returns the hyperbolic cosine of x.
Math.hypot(...values: number[]): number [ES6]
Returns the square root of the sum of the squares of values (Pythagoras’ theorem):
> Math.hypot(3, 4)
5
Math.sin(x: number): number [ES1]
Returns the sine of x.
> Math.sin(0)
0
> Math.sin(Math.PI / 2)
1
Math.sinh(x: number): number [ES6]
Returns the hyperbolic sine of x.
Math.tan(x: number): number [ES1]
Returns the tangent of x.
> Math.tan(0)
0
> Math.tan(1)
1.5574077246549023
Math.tanh(x: number): number; [ES6]
Returns the hyperbolic tangent of x.
Various other functions
Math.abs(x: number): number [ES1]
Returns the absolute value of x.
> Math.abs(3)
3
> Math.abs(-3)
3
> Math.abs(0)
0
Math.clz32(x: number): number [ES6]
Counts the leading zero bits in the 32-bit integer x. Used in DSP algorithms.
> Math.clz32(0b01000000000000000000000000000000)
1
> Math.clz32(0b00100000000000000000000000000000)
2
> Math.clz32(2)
30
> Math.clz32(1)
31
Math.max(...values: number[]): number [ES1]
Converts values to numbers and returns the largest one.
> Math.max(3, -5, 24)
24
Math.min(...values: number[]): number [ES1]
Converts values to numbers and returns the smallest one.
> Math.min(3, -5, 24)
-5
Math.random(): number [ES1]
Returns a pseudo-random number n where 0 ≤ n < 1.
/** Returns a random integer i with 0 <= i < max */
function getRandomInteger(max) {
return Math.floor(Math.random() * max);
}
Math.sign(x: number): number [ES6]
Returns the sign of a number:
> Math.sign(-8)
-1
> Math.sign(0)
0
> Math.sign(3)
1
Sources
Bigints – arbitrary-precision integers [ES2020] (advanced)
In this chapter, we take a look at bigints, JavaScript’s integers whose storage space grows and shrinks as needed.
Why bigints?
Before ECMAScript 2020, JavaScript handled integers as follows:
There only was a single type for floating point numbers and integers: 64-bit floating point numbers (IEEE 754 double precision).
Under the hood, most JavaScript engines transparently supported integers: If a number has no decimal digits and is within a certain range, it can internally be stored as a genuine integer. This representation is called small integer and usually fits into 32 bits. For example, the range of small integers on the 64-bit version of the V8 engine is from −231 to 231−1 (source).
JavaScript numbers could also represent integers beyond the small integer range, as floating point numbers. Here, the safe range is plus/minus 53 bits. For more information on this topic, see §16.9.3 “Safe integers”.
Sometimes, we need more than signed 53 bits – for example:
Bigints
Bigint is a new primitive data type for integers. Bigints don’t have a fixed storage size in bits; their sizes adapt to the integers they represent:
A bigint literal is a sequence of one or more digits, suffixed with an n – for example:
123n
Operators such as - and * are overloaded and work with bigints:
> 123n * 456n
56088n
Bigints are primitive values. typeof returns a new result for them:
> typeof 123n
'bigint'
Going beyond 53 bits for integers
JavaScript numbers are internally represented as a fraction multiplied by an exponent (see §16.8 “Background: floating point precision” for details). As a consequence, if we go beyond the highest safe integer 253−1, there are still some integers that can be represented, but with gaps between them:
> 2**53 - 2 // safe
9007199254740990
> 2**53 - 1 // safe
9007199254740991
> 2**53 // unsafe, same as next integer
9007199254740992
> 2**53 + 1
9007199254740992
> 2**53 + 2
9007199254740994
> 2**53 + 3
9007199254740996
> 2**53 + 4
9007199254740996
> 2**53 + 5
9007199254740996
Bigints enable us to go beyond 53 bits:
> 2n**53n
9007199254740992n
> 2n**53n + 1n
9007199254740993n
> 2n**53n + 2n
9007199254740994n
Example: using bigints
This is what using bigints looks like (code based on an example in the proposal):
/**
* Takes a bigint as an argument and returns a bigint
*/
function nthPrime(nth) {
if (typeof nth !== 'bigint') {
throw new TypeError();
}
function isPrime(p) {
for (let i = 2n; i < p; i++) {
if (p % i === 0n) return false;
}
return true;
}
for (let i = 2n; ; i++) {
if (isPrime(i)) {
if (--nth === 0n) return i;
}
}
}
assert.deepEqual(
[1n, 2n, 3n, 4n, 5n].map(nth => nthPrime(nth)),
[2n, 3n, 5n, 7n, 11n]
);
Bigint literals
Like number literals, bigint literals support several bases:
Negative bigints are produced by prefixing the unary minus operator: -0123n
Underscores (_) as separators in bigint literals [ES2021]
Just like in number literals, we can use underscores (_) as separators in bigint literals:
const massOfEarthInKg = 6_000_000_000_000_000_000_000_000n;
Bigints are often used to represent money in the financial technical sector. Separators can help here, too:
const priceInCents = 123_000_00n; // 123 thousand dollars
As with number literals, two restrictions apply:
Reusing number operators for bigints (overloading)
With most operators, we are not allowed to mix bigints and numbers. If we do, exceptions are thrown:
> 2n + 1
TypeError: Cannot mix BigInt and other types, use explicit conversions
The reason for this rule is that there is no general way of coercing a number and a bigint to a common type: numbers can’t represent bigints beyond 53 bits, bigints can’t represent fractions. Therefore, the exceptions warn us about typos that may lead to unexpected results.
For example, should the result of the following expression be 9007199254740993n or 9007199254740992?
2**53 + 1n
It is also not clear what the result of the following expression should be:
2n**53n * 3.3
Arithmetic operators
Binary +, binary -, *, ** work as expected:
> 7n * 3n
21n
It is OK to mix bigints and strings:
> 6n + ' apples'
'6 apples'
/, % round towards zero (like Math.trunc()):
> 1n / 2n
0n
Unary - works as expected:
> -(-64n)
64n
Unary + is not supported for bigints because much code relies on it coercing its operand to number:
> +23n
TypeError: Cannot convert a BigInt value to a number
Ordering operators
Ordering operators <, >, >=, <= work as expected:
> 17n <= 17n
true
> 3n > -1n
true
Comparing bigints and numbers does not pose any risks. Therefore, we can mix bigints and numbers:
> 3n > -1
true
Bitwise operators
Bitwise operators for numbers
Bitwise operators interpret numbers as 32-bit integers. These integers are either unsigned or signed. If they are signed, the negative of an integer is its two’s complement (adding an integer to its two’s complement – while ignoring overflow – produces zero):
> 2**32-1 >> 0
-1
Due to these integers having a fixed size, their highest bits indicate their signs:
> 2**31 >> 0 // highest bit is 1
-2147483648
> 2**31 - 1 >> 0 // highest bit is 0
2147483647
Bitwise operators for bigints
For bigints, bitwise operators interpret a negative sign as an infinite two’s complement – for example:
That is, a negative sign is more of an external flag and not represented as an actual bit.
Bitwise Not (~)
Bitwise Not (~) inverts all bits:
> ~0b10n
-3n
> ~0n
-1n
> ~-2n
1n
Binary bitwise operators (&, |, ^)
Applying binary bitwise operators to bigints works analogously to applying them to numbers:
> (0b1010n | 0b0111n).toString(2)
'1111'
> (0b1010n & 0b0111n).toString(2)
'10'
> (0b1010n | -1n).toString(2)
'-1'
> (0b1010n & -1n).toString(2)
'1010'
Bitwise signed shift operators (<< and >>)
The signed shift operators for bigints preserve the sign of a number:
> 2n << 1n
4n
> -2n << 1n
-4n
> 2n >> 1n
1n
> -2n >> 1n
-1n
Recall that -1n is a sequence of ones that extends infinitely to the left. That’s why shifting it left doesn’t change it:
> -1n >> 20n
-1n
Bitwise unsigned right shift operator (>>>)
There is no unsigned right shift operator for bigints:
> 2n >>> 1n
TypeError: BigInts have no unsigned right shift, use >> instead
Why? The idea behind unsigned right shifting is that a zero is shifted in “from the left”. In other words, the assumption is that there is a finite amount of binary digits.
However, with bigints, there is no “left”, their binary digits extend infinitely. This is especially important with negative numbers.
Signed right shift works even with an infinite number of digits because the highest digit is preserved. Therefore, it can be adapted to bigints.
Loose equality (==) and inequality (!=)
Loose equality (==) and inequality (!=) coerce values:
> 0n == false
true
> 1n == true
true
> 123n == 123
true
> 123n == '123'
true
Strict equality (===) and inequality (!==)
Strict equality (===) and inequality (!==) only consider values to be equal if they have the same type:
> 123n === 123
false
> 123n === 123n
true
The wrapper constructor BigInt
Analogously to numbers, bigints have the associated wrapper constructor BigInt.
BigInt as a constructor and as a function
new BigInt(): throws a TypeError.
BigInt(x) converts arbitrary values x to bigint. This works similarly to Number(), with several differences which are summarized in tbl. 13 and explained in more detail in the following subsections.
x | BigInt(x) |
---|---|
undefined | Throws TypeError |
null | Throws TypeError |
boolean | false → 0n, true → 1n |
number | Example: 123 → 123n |
Non-integer → throws RangeError | |
bigint | x (no change) |
string | Example: '123' → 123n |
Unparsable → throws SyntaxError | |
symbol | Throws TypeError |
object | Configurable (e.g. via .valueOf() ) |
Converting undefined and null
A TypeError is thrown if x is either undefined or null:
> BigInt(undefined)
TypeError: Cannot convert undefined to a BigInt
> BigInt(null)
TypeError: Cannot convert null to a BigInt
Converting strings
If a string does not represent an integer, BigInt() throws a SyntaxError (whereas Number() returns the error value NaN):
> BigInt('abc')
SyntaxError: Cannot convert abc to a BigInt
The suffix 'n' is not allowed:
> BigInt('123n')
SyntaxError: Cannot convert 123n to a BigInt
All bases of bigint literals are allowed:
> BigInt('123')
123n
> BigInt('0xFF')
255n
> BigInt('0b1101')
13n
> BigInt('0o777')
511n
Non-integer numbers produce exceptions
> BigInt(123.45)
RangeError: The number 123.45 cannot be converted to a BigInt because
it is not an integer
> BigInt(123)
123n
Converting objects
How objects are converted to bigints can be configured – for example, by overriding .valueOf():
> BigInt({valueOf() {return 123n}})
123n
BigInt.prototype.* methods
BigInt.prototype holds the methods “inherited” by primitive bigints:
BigInt.* methods
BigInt.asIntN(width, theInt)
Casts theInt to width bits (signed). This influences how the value is represented internally.
BigInt.asUintN(width, theInt)
Casts theInt to width bits (unsigned).
Casting and 64-bit integers
Casting allows us to create integer values with a specific number of bits. If we want to restrict ourselves to just 64-bit integers, we have to always cast:
const uint64a = BigInt.asUintN(64, 12345n);
const uint64b = BigInt.asUintN(64, 67890n);
const result = BigInt.asUintN(64, uint64a * uint64b);
Coercing bigints to other primitive types
This table show what happens if we convert bigints to other primitive types:
Convert to | Explicit conversion | Coercion (implicit conversion) |
---|---|---|
boolean | Boolean(0n) → false | !0n → true |
Boolean(int) → true | !int → false | |
number | Number(7n) → 7 (example) | +int → TypeError (1) |
string | String(7n) → '7' (example) | ''+7n → '7' (example) |
Footnote:
TypedArrays and DataView operations for 64-bit values
Thanks to bigints, Typed Arrays and DataViews can support 64-bit values:
Bigints and JSON
The JSON standard is fixed and won’t change. The upside is that old JSON parsing code will never be outdated. The downside is that JSON can’t be extended to contain bigints.
Stringifying bigints throws exceptions:
> JSON.stringify(123n)
TypeError: Do not know how to serialize a BigInt
> JSON.stringify([123n])
TypeError: Do not know how to serialize a BigInt
Stringifying bigints
Therefore, our best option is to store bigints in strings:
const bigintPrefix = '[[bigint]]';
function bigintReplacer(_key, value) {
if (typeof value === 'bigint') {
return bigintPrefix + value;
}
return value;
}
const data = { value: 9007199254740993n };
assert.equal(
JSON.stringify(data, bigintReplacer),
'{"value":"[[bigint]]9007199254740993"}'
);
Parsing bigints
The following code shows how to parse strings such as the one that we have produced in the previous example.
function bigintReviver(_key, value) {
if (typeof value === 'string' && value.startsWith(bigintPrefix)) {
return BigInt(value.slice(bigintPrefix.length));
}
return value;
}
const str = '{"value":"[[bigint]]9007199254740993"}';
assert.deepEqual(
JSON.parse(str, bigintReviver),
{ value: 9007199254740993n }
);
FAQ: Bigints
How do I decide when to use numbers and when to use bigints?
My recommendations:
All existing web APIs return and accept only numbers and will only upgrade to bigint on a case-by-case basis.
Why not just increase the precision of numbers in the same manner as is done for bigints?
One could conceivably split number into integer and double, but that would add many new complexities to the language (several integer-only operators etc.). I’ve sketched the consequences in a Gist.
Acknowledgements:
Unicode – a brief introduction (advanced)
Unicode is a standard for representing and managing text in most of the world’s writing systems. Virtually all modern software that works with text, supports Unicode. The standard is maintained by the Unicode Consortium. A new version of the standard is published every year (with new emojis, etc.). Unicode version 1.0.0 was published in October 1991.
Code points vs. code units
Two concepts are crucial for understanding Unicode:
Code points
The first version of Unicode had 16-bit code points. Since then, the number of characters has grown considerably and the size of code points was extended to 21 bits. These 21 bits are partitioned in 17 planes, with 16 bits each:
Planes 1-16 are called supplementary planes or astral planes.
Let’s check the code points of a few characters:
> 'A'.codePointAt(0).toString(16)
'41'
> 'ü'.codePointAt(0).toString(16)
'fc'
> 'π'.codePointAt(0).toString(16)
'3c0'
> '🙂'.codePointAt(0).toString(16)
'1f642'
The hexadecimal numbers of the code points tell us that the first three characters reside in plane 0 (within 16 bits), while the emoji resides in plane 1.
Encoding Unicode code points: UTF-32, UTF-16, UTF-8
The main ways of encoding code points are three Unicode Transformation Formats (UTFs): UTF-32, UTF-16, UTF-8. The number at the end of each format indicates the size (in bits) of its code units.
UTF-32 (Unicode Transformation Format 32)
UTF-32 uses 32 bits to store code units, resulting in one code unit per code point. This format is the only one with fixed-length encoding; all others use a varying number of code units to encode a single code point.
UTF-16 (Unicode Transformation Format 16)
UTF-16 uses 16-bit code units. It encodes code points as follows:
The BMP (first 16 bits of Unicode) is stored in single code units.
Astral planes: The BMP comprises 0x10_000 code points. Given that Unicode has a total of 0x110_000 code points, we still need to encode the remaining 0x100_000 code points (20 bits). The BMP has two ranges of unassigned code points that provide the necessary storage:
In other words, the two hexadecimal digits at the end contribute 8 bits. But we can only use those 8 bits if a BMP starts with one of the following 2-digit pairs:
Per surrogate, we have a choice between 4 pairs, which is where the remaining 2 bits come from.
As a consequence, each UTF-16 code unit is always either a leading surrogate, a trailing surrogate, or encodes a BMP code point.
These are two examples of UTF-16-encoded code points:
UTF-8 (Unicode Transformation Format 8)
UTF-8 has 8-bit code units. It uses 1–4 code units to encode a code point:
Code points | Code units |
---|---|
0000–007F | 0bbbbbbb (7 bits) |
0080–07FF | 110bbbbb, 10bbbbbb (5+6 bits) |
0800–FFFF | 1110bbbb, 10bbbbbb, 10bbbbbb (4+6+6 bits) |
10000–1FFFFF | 11110bbb, 10bbbbbb, 10bbbbbb, 10bbbbbb (3+6+6+6 bits) |
Notes:
Three examples:
Character | Code point | Code units |
---|---|---|
A | 0x0041 | 01000001 |
π | 0x03C0 | 11001111, 10000000 |
🙂 | 0x1F642 | 11110000, 10011111, 10011001, 10000010 |
Encodings used in web development: UTF-16 and UTF-8
The Unicode encoding formats that are used in web development are: UTF-16 and UTF-8.
Source code internally: UTF-16
The ECMAScript specification internally represents source code as UTF-16.
Strings: UTF-16
The characters in JavaScript strings are based on UTF-16 code units:
> const smiley = '🙂';
> smiley.length
2
> smiley === '\uD83D\uDE42' // code units
true
For more information on Unicode and strings, consult §20.7 “Atoms of text: code points, JavaScript characters, grapheme clusters”.
Source code in files: UTF-8
HTML and JavaScript are almost always encoded as UTF-8 these days.
For example, this is how HTML files usually start now:
<!doctype html>
<html>
<head>
<meta charset="UTF-8">
···
For HTML modules loaded in web browsers, the standard encoding is also UTF-8.
Grapheme clusters – the real characters
The concept of a character becomes remarkably complex once we consider the various writing systems of the world. That’s why there are several different Unicode terms that all mean “character” in some way: code point, grapheme cluster, glyph, etc.
In Unicode, a code point is an atomic part of text.
However, a grapheme cluster corresponds most closely to a symbol displayed on screen or paper. It is defined as “a horizontally segmentable unit of text”. Therefore, official Unicode documents also call it a user-perceived character. One or more code points are needed to encode a grapheme cluster.
For example, the Devanagari kshi is encoded by 4 code points. We use Array.from() to split a string into an Array with code points (for details, consult §20.7.1 “Working with code points”):
Flag emojis are also grapheme clusters and composed of two code points – for example, the flag of Japan:
Grapheme clusters vs. glyphs
A symbol is an abstract concept and part of written language:
The distinction between a concept and its representation is subtle and can blur when talking about Unicode.
More information on grapheme clusters
For more information, consult “Let’s Stop Ascribing Meaning to Code Points” by Manish Goregaokar.
Quiz
See quiz app.
Strings
Cheat sheet: strings
Strings are primitive values in JavaScript and immutable. That is, string-related operations always produce new strings and never change existing strings.
Working with strings
Literals for strings:
const str1 = 'Don\'t say "goodbye"'; // string literal
const str2 = "Don't say \"goodbye\""; // string literals
assert.equal(
`As easy as ${123}!`, // template literal
'As easy as 123!',
);
Backslashes are used to:
Inside a String.raw tagged template (line A), backslashes are treated as normal characters:
assert.equal(
String.raw`\ \n\t`, // (A)
'\\ \\n\\t',
);
Convertings values to strings:
> String(undefined)
'undefined'
> String(null)
'null'
> String(123.45)
'123.45'
> String(true)
'true'
Copying parts of a string
// There is no type for characters;
// reading characters produces strings:
const str3 = 'abc';
assert.equal(
str3[2], 'c' // no negative indices allowed
);
assert.equal(
str3.at(-1), 'c' // negative indices allowed
);
// Copying more than one character:
assert.equal(
'abc'.slice(0, 2), 'ab'
);
Concatenating strings:
assert.equal(
'I bought ' + 3 + ' apples',
'I bought 3 apples',
);
let str = '';
str += 'I bought ';
str += 3;
str += ' apples';
assert.equal(
str, 'I bought 3 apples',
);
JavaScript characters vs. code points vs. grapheme clusters
JavaScript characters are 16 bits in size. They are what is indexed in strings and what .length counts.
Code points are the atomic parts of Unicode text. Most of them fit into one JavaScript character, some of them occupy two (especially emojis):
assert.equal(
'A'.length, 1
);
assert.equal(
'🙂'.length, 2
);
Grapheme clusters (user-perceived characters) represent written symbols. Each one comprises one or more code points.
Due to these facts, we shouldn’t split text into JavaScript characters, we should split it into graphemes. For more information on how to handle text, see §20.7 “Atoms of text: code points, JavaScript characters, grapheme clusters”.
String methods
This subsection gives a brief overview of the string API. There is a more comprehensive quick reference at the end of this chapter.
Finding substrings:
> 'abca'.includes('a')
true
> 'abca'.startsWith('ab')
true
> 'abca'.endsWith('ca')
true
> 'abca'.indexOf('a')
0
> 'abca'.lastIndexOf('a')
3
Splitting and joining:
assert.deepEqual(
'a, b,c'.split(/, ?/),
['a', 'b', 'c']
);
assert.equal(
['a', 'b', 'c'].join(', '),
'a, b, c'
);
Padding and trimming:
> '7'.padStart(3, '0')
'007'
> 'yes'.padEnd(6, '!')
'yes!!!'
> '\t abc\n '.trim()
'abc'
> '\t abc\n '.trimStart()
'abc\n '
> '\t abc\n '.trimEnd()
'\t abc'
Repeating and changing case:
> '*'.repeat(5)
'*****'
> '= b2b ='.toUpperCase()
'= B2B ='
> 'ΑΒΓ'.toLowerCase()
'αβγ'
Plain string literals
Plain string literals are delimited by either single quotes or double quotes:
const str1 = 'abc';
const str2 = "abc";
assert.equal(str1, str2);
Single quotes are used more often because it makes it easier to mention HTML, where double quotes are preferred.
The next chapter covers template literals, which give us:
Escaping
The backslash lets us create special characters:
The backslash also lets us use the delimiter of a string literal inside that literal:
assert.equal(
'She said: "Let\'s go!"',
"She said: \"Let's go!\"");
Accessing JavaScript characters
JavaScript has no extra data type for characters – characters are always represented as strings.
const str = 'abc';
// Reading a JavaScript character at a given index
assert.equal(str[1], 'b');
// Counting the JavaScript characters in a string:
assert.equal(str.length, 3);
The characters we see on screen are called grapheme clusters. Most of them are represented by single JavaScript characters. However, there are also grapheme clusters (especially emojis) that are represented by multiple JavaScript characters:
> '🙂'.length
2
How that works is explained in §20.7 “Atoms of text: code points, JavaScript characters, grapheme clusters”.
String concatenation via +
If at least one operand is a string, the plus operator (+) converts any non-strings to strings and concatenates the result:
assert.equal(3 + ' times ' + 4, '3 times 4');
The assignment operator += is useful if we want to assemble a string, piece by piece:
let str = ''; // must be `let`!
str += 'Say it';
str += ' one more';
str += ' time';
assert.equal(str, 'Say it one more time');
Concatenating via + is efficient
Using + to assemble strings is quite efficient because most JavaScript engines internally optimize it.
Exercise: Concatenating strings
exercises/strings/concat_string_array_test.mjs
Converting to string
These are three ways of converting a value x to a string:
Recommendation: use the descriptive and safe String().
Examples:
assert.equal(String(undefined), 'undefined');
assert.equal(String(null), 'null');
assert.equal(String(false), 'false');
assert.equal(String(true), 'true');
assert.equal(String(123.45), '123.45');
Pitfall for booleans: If we convert a boolean to a string via String(), we generally can’t convert it back via Boolean():
> String(false)
'false'
> Boolean('false')
true
The only string for which Boolean() returns false, is the empty string.
Stringifying objects
Plain objects have a default string representation that is not very useful:
> String({a: 1})
'[object Object]'
Arrays have a better string representation, but it still hides much information:
> String(['a', 'b'])
'a,b'
> String(['a', ['b']])
'a,b'
> String([1, 2])
'1,2'
> String(['1', '2'])
'1,2'
> String([true])
'true'
> String(['true'])
'true'
> String(true)
'true'
Stringifying functions, returns their source code:
> String(function f() {return 4})
'function f() {return 4}'
Customizing the stringification of objects
We can override the built-in way of stringifying objects by implementing the method toString():
const obj = {
toString() {
return 'hello';
}
};
assert.equal(String(obj), 'hello');
An alternate way of stringifying values
The JSON data format is a text representation of JavaScript values. Therefore, JSON.stringify() can also be used to convert values to strings:
> JSON.stringify({a: 1})
'{"a":1}'
> JSON.stringify(['a', ['b']])
'["a",["b"]]'
The caveat is that JSON only supports null, booleans, numbers, strings, Arrays, and objects (which it always treats as if they were created by object literals).
Tip: The third parameter lets us switch on multiline output and specify how much to indent – for example:
console.log(JSON.stringify({first: 'Jane', last: 'Doe'}, null, 2));
This statement produces the following output:
{
"first": "Jane",
"last": "Doe"
}
Comparing strings
Strings can be compared via the following operators:
< <= > >=
There is one important caveat to consider: These operators compare based on the numeric values of JavaScript characters. That means that the order that JavaScript uses for strings is different from the one used in dictionaries and phone books:
> 'A' < 'B' // ok
true
> 'a' < 'B' // not ok
false
> 'ä' < 'b' // not ok
false
Properly comparing text is beyond the scope of this book. It is supported via the ECMAScript Internationalization API (Intl).
Atoms of text: code points, JavaScript characters, grapheme clusters
Quick recap of §19 “Unicode – a brief introduction”:
Code points are the atomic parts of Unicode text. Each code point is 21 bits in size.
JavaScript strings implement Unicode via the encoding format UTF-16. It uses one or two 16-bit code units to encode a single code point.
Grapheme clusters (user-perceived characters) represent written symbols, as displayed on screen or paper. One or more code points are needed to encode a single grapheme cluster.
The following code demonstrates that a single code point comprises one or two JavaScript characters. We count the latter via .length:
// 3 code points, 3 JavaScript characters:
assert.equal('abc'.length, 3);
// 1 code point, 2 JavaScript characters:
assert.equal('🙂'.length, 2);
The following table summarizes the concepts we have just explored:
Entity | Size | Encoded via |
---|---|---|
JavaScript character (UTF-16 code unit) | 16 bits | – |
Unicode code point | 21 bits | 1–2 code units |
Unicode grapheme cluster | 1+ code points |
Working with code points
Let’s explore JavaScript’s tools for working with code points.
A Unicode code point escape lets us specify a code point hexadecimally (1–5 digits). It produces one or two JavaScript characters.
> '\u{1F642}'
'🙂'
Unicode escape sequences
In the ECMAScript language specification, Unicode code point escapes and Unicode code unit escapes (which we’ll encounter later) are called Unicode escape sequences.
String.fromCodePoint() converts a single code point to 1–2 JavaScript characters:
> String.fromCodePoint(0x1F642)
'🙂'
.codePointAt() converts 1–2 JavaScript characters to a single code point:
> '🙂'.codePointAt(0).toString(16)
'1f642'
We can iterate over a string, which visits code points (not JavaScript characters). Iteration is described later in this book. One way of iterating is via a for-of loop:
const str = '🙂a';
assert.equal(str.length, 3);
for (const codePointChar of str) {
console.log(codePointChar);
}
// Output:
// '🙂'
// 'a'
Array.from() is also based on iteration and visits code points:
> Array.from('🙂a')
[ '🙂', 'a' ]
That makes it a good tool for counting code points:
> Array.from('🙂a').length
2
> '🙂a'.length
3
Working with code units (char codes)
Indices and lengths of strings are based on JavaScript characters (as represented by UTF-16 code units).
To specify a code unit hexadecimally, we can use a Unicode code unit escape with exactly four hexadecimal digits:
> '\uD83D\uDE42'
'🙂'
And we can use String.fromCharCode(). Char code is the standard library’s name for code unit:
> String.fromCharCode(0xD83D) + String.fromCharCode(0xDE42)
'🙂'
To get the char code of a character, use .charCodeAt():
> '🙂'.charCodeAt(0).toString(16)
'd83d'
ASCII escapes
If the code point of a character is below 256, we can refer to it via a ASCII escape with exactly two hexadecimal digits:
> 'He\x6C\x6Co'
'Hello'
(The official name of ASCII escapes is Hexadecimal escape sequences – it was the first escape that used hexadecimal numbers.)
Caveat: grapheme clusters
When working with text that may be written in any human language, it’s best to split at the boundaries of grapheme clusters, not at the boundaries of code points.
TC39 is working on Intl.Segmenter, a proposal for the ECMAScript Internationalization API to support Unicode segmentation (along grapheme cluster boundaries, word boundaries, sentence boundaries, etc.).
Until that proposal becomes a standard, we can use one of several libraries that are available (do a web search for “JavaScript grapheme”).
Quick reference: Strings
Converting to string
Tbl. 14 describes how various values are converted to strings.
x | String(x) |
---|---|
undefined | 'undefined' |
null | 'null' |
boolean | false → 'false', true → 'true' |
number | Example: 123 → '123' |
bigint | Example: 123n → '123' |
string | x (input, unchanged) |
symbol | Example: Symbol('abc') → 'Symbol(abc)' |
object | Configurable via, e.g., toString() |
Numeric values of text atoms
String.prototype: finding and matching
(String.prototype is where the methods of strings are stored.)
.endsWith(searchString: string, endPos=this.length): boolean [ES6]
Returns true if the string would end with searchString if its length were endPos. Returns false otherwise.
> 'foo.txt'.endsWith('.txt')
true
> 'abcde'.endsWith('cd', 4)
true
.includes(searchString: string, startPos=0): boolean [ES6]
Returns true if the string contains the searchString and false otherwise. The search starts at startPos.
> 'abc'.includes('b')
true
> 'abc'.includes('b', 2)
false
.indexOf(searchString: string, minIndex=0): number [ES1]
Returns the lowest index at which searchString appears within the string or -1, otherwise. Any returned index will beminIndex` or higher.
> 'abab'.indexOf('a')
0
> 'abab'.indexOf('a', 1)
2
> 'abab'.indexOf('c')
-1
.lastIndexOf(searchString: string, maxIndex=Infinity): number [ES1]
Returns the highest index at which searchString appears within the string or -1, otherwise. Any returned index will bemaxIndex` or lower.
> 'abab'.lastIndexOf('ab', 2)
2
> 'abab'.lastIndexOf('ab', 1)
0
> 'abab'.lastIndexOf('ab')
2
[1 of 2] .match(regExp: string | RegExp): RegExpMatchArray | null [ES3]
If regExp is a regular expression with flag /g not set, then .match() returns the first match for regExp within the string. Or null if there is no match. If regExp is a string, it is used to create a regular expression (think parameter of new RegExp()) before performing the previously mentioned steps.
The result has the following type:
interface RegExpMatchArray extends Array<string> {
index: number;
input: string;
groups: undefined | {
[key: string]: string
};
}
Numbered capture groups become Array indices (which is why this type extends Array). Named capture groups (ES2018) become properties of .groups. In this mode, .match() works like RegExp.prototype.exec().
Examples:
> 'ababb'.match(/a(b+)/)
{ 0: 'ab', 1: 'b', index: 0, input: 'ababb', groups: undefined }
> 'ababb'.match(/a(?<foo>b+)/)
{ 0: 'ab', 1: 'b', index: 0, input: 'ababb', groups: { foo: 'b' } }
> 'abab'.match(/x/)
null
[2 of 2] .match(regExp: RegExp): string[] | null [ES3]
If flag /g of regExp is set, .match() returns either an Array with all matches or null if there was no match.
> 'ababb'.match(/a(b+)/g)
[ 'ab', 'abb' ]
> 'ababb'.match(/a(?<foo>b+)/g)
[ 'ab', 'abb' ]
> 'abab'.match(/x/g)
null
.search(regExp: string | RegExp): number [ES3]
Returns the index at which regExp occurs within the string. If regExp is a string, it is used to create a regular expression (think parameter of new RegExp()).
> 'a2b'.search(/[0-9]/)
1
> 'a2b'.search('[0-9]')
1
.startsWith(searchString: string, startPos=0): boolean [ES6]
Returns true if searchString occurs in the string at index startPos. Returns false otherwise.
> '.gitignore'.startsWith('.')
true
> 'abcde'.startsWith('bc', 1)
true
String.prototype: extracting
.slice(start=0, end=this.length): string [ES3]
Returns the substring of the string that starts at (including) index start and ends at (excluding) index end. If an index is negative, it is added to .length before it is used (-1 becomes this.length-1, etc.).
> 'abc'.slice(1, 3)
'bc'
> 'abc'.slice(1)
'bc'
> 'abc'.slice(-2)
'bc'
.at(index: number): string | undefined [ES2022]
Returns the JavaScript character at index as a string. If index is negative, it is added to .length before it is used (-1 becomes this.length-1, etc.).
> 'abc'.at(0)
'a'
> 'abc'.at(-1)
'c'
.split(separator: string | RegExp, limit?: number): string[] [ES3]
Splits the string into an Array of substrings – the strings that occur between the separators. The separator can be a string:
> 'a | b | c'.split('|')
[ 'a ', ' b ', ' c' ]
It can also be a regular expression:
> 'a : b : c'.split(/ *: */)
[ 'a', 'b', 'c' ]
> 'a : b : c'.split(/( *):( *)/)
[ 'a', ' ', ' ', 'b', ' ', ' ', 'c' ]
The last invocation demonstrates that captures made by groups in the regular expression become elements of the returned Array.
Warning: .split('') splits a string into JavaScript characters. That doesn’t work well when dealing with astral code points (which are encoded as two JavaScript characters). For example, emojis are astral:
> '🙂X🙂'.split('')
[ '\uD83D', '\uDE42', 'X', '\uD83D', '\uDE42' ]
Instead, it is better to use Array.from() (or spreading):
> Array.from('🙂X🙂')
[ '🙂', 'X', '🙂' ]
.substring(start: number, end=this.length): string [ES1]
Use .slice() instead of this method. .substring() wasn’t implemented consistently in older engines and doesn’t support negative indices.
String.prototype: combining
.concat(...strings: string[]): string [ES3]
Returns the concatenation of the string and strings. 'a'.concat('b') is equivalent to 'a'+'b'. The latter is much more popular.
> 'ab'.concat('cd', 'ef', 'gh')
'abcdefgh'
.padEnd(len: number, fillString=' '): string [ES2017]
Appends (fragments of) fillString to the string until it has the desired length len. If it already has or exceeds len, then it is returned without any changes.
> '#'.padEnd(2)
'# '
> 'abc'.padEnd(2)
'abc'
> '#'.padEnd(5, 'abc')
'#abca'
.padStart(len: number, fillString=' '): string [ES2017]
Prepends (fragments of) fillString to the string until it has the desired length len. If it already has or exceeds len, then it is returned without any changes.
> '#'.padStart(2)
' #'
> 'abc'.padStart(2)
'abc'
> '#'.padStart(5, 'abc')
'abca#'
.repeat(count=0): string [ES6]
Returns the string, concatenated count times.
> '*'.repeat()
''
> '*'.repeat(3)
'***'
String.prototype: transforming
.normalize(form: 'NFC'|'NFD'|'NFKC'|'NFKD' = 'NFC'): string [ES6]
Normalizes the string according to the Unicode Normalization Forms.
[1 of 2] .replaceAll(searchValue: string | RegExp, replaceValue: string): string [ES2021]
What to do if you can’t use .replaceAll()
If .replaceAll() isn’t available on your targeted platform, you can use .replace() instead. How is explained in [content not included].
Replaces all matches of searchValue with replaceValue. If searchValue is a regular expression without flag /g, a TypeError is thrown.
> 'x.x.'.replaceAll('.', '#')
'x#x#'
> 'x.x.'.replaceAll(/./g, '#')
'####'
> 'x.x.'.replaceAll(/./, '#')
TypeError: String.prototype.replaceAll called with
a non-global RegExp argument
Special characters in replaceValue are:
Examples:
> 'a 1995-12 b'.replaceAll(/([0-9]{4})-([0-9]{2})/g, '|$2|')
'a |12| b'
> 'a 1995-12 b'.replaceAll(/([0-9]{4})-([0-9]{2})/g, '|$&|')
'a |1995-12| b'
> 'a 1995-12 b'.replaceAll(/([0-9]{4})-([0-9]{2})/g, '|$`|')
'a |a | b'
Named capture groups (ES2018) are supported, too:
Example:
assert.equal(
'a 1995-12 b'.replaceAll(
/(?<year>[0-9]{4})-(?<month>[0-9]{2})/g, '|$<month>|'),
'a |12| b');
[2 of 2] .replaceAll(searchValue: string | RegExp, replacer: (...args: any[]) => string): string [ES2021]
If the second parameter is a function, occurrences are replaced with the strings it returns. Its parameters args are:
const regexp = /([0-9]{4})-([0-9]{2})/g;
const replacer = (all, year, month) => '|' + all + '|';
assert.equal(
'a 1995-12 b'.replaceAll(regexp, replacer),
'a |1995-12| b');
Named capture groups (ES2018) are supported, too. If there are any, an argument is added at the end with an object whose properties contain the captures:
const regexp = /(?<year>[0-9]{4})-(?<month>[0-9]{2})/g;
const replacer = (...args) => {
const groups=args.pop();
return '|' + groups.month + '|';
};
assert.equal(
'a 1995-12 b'.replaceAll(regexp, replacer),
'a |12| b');
.replace(searchValue: string | RegExp, replaceValue: string): string [ES3]
.replace(searchValue: string | RegExp, replacer: (...args: any[]) => string): string [ES3]
.replace() works like .replaceAll(), but only replaces the first occurrence if searchValue is a string or a regular expression without /g:
> 'x.x.'.replace('.', '#')
'x#x.'
> 'x.x.'.replace(/./, '#')
'#.x.'
For more information on this method, see [content not included].
.toUpperCase(): string [ES1]
Returns a copy of the string in which all lowercase alphabetic characters are converted to uppercase. How well that works for various alphabets, depends on the JavaScript engine.
> '-a2b-'.toUpperCase()
'-A2B-'
> 'αβγ'.toUpperCase()
'ΑΒΓ'
.toLowerCase(): string [ES1]
Returns a copy of the string in which all uppercase alphabetic characters are converted to lowercase. How well that works for various alphabets, depends on the JavaScript engine.
> '-A2B-'.toLowerCase()
'-a2b-'
> 'ΑΒΓ'.toLowerCase()
'αβγ'
.trim(): string [ES5]
Returns a copy of the string in which all leading and trailing whitespace (spaces, tabs, line terminators, etc.) is gone.
> '\r\n#\t '.trim()
'#'
> ' abc '.trim()
'abc'
.trimEnd(): string [ES2019]
Similar to .trim() but only the end of the string is trimmed:
> ' abc '.trimEnd()
' abc'
.trimStart(): string [ES2019]
Similar to .trim() but only the beginning of the string is trimmed:
> ' abc '.trimStart()
'abc '
Sources
Exercise: Using string methods
exercises/strings/remove_extension_test.mjs
Quiz
See quiz app.
Using template literals and tagged templates
Before we dig into the two features template literal and tagged template, let’s first examine the multiple meanings of the term template.
Disambiguation: “template”
The following three things are significantly different despite all having template in their names and despite all of them looking similar:
A text template is a function from data to text. It is frequently used in web development and often defined via text files. For example, the following text defines a template for the library Handlebars:
<div class="entry">
<h1>{{title}}</h1>
<div class="body">
{{body}}
</div>
</div>
This template has two blanks to be filled in: title and body. It is used like this:
// First step: retrieve the template text, e.g. from a text file.
const tmplFunc = Handlebars.compile(TMPL_TEXT); // compile string
const data = {title: 'My page', body: 'Welcome to my page!'};
const html = tmplFunc(data);
A template literal is similar to a string literal, but has additional features – for example, interpolation. It is delimited by backticks:
const num = 5;
assert.equal(`Count: ${num}!`, 'Count: 5!');
Syntactically, a tagged template is a template literal that follows a function (or rather, an expression that evaluates to a function). That leads to the function being called. Its arguments are derived from the contents of the template literal.
const getArgs = (...args) => args;
assert.deepEqual(
getArgs`Count: ${5}!`,
[['Count: ', '!'], 5] );
Note that getArgs() receives both the text of the literal and the data interpolated via ${}.
Template literals
A template literal has two new features compared to a normal string literal.
First, it supports string interpolation: if we put a dynamically computed value inside a ${}, it is converted to a string and inserted into the string returned by the literal.
const MAX = 100;
function doSomeWork(x) {
if (x > MAX) {
throw new Error(`At most ${MAX} allowed: ${x}!`);
}
// ···
}
assert.throws(
() => doSomeWork(101),
{message: 'At most 100 allowed: 101!'});
Second, template literals can span multiple lines:
const str = `this is
a text with
multiple lines`;
Template literals always produce strings.
Tagged templates
The expression in line A is a tagged template. It is equivalent to invoking tagFunc() with the arguments listed in the Array in line B.
function tagFunc(...args) {
return args;
}
const setting = 'dark mode';
const value = true;
assert.deepEqual(
tagFunc`Setting ${setting} is ${value}!`, // (A)
[['Setting ', ' is ', '!'], 'dark mode', true] // (B)
);
The function tagFunc before the first backtick is called a tag function. Its arguments are:
The static (fixed) parts of the literal (the template strings) are kept separate from the dynamic parts (the substitutions).
A tag function can return arbitrary values.
Cooked vs. raw template strings (advanced)
So far, we have only seen the cooked interpretation of template strings. But tag functions actually get two interpretations:
A cooked interpretation where backslashes have special meaning. For example, \t produces a tab character. This interpretation of the template strings is stored as an Array in the first argument.
A raw interpretation where backslashes do not have special meaning. For example, \t produces two characters – a backslash and a t. This interpretation of the template strings is stored in property .raw of the first argument (an Array).
The raw interpretation enables raw string literals via String.raw (described later) and similar applications.
The following tag function cookedRaw uses both interpretations:
function cookedRaw(templateStrings, ...substitutions) {
return {
cooked: Array.from(templateStrings), // copy only Array elements
raw: templateStrings.raw,
substitutions,
};
}
assert.deepEqual(
cookedRaw`\tab${'subst'}\newline\\`,
{
cooked: ['\tab', '\newline\\'],
raw: ['\\tab', '\\newline\\\\'],
substitutions: ['subst'],
});
We can also use Unicode code point escapes (\u{1F642}), Unicode code unit escapes (\u03A9), and ASCII escapes (\x52) in tagged templates:
assert.deepEqual(
cookedRaw`\u{54}\u0065\x78t`,
{
cooked: ['Text'],
raw: ['\\u{54}\\u0065\\x78t'],
substitutions: [],
});
If the syntax of one of these escapes isn’t correct, the corresponding cooked template string is undefined, while the raw version is still verbatim:
assert.deepEqual(
cookedRaw`\uu\xx ${1} after`,
{
cooked: [undefined, ' after'],
raw: ['\\uu\\xx ', ' after'],
substitutions: [1],
});
Incorrect escapes produce syntax errors in template literals and string literals. Before ES2018, they even produced errors in tagged templates. Why was that changed? We can now use tagged templates for text that was previously illegal – for example:
windowsPath`C:\uuu\xxx\111`
latex`\unicode`
Examples of tagged templates (as provided via libraries)
Tagged templates are great for supporting small embedded languages (so-called domain-specific languages). We’ll continue with a few examples.
Tag function library: lit-html
lit-html is a templating library that is based on tagged templates and used by the frontend framework Polymer:
import {html, render} from 'lit-html';
const template = (items) => html`
<ul>
${
repeat(items,
(item) => item.id,
(item, index) => html`<li>${index}. ${item.name}</li>`
)
}
</ul>
`;
repeat() is a custom function for looping. Its 2nd parameter produces unique keys for the values returned by the 3rd parameter. Note the nested tagged template used by that parameter.
Tag function library: re-template-tag
re-template-tag is a simple library for composing regular expressions. Templates tagged with re produce regular expressions. The main benefit is that we can interpolate regular expressions and plain text via ${} (line A):
const RE_YEAR = re`(?<year>[0-9]{4})`;
const RE_MONTH = re`(?<month>[0-9]{2})`;
const RE_DAY = re`(?<day>[0-9]{2})`;
const RE_DATE = re`/${RE_YEAR}-${RE_MONTH}-${RE_DAY}/u`; // (A)
const match = RE_DATE.exec('2017-01-27');
assert.equal(match.groups.year, '2017');
Tag function library: graphql-tag
The library graphql-tag lets us create GraphQL queries via tagged templates:
import gql from 'graphql-tag';
const query = gql`
{
user(id: 5) {
firstName
lastName
}
}
`;
Additionally, there are plugins for pre-compiling such queries in Babel, TypeScript, etc.
Raw string literals
Raw string literals are implemented via the tag function String.raw. They are string literals where backslashes don’t do anything special (such as escaping characters, etc.):
assert.equal(String.raw`\back`, '\\back');
This helps whenever data contains backslashes – for example, strings with regular expressions:
const regex1 = /^\./;
const regex2 = new RegExp('^\\.');
const regex3 = new RegExp(String.raw`^\.`);
All three regular expressions are equivalent. With a normal string literal, we have to write the backslash twice, to escape it for that literal. With a raw string literal, we don’t have to do that.
Raw string literals are also useful for specifying Windows filename paths:
const WIN_PATH = String.raw`C:\foo\bar`;
assert.equal(WIN_PATH, 'C:\\foo\\bar');
(Advanced)
All remaining sections are advanced
Multiline template literals and indentation
If we put multiline text in template literals, two goals are in conflict: On one hand, the template literal should be indented to fit inside the source code. On the other hand, the lines of its content should start in the leftmost column.
For example:
function div(text) {
return `
<div>
${text}
</div>
`;
}
console.log('Output:');
console.log(
div('Hello!')
// Replace spaces with mid-dots:
.replace(/ /g, '·')
// Replace \n with #\n:
.replace(/\n/g, '#\n')
);
Due to the indentation, the template literal fits well into the source code. Alas, the output is also indented. And we don’t want the return at the beginning and the return plus two spaces at the end.
Output:
#
····<div>#
······Hello!#
····</div>#
··
There are two ways to fix this: via a tagged template or by trimming the result of the template literal.
Fix: template tag for dedenting
The first fix is to use a custom template tag that removes the unwanted whitespace. It uses the first line after the initial line break to determine in which column the text starts and shortens the indentation everywhere. It also removes the line break at the very beginning and the indentation at the very end. One such template tag is dedent by Desmond Brand:
import dedent from 'dedent';
function divDedented(text) {
return dedent`
<div>
${text}
</div>
`.replace(/\n/g, '#\n');
}
console.log('Output:');
console.log(divDedented('Hello!'));
This time, the output is not indented:
Output:
<div>#
Hello!#
</div>
Fix: .trim()
The second fix is quicker, but also dirtier:
function divDedented(text) {
return `
<div>
${text}
</div>
`.trim().replace(/\n/g, '#\n');
}
console.log('Output:');
console.log(divDedented('Hello!'));
The string method .trim() removes the superfluous whitespace at the beginning and at the end, but the content itself must start in the leftmost column. The advantage of this solution is that we don’t need a custom tag function. The downside is that it looks ugly.
The output is the same as with dedent:
Output:
<div>#
Hello!#
</div>
Simple templating via template literals
While template literals look like text templates, it is not immediately obvious how to use them for (text) templating: A text template gets its data from an object, while a template literal gets its data from variables. The solution is to use a template literal in the body of a function whose parameter receives the templating data – for example:
const tmpl = (data) => `Hello ${data.name}!`;
assert.equal(tmpl({name: 'Jane'}), 'Hello Jane!');
A more complex example
As a more complex example, we’d like to take an Array of addresses and produce an HTML table. This is the Array:
const addresses = [
{ first: '<Jane>', last: 'Bond' },
{ first: 'Lars', last: '<Croft>' },
];
The function tmpl() that produces the HTML table looks as follows:
const tmpl = (addrs) => `
<table>
${addrs.map(
(addr) => `
<tr>
<td>${escapeHtml(addr.first)}</td>
<td>${escapeHtml(addr.last)}</td>
</tr>
`.trim()
).join('')}
</table>
`.trim();
This code contains two templating functions:
The first templating function produces its result by wrapping a table element around an Array that it joins into a string (line 10). That Array is produced by mapping the second templating function to each element of addrs (line 3). It therefore contains strings with table rows.
The helper function escapeHtml() is used to escape special HTML characters (line 6 and line 7). Its implementation is shown in the next subsection.
Let us call tmpl() with the addresses and log the result:
console.log(tmpl(addresses));
The output is:
<table>
<tr>
<td><Jane></td>
<td>Bond</td>
</tr><tr>
<td>Lars</td>
<td><Croft></td>
</tr>
</table>
Simple HTML-escaping
The following function escapes plain text so that it is displayed verbatim in HTML:
function escapeHtml(str) {
return str
.replace(/&/g, '&') // first!
.replace(/>/g, '>')
.replace(/</g, '<')
.replace(/"/g, '"')
.replace(/'/g, ''')
.replace(/`/g, '`')
;
}
assert.equal(
escapeHtml('Rock & Roll'), 'Rock & Roll');
assert.equal(
escapeHtml('<blank>'), '<blank>');
Exercise: HTML templating
Exercise with bonus challenge: exercises/template-literals/templating_test.mjs
Quiz
See quiz app.
Symbols
Symbols are primitives that are also like objects
Symbols are primitive values that are created via the factory function Symbol():
const mySymbol = Symbol('mySymbol');
The parameter is optional and provides a description, which is mainly useful for debugging.
Symbols are primitive values
Symbols are primitive values:
They have to be categorized via typeof:
const sym = Symbol();
assert.equal(typeof sym, 'symbol');
They can be property keys in objects:
const obj = {
[sym]: 123,
};
Symbols are also like objects
Even though symbols are primitives, they are also like objects in that each value created by Symbol() is unique and not compared by value:
> Symbol() === Symbol()
false
Prior to symbols, objects were the best choice if we needed values that were unique (only equal to themselves):
const string1 = 'abc';
const string2 = 'abc';
assert.equal(
string1 === string2, true); // not unique
const object1 = {};
const object2 = {};
assert.equal(
object1 === object2, false); // unique
const symbol1 = Symbol();
const symbol2 = Symbol();
assert.equal(
symbol1 === symbol2, false); // unique
The descriptions of symbols
The parameter we pass to the symbol factory function provides a description for the created symbol:
const mySymbol = Symbol('mySymbol');
The description can be accessed in two ways.
First, it is part of the string returned by .toString():
assert.equal(mySymbol.toString(), 'Symbol(mySymbol)');
Second, since ES2019, we can retrieve the description via the property .description:
assert.equal(mySymbol.description, 'mySymbol');
Use cases for symbols
The main use cases for symbols, are:
Symbols as values for constants
Let’s assume you want to create constants representing the colors red, orange, yellow, green, blue, and violet. One simple way of doing so would be to use strings:
const COLOR_BLUE = 'Blue';
On the plus side, logging that constant produces helpful output. On the minus side, there is a risk of mistaking an unrelated value for a color because two strings with the same content are considered equal:
const MOOD_BLUE = 'Blue';
assert.equal(COLOR_BLUE, MOOD_BLUE);
We can fix that problem via symbols:
const COLOR_BLUE = Symbol('Blue');
const MOOD_BLUE = Symbol('Blue');
assert.notEqual(COLOR_BLUE, MOOD_BLUE);
Let’s use symbol-valued constants to implement a function:
const COLOR_RED = Symbol('Red');
const COLOR_ORANGE = Symbol('Orange');
const COLOR_YELLOW = Symbol('Yellow');
const COLOR_GREEN = Symbol('Green');
const COLOR_BLUE = Symbol('Blue');
const COLOR_VIOLET = Symbol('Violet');
function getComplement(color) {
switch (color) {
case COLOR_RED:
return COLOR_GREEN;
case COLOR_ORANGE:
return COLOR_BLUE;
case COLOR_YELLOW:
return COLOR_VIOLET;
case COLOR_GREEN:
return COLOR_RED;
case COLOR_BLUE:
return COLOR_ORANGE;
case COLOR_VIOLET:
return COLOR_YELLOW;
default:
throw new Exception('Unknown color: '+color);
}
}
assert.equal(getComplement(COLOR_YELLOW), COLOR_VIOLET);
Symbols as unique property keys
The keys of properties (fields) in objects are used at two levels:
The program operates at a base level. The keys at that level reflect the problem domain – the area in which a program solves a problem – for example:
ECMAScript and many libraries operate at a meta-level. They manage data and provide services that are not part of the problem domain – for example:
The standard method .toString() is used by ECMAScript when creating a string representation of an object (line A):
const point = {
x: 7,
y: 4,
toString() {
return `(${this.x}, ${this.y})`;
},
};
assert.equal(
String(point), '(7, 4)'); // (A)
.x and .y are base-level properties – they are used to solve the problem of computing with points. .toString() is a meta-level property – it doesn’t have anything to do with the problem domain.
The standard ECMAScript method .toJSON()
const point = {
x: 7,
y: 4,
toJSON() {
return [this.x, this.y];
},
};
assert.equal(
JSON.stringify(point), '[7,4]');
.x and .y are base-level properties, .toJSON() is a meta-level property.
The base level and the meta-level of a program must be independent: Base-level property keys should not be in conflict with meta-level property keys.
If we use names (strings) as property keys, we are facing two challenges:
When a language is first created, it can use any meta-level names it wants. Base-level code is forced to avoid those names. Later, however, when much base-level code already exists, meta-level names can’t be chosen freely, anymore.
We could introduce naming rules to separate base level and meta-level. For example, Python brackets meta-level names with two underscores: __init__, __iter__, __hash__, etc. However, the meta-level names of the language and the meta-level names of libraries would still exist in the same namespace and can clash.
These are two examples of where the latter was an issue for JavaScript:
In May 2018, the Array method .flatten() had to be renamed to .flat() because the former name was already used by libraries (source).
In November 2020, the Array method .item() had to be renamed to .at() because the former name was already used by library (source).
Symbols, used as property keys, help us here: Each symbol is unique and a symbol key never clashes with any other string or symbol key.
Example: a library with a meta-level method
As an example, let’s assume we are writing a library that treats objects differently if they implement a special method. This is what defining a property key for such a method and implementing it for an object would look like:
const specialMethod = Symbol('specialMethod');
const obj = {
_id: 'kf12oi',
[specialMethod]() { // (A)
return this._id;
}
};
assert.equal(obj[specialMethod](), 'kf12oi');
The square brackets in line A enable us to specify that the method must have the key specialMethod. More details are explained in §28.7.2 “Computed keys in object literals”.
Publicly known symbols
Symbols that play special roles within ECMAScript are called publicly known symbols. Examples include:
Symbol.iterator: makes an object iterable. It’s the key of a method that returns an iterator. For more information on this topic, see [content not included].
Symbol.hasInstance: customizes how instanceof works. If an object implements a method with that key, it can be used at the right-hand side of that operator. For example:
const PrimitiveNull = {
[Symbol.hasInstance](x) {
return x === null;
}
};
assert.equal(null instanceof PrimitiveNull, true);
Symbol.toStringTag: influences the default .toString() method.
> String({})
'[object Object]'
> String({ [Symbol.toStringTag]: 'is no money' })
'[object is no money]'
Note: It’s usually better to override .toString().
Exercises: Publicly known symbols
Converting symbols
What happens if we convert a symbol sym to another primitive type? Tbl. 15 has the answers.
Convert to | Explicit conversion | Coercion (implicit conv.) |
---|---|---|
boolean | Boolean(sym) → OK | !sym → OK |
number | Number(sym) → TypeError | sym*2 → TypeError |
string | String(sym) → OK | ''+sym → TypeError |
sym.toString() → OK | `${sym}` → TypeError |
One key pitfall with symbols is how often exceptions are thrown when converting them to something else. What is the thinking behind that? First, conversion to number never makes sense and should be warned about. Second, converting a symbol to a string is indeed useful for diagnostic output. But it also makes sense to warn about accidentally turning a symbol into a string (which is a different kind of property key):
const obj = {};
const sym = Symbol();
assert.throws(
() => { obj['__'+sym+'__'] = true },
{ message: 'Cannot convert a Symbol value to a string' });
The downside is that the exceptions make working with symbols more complicated. You have to explicitly convert symbols when assembling strings via the plus operator:
> const mySymbol = Symbol('mySymbol');
> 'Symbol I used: ' + mySymbol
TypeError: Cannot convert a Symbol value to a string
> 'Symbol I used: ' + String(mySymbol)
'Symbol I used: Symbol(mySymbol)'
Quiz
See quiz app.
Control flow statements
This chapter covers the following control flow statements:
Controlling loops: break and continue
The two operators break and continue can be used to control loops and other statements while we are inside them.
break
There are two versions of break: one with an operand and one without an operand. The latter version works inside the following statements: while, do-while, for, for-of, for-await-of, for-in and switch. It immediately leaves the current statement:
for (const x of ['a', 'b', 'c']) {
console.log(x);
if (x === 'b') break;
console.log('---')
}
// Output:
// 'a'
// '---'
// 'b'
break plus label: leaving any labeled statement
break with an operand works everywhere. Its operand is a label. Labels can be put in front of any statement, including blocks. break my_label leaves the statement whose label is my_label:
my_label: { // label
if (condition) break my_label; // labeled break
// ···
}
In the following example, the search can either:
function findSuffix(stringArray, suffix) {
let result;
search_block: {
for (const str of stringArray) {
if (str.endsWith(suffix)) {
// Success:
result = str;
break search_block; // (A)
}
} // for
// Failure:
result = '(Untitled)'; // (B)
} // search_block
return { suffix, result };
// Same as: {suffix: suffix, result: result}
}
assert.deepEqual(
findSuffix(['notes.txt', 'index.html'], '.html'),
{ suffix: '.html', result: 'index.html' }
);
assert.deepEqual(
findSuffix(['notes.txt', 'index.html'], '.mjs'),
{ suffix: '.mjs', result: '(Untitled)' }
);
continue
continue only works inside while, do-while, for, for-of, for-await-of, and for-in. It immediately leaves the current loop iteration and continues with the next one – for example:
const lines = [
'Normal line',
'# Comment',
'Another normal line',
];
for (const line of lines) {
if (line.startsWith('#')) continue;
console.log(line);
}
// Output:
// 'Normal line'
// 'Another normal line'
Conditions of control flow statements
if, while, and do-while have conditions that are, in principle, boolean. However, a condition only has to be truthy (true if coerced to boolean) in order to be accepted. In other words, the following two control flow statements are equivalent:
if (value) {}
if (Boolean(value) === true) {}
This is a list of all falsy values:
All other values are truthy. For more information, see §15.2 “Falsy and truthy values”.
if statements [ES1]
These are two simple if statements: one with just a “then” branch and one with both a “then” branch and an “else” branch:
if (cond) {
// then branch
}
if (cond) {
// then branch
} else {
// else branch
}
Instead of the block, else can also be followed by another if statement:
if (cond1) {
// ···
} else if (cond2) {
// ···
}
if (cond1) {
// ···
} else if (cond2) {
// ···
} else {
// ···
}
You can continue this chain with more else ifs.
The syntax of if statements
The general syntax of if statements is:
if (cond) «then_statement»
else «else_statement»
So far, the then_statement has always been a block, but we can use any statement. That statement must be terminated with a semicolon:
if (true) console.log('Yes'); else console.log('No');
That means that else if is not its own construct; it’s simply an if statement whose else_statement is another if statement.
switch statements [ES3]
A switch statement looks as follows:
switch («switch_expression») {
«switch_body»
}
The body of switch consists of zero or more case clauses:
case «case_expression»:
«statements»
And, optionally, a default clause:
default:
«statements»
A switch is executed as follows:
A first example of a switch statement
Let’s look at an example: The following function converts a number from 1–7 to the name of a weekday.
function dayOfTheWeek(num) {
switch (num) {
case 1:
return 'Monday';
case 2:
return 'Tuesday';
case 3:
return 'Wednesday';
case 4:
return 'Thursday';
case 5:
return 'Friday';
case 6:
return 'Saturday';
case 7:
return 'Sunday';
}
}
assert.equal(dayOfTheWeek(5), 'Friday');
Don’t forget to return or break!
At the end of a case clause, execution continues with the next case clause, unless we return or break – for example:
function englishToFrench(english) {
let french;
switch (english) {
case 'hello':
french = 'bonjour';
case 'goodbye':
french = 'au revoir';
}
return french;
}
// The result should be 'bonjour'!
assert.equal(englishToFrench('hello'), 'au revoir');
That is, our implementation of dayOfTheWeek() only worked because we used return. We can fix englishToFrench() by using break:
function englishToFrench(english) {
let french;
switch (english) {
case 'hello':
french = 'bonjour';
break;
case 'goodbye':
french = 'au revoir';
break;
}
return french;
}
assert.equal(englishToFrench('hello'), 'bonjour'); // ok
Empty case clauses
The statements of a case clause can be omitted, which effectively gives us multiple case expressions per case clause:
function isWeekDay(name) {
switch (name) {
case 'Monday':
case 'Tuesday':
case 'Wednesday':
case 'Thursday':
case 'Friday':
return true;
case 'Saturday':
case 'Sunday':
return false;
}
}
assert.equal(isWeekDay('Wednesday'), true);
assert.equal(isWeekDay('Sunday'), false);
Checking for illegal values via a default clause
A default clause is jumped to if the switch expression has no other match. That makes it useful for error checking:
function isWeekDay(name) {
switch (name) {
case 'Monday':
case 'Tuesday':
case 'Wednesday':
case 'Thursday':
case 'Friday':
return true;
case 'Saturday':
case 'Sunday':
return false;
default:
throw new Error('Illegal value: '+name);
}
}
assert.throws(
() => isWeekDay('January'),
{message: 'Illegal value: January'});
Exercises: switch
exercises/control-flow/number_to_month_test.mjs
while loops [ES1]
A while loop has the following syntax:
while («condition») {
«statements»
}
Before each loop iteration, while evaluates condition:
Examples of while loops
The following code uses a while loop. In each loop iteration, it removes the first element of arr via .shift() and logs it.
const arr = ['a', 'b', 'c'];
while (arr.length > 0) {
const elem = arr.shift(); // remove first element
console.log(elem);
}
// Output:
// 'a'
// 'b'
// 'c'
If the condition always evaluates to true, then while is an infinite loop:
while (true) {
if (Math.random() === 0) break;
}
do-while loops [ES3]
The do-while loop works much like while, but it checks its condition after each loop iteration, not before.
let input;
do {
input = prompt('Enter text:');
console.log(input);
} while (input !== ':q');
do-while can also be viewed as a while loop that runs at least once.
prompt() is a global function that is available in web browsers. It prompts the user to input text and returns it.
for loops [ES1]
A for loop has the following syntax:
for («initialization»; «condition»; «post_iteration») {
«statements»
}
The first line is the head of the loop and controls how often the body (the remainder of the loop) is executed. It has three parts and each of them is optional:
A for loop is therefore roughly equivalent to the following while loop:
«initialization»
while («condition») {
«statements»
«post_iteration»
}
Examples of for loops
As an example, this is how to count from zero to two via a for loop:
for (let i=0; i<3; i++) {
console.log(i);
}
// Output:
// 0
// 1
// 2
This is how to log the contents of an Array via a for loop:
const arr = ['a', 'b', 'c'];
for (let i=0; i<arr.length; i++) {
console.log(arr[i]);
}
// Output:
// 'a'
// 'b'
// 'c'
If we omit all three parts of the head, we get an infinite loop:
for (;;) {
if (Math.random() === 0) break;
}
for-of loops [ES6]
A for-of loop iterates over any iterable – a data container that supports the iteration protocol. Each iterated value is stored in a variable, as specified in the head:
for («iteration_variable» of «iterable») {
«statements»
}
The iteration variable is usually created via a variable declaration:
const iterable = ['hello', 'world'];
for (const elem of iterable) {
console.log(elem);
}
// Output:
// 'hello'
// 'world'
But we can also use a (mutable) variable that already exists:
const iterable = ['hello', 'world'];
let elem;
for (elem of iterable) {
console.log(elem);
}
const: for-of vs. for
Note that in for-of loops we can use const. The iteration variable can still be different for each iteration (it just can’t change during the iteration). Think of it as a new const declaration being executed each time in a fresh scope.
In contrast, in for loops we must declare variables via let or var if their values change.
Iterating over iterables
As mentioned before, for-of works with any iterable object, not just with Arrays – for example, with Sets:
const set = new Set(['hello', 'world']);
for (const elem of set) {
console.log(elem);
}
Iterating over [index, element] pairs of Arrays
Lastly, we can also use for-of to iterate over the [index, element] entries of Arrays:
const arr = ['a', 'b', 'c'];
for (const [index, elem] of arr.entries()) {
console.log(`${index} -> ${elem}`);
}
// Output:
// '0 -> a'
// '1 -> b'
// '2 -> c'
With [index, element], we are using destructuring to access Array elements.
Exercise: for-of
exercises/control-flow/array_to_string_test.mjs
for-await-of loops [ES2018]
for-await-of is like for-of, but it works with asynchronous iterables instead of synchronous ones. And it can only be used inside async functions and async generators.
for await (const item of asyncIterable) {
// ···
}
for-await-of is described in detail in the chapter on asynchronous iteration.
for-in loops (avoid) [ES1]
The for-in loop visits all (own and inherited) enumerable property keys of an object. When looping over an Array, it is rarely a good choice:
The following code demonstrates these points:
const arr = ['a', 'b', 'c'];
arr.propKey = 'property value';
for (const key in arr) {
console.log(key);
}
// Output:
// '0'
// '1'
// '2'
// 'propKey'
Recomendations for looping
Quiz
See quiz app.
Exception handling
This chapter covers how JavaScript handles exceptions.
Why doesn’t JavaScript throw exceptions more often?
JavaScript didn’t support exceptions until ES3. That explains why they are used sparingly by the language and its standard library.
Motivation: throwing and catching exceptions
Consider the following code. It reads profiles stored in files into an Array with instances of class Profile:
function readProfiles(filePaths) {
const profiles = [];
for (const filePath of filePaths) {
try {
const profile = readOneProfile(filePath);
profiles.push(profile);
} catch (err) { // (A)
console.log('Error in: '+filePath, err);
}
}
}
function readOneProfile(filePath) {
const profile = new Profile();
const file = openFile(filePath);
// ··· (Read the data in `file` into `profile`)
return profile;
}
function openFile(filePath) {
if (!fs.existsSync(filePath)) {
throw new Error('Could not find file '+filePath); // (B)
}
// ··· (Open the file whose path is `filePath`)
}
Let’s examine what happens in line B: An error occurred, but the best place to handle the problem is not the current location, it’s line A. There, we can skip the current file and move on to the next one.
Therefore:
When we throw, the following constructs are active:
readProfiles(···)
for (const filePath of filePaths)
try
readOneProfile(···)
openFile(···)
if (!fs.existsSync(filePath))
throw
One by one, throw exits the nested constructs, until it encounters a try statement. Execution continues in the catch clause of that try statement.
throw
This is the syntax of the throw statement:
throw «value»;
What values should we throw?
Any value can be thrown in JavaScript. However, it’s best to use instances of Error or a subclass because they support additional features such as stack traces and error chaining (see §24.4 “Error and its subclasses”).
That leaves us with the following options:
Using class Error directly. That is less limiting in JavaScript than in a more static language because we can add our own properties to instances:
const err = new Error('Could not find the file');
err.filePath = filePath;
throw err;
Using one of the subclasses of Error.
Subclassing Error (more details are explained later):
class MyError extends Error {
}
function func() {
throw new MyError('Problem!');
}
assert.throws(
() => func(),
MyError);
The try statement
The maximal version of the try statement looks as follows:
try {
«try_statements»
} catch (error) {
«catch_statements»
} finally {
«finally_statements»
}
We can combine these clauses as follows:
The try block
The try block can be considered the body of the statement. This is where we execute the regular code.
The catch clause
If an exception reaches the try block, then it is assigned to the parameter of the catch clause and the code in that clause is executed. Next, execution normally continues after the try statement. That may change if:
The following code demonstrates that the value that is thrown in line A is indeed caught in line B.
const errorObject = new Error();
function func() {
throw errorObject; // (A)
}
try {
func();
} catch (err) { // (B)
assert.equal(err, errorObject);
}
Omitting the catch binding [ES2019]
We can omit the catch parameter if we are not interested in the value that was thrown:
try {
// ···
} catch {
// ···
}
That may occasionally be useful. For example, Node.js has the API function assert.throws(func) that checks whether an error is thrown inside func. It could be implemented as follows.
function throws(func) {
try {
func();
} catch {
return; // everything OK
}
throw new Error('Function didn’t throw an exception!');
}
However, a more complete implementation of this function would have a catch parameter and would, for example, check that its type is as expected.
The finally clause
The code inside the finally clause is always executed at the end of a try statement – no matter what happens in the try block or the catch clause.
Let’s look at a common use case for finally: We have created a resource and want to always destroy it when we are done with it, no matter what happens while working with it. We would implement that as follows:
const resource = createResource();
try {
// Work with `resource`. Errors may be thrown.
} finally {
resource.destroy();
}
finally is always executed
The finally clause is always executed, even if an error is thrown (line A):
let finallyWasExecuted = false;
assert.throws(
() => {
try {
throw new Error(); // (A)
} finally {
finallyWasExecuted = true;
}
},
Error
);
assert.equal(finallyWasExecuted, true);
And even if there is a return statement (line A):
let finallyWasExecuted = false;
function func() {
try {
return; // (A)
} finally {
finallyWasExecuted = true;
}
}
func();
assert.equal(finallyWasExecuted, true);
Error and its subclasses
Error is the common superclass of all built-in error classes.
Class Error
This is what Error’s instance properties and constructor look like:
class Error {
// Instance properties
message: string;
cause?: any; // ES2022
stack: string; // non-standard but widely supported
constructor(
message: string = '',
options?: ErrorOptions // ES2022
);
}
interface ErrorOptions {
cause?: any; // ES2022
}
The constructor has two parameters:
The subsections after the next one explain the instance properties .message, .cause and .stack in more detail.
Error.prototype.name
Each built-in error class E has a property E.prototype.name:
> Error.prototype.name
'Error'
> RangeError.prototype.name
'RangeError'
Therefore, there are two ways to get the name of the class of a built-in error object:
> new RangeError().name
'RangeError'
> new RangeError().constructor.name
'RangeError'
Error instance property .message
.message contains just the error message:
const err = new Error('Hello!');
assert.equal(String(err), 'Error: Hello!');
assert.equal(err.message, 'Hello!');
If we omit the message then the empty string is used as a default value (inherited from Error.prototype.message):
If we omit the message, it is the empty string:
assert.equal(new Error().message, '');
Error instance property .stack
The instance property .stack is not an ECMAScript feature, but it is widely supported by JavaScript engines. It is usually a string, but its exact structure is not standardized and varies between engines.
This is what it looks like on the JavaScript engine V8:
const err = new Error('Hello!');
assert.equal(
err.stack,
`
Error: Hello!
at file://ch_exception-handling.mjs:1:13
`.trim());
Error instance property .cause [ES2022]
The instance property .cause is created via the options object in the second parameter of new Error(). It specifies which other error caused the current one.
const err = new Error('msg', {cause: 'the cause'});
assert.equal(err.cause, 'the cause');
For information on how to use this property see §24.5 “Chaining errors”.
The built-in subclasses of Error
Error has the following subclasses – quoting the ECMAScript specification:
Subclassing Error
Since ECMAScript 2022, the Error constructor accepts two parameters (see previous subsection). Therefore, we have two choices when subclassing it: We can either omit the constructor in our subclass or we can invoke super() like this:
class MyCustomError extends Error {
constructor(message, options) {
super(message, options);
// ···
}
}
Chaining errors
Why would we want to chain errors?
Sometimes, we catch errors that are thrown during a more deeply nested function call and would like to attach more information to it:
function readFiles(filePaths) {
return filePaths.map(
(filePath) => {
try {
const text = readText(filePath);
const json = JSON.parse(text);
return processJson(json);
} catch (error) {
// (A)
}
});
}
The statements inside the try clause may throw all kinds of errors. In most cases, an error won’t be aware of the path of the file that caused it. That‘s why we would like to attach that information in line A.
Chaining errors via error.cause [ES2022]
Since ECMAScript 2022, new Error() lets us specify what caused it:
function readFiles(filePaths) {
return filePaths.map(
(filePath) => {
try {
// ···
} catch (error) {
throw new Error(
`While processing ${filePath}`,
{cause: error}
);
}
});
}
An alternative to .cause: a custom error class
The following custom error class supports chaining. It is forward compatible with .cause.
/**
* An error class that supports error chaining.
* If there is built-in support for .cause, it uses it.
* Otherwise, it creates this property itself.
*
* @see https://github.com/tc39/proposal-error-cause
*/
class CausedError extends Error {
constructor(message, options) {
super(message, options);
if (
(isObject(options) && 'cause' in options)
&& !('cause' in this)
) {
// .cause was specified but the superconstructor
// did not create an instance property.
const cause = options.cause;
this.cause = cause;
if ('stack' in cause) {
this.stack = this.stack + '\nCAUSE: ' + cause.stack;
}
}
}
}
function isObject(value) {
return value !== null && typeof value === 'object';
}
Exercise: Exception handling
exercises/exception-handling/call_function_test.mjs
Quiz
See quiz app.
Callable values
In this chapter, we look at JavaScript values that can be invoked: functions, methods, and classes.
Kinds of functions
JavaScript has two categories of functions:
An ordinary function can play several roles:
A specialized function can only play one of those roles – for example:
Specialized functions were added to the language in ECMAScript 6.
Read on to find out what all of those things mean.
Ordinary functions
The following code shows two ways of doing (roughly) the same thing: creating an ordinary function.
// Function declaration (a statement)
function ordinary1(a, b, c) {
// ···
}
// const plus anonymous (nameless) function expression
const ordinary2 = function (a, b, c) {
// ···
};
Inside a scope, function declarations are activated early (see §11.8 “Declarations: scope and activation”) and can be called before they are declared. That is occasionally useful.
Variable declarations, such as the one for ordinary2, are not activated early.
Named function expressions (advanced)
So far, we have only seen anonymous function expressions – which don’t have names:
const anonFuncExpr = function (a, b, c) {
// ···
};
But there are also named function expressions:
const namedFuncExpr = function myName(a, b, c) {
// `myName` is only accessible in here
};
myName is only accessible inside the body of the function. The function can use it to refer to itself (for self-recursion, etc.) – independently of which variable it is assigned to:
const func = function funcExpr() { return funcExpr };
assert.equal(func(), func);
// The name `funcExpr` only exists inside the function body:
assert.throws(() => funcExpr(), ReferenceError);
Even if they are not assigned to variables, named function expressions have names (line A):
function getNameOfCallback(callback) {
return callback.name;
}
assert.equal(
getNameOfCallback(function () {}), ''); // anonymous
assert.equal(
getNameOfCallback(function named() {}), 'named'); // (A)
Note that functions created via function declarations or variable declarations always have names:
function funcDecl() {}
assert.equal(
getNameOfCallback(funcDecl), 'funcDecl');
const funcExpr = function () {};
assert.equal(
getNameOfCallback(funcExpr), 'funcExpr');
One benefit of functions having names is that those names show up in error stack traces.
Terminology: function definitions and function expressions
A function definition is syntax that creates functions:
Function declarations always produce ordinary functions. Function expressions produce either ordinary functions or specialized functions:
While function declarations are still popular in JavaScript, function expressions are almost always arrow functions in modern code.
Parts of a function declaration
Let’s examine the parts of a function declaration via the following example. Most of the terms also apply to function expressions.
function add(x, y) {
return x + y;
}
Trailing commas in parameter lists
JavaScript has always allowed and ignored trailing commas in Array literals. Since ES5, they are also allowed in object literals. Since ES2017, we can add trailing commas to parameter lists (declarations and invocations):
// Declaration
function retrieveData(
contentText,
keyword,
{unique, ignoreCase, pageSize}, // trailing comma
) {
// ···
}
// Invocation
retrieveData(
'',
null,
{ignoreCase: true, pageSize: 10}, // trailing comma
);
Roles played by ordinary functions
Consider the following function declaration from the previous section:
function add(x, y) {
return x + y;
}
This function declaration creates an ordinary function whose name is add. As an ordinary function, add() can play three roles:
Real function: invoked via a function call.
assert.equal(add(2, 1), 3);
Method: stored in a property, invoked via a method call.
const obj = { addAsMethod: add };
assert.equal(obj.addAsMethod(2, 4), 6); // (A)
In line A, obj is called the receiver of the method call.
Constructor function: invoked via new.
const inst = new add();
assert.equal(inst instanceof add, true);
As an aside, the names of constructor functions (incl. classes) normally start with capital letters.
Terminology: entity vs. syntax vs. role (advanced)
The distinction between the concepts syntax, entity, and role is subtle and often doesn’t matter. But I’d like to sharpen your eye for it:
Many other programming languages only have a single entity that plays the role real function. Then they can use the name function for both role and entity.
Specialized functions
Specialized functions are single-purpose versions of ordinary functions. Each one of them specializes in a single role:
The purpose of an arrow function is to be a real function:
const arrow = () => {
return 123;
};
assert.equal(arrow(), 123);
The purpose of a method is to be a method:
const obj = {
myMethod() {
return 'abc';
}
};
assert.equal(obj.myMethod(), 'abc');
The purpose of a class is to be a constructor function:
class MyClass {
/* ··· */
}
const inst = new MyClass();
Apart from nicer syntax, each kind of specialized function also supports new features, making them better at their jobs than ordinary functions.
Tbl. 16 lists the capabilities of ordinary and specialized functions.
Function call | Method call | Constructor call | |
---|---|---|---|
Ordinary function | (this === undefined ) | ✔ | ✔ |
Arrow function | ✔ | (lexical this ) | ✘ |
Method | (this === undefined ) | ✔ | ✘ |
Class | ✘ | ✘ | ✔ |
Specialized functions are still functions
It’s important to note that arrow functions, methods, and classes are still categorized as functions:
> (() => {}) instanceof Function
true
> ({ method() {} }.method) instanceof Function
true
> (class SomeClass {}) instanceof Function
true
Arrow functions
Arrow functions were added to JavaScript for two reasons:
We’ll first examine the syntax of arrow functions and then how this works in various functions.
The syntax of arrow functions
Let’s review the syntax of an anonymous function expression:
const f = function (x, y, z) { return 123 };
The (roughly) equivalent arrow function looks as follows. Arrow functions are expressions.
const f = (x, y, z) => { return 123 };
Here, the body of the arrow function is a block. But it can also be an expression. The following arrow function works exactly like the previous one.
const f = (x, y, z) => 123;
If an arrow function has only a single parameter and that parameter is an identifier (not a destructuring pattern) then you can omit the parentheses around the parameter:
const id = x => x;
That is convenient when passing arrow functions as parameters to other functions or methods:
> [1,2,3].map(x => x+1)
[ 2, 3, 4 ]
This previous example demonstrates one benefit of arrow functions – conciseness. If we perform the same task with a function expression, our code is more verbose:
[1,2,3].map(function (x) { return x+1 });
Syntax pitfall: returning an object literal from an arrow function
If you want the expression body of an arrow function to be an object literal, you must put the literal in parentheses:
const func1 = () => ({a: 1});
assert.deepEqual(func1(), { a: 1 });
If you don’t, JavaScript thinks, the arrow function has a block body (that doesn’t return anything):
const func2 = () => {a: 1};
assert.deepEqual(func2(), undefined);
{a: 1} is interpreted as a block with the label a: and the expression statement 1. Without an explicit return statement, the block body returns undefined.
This pitfall is caused by syntactic ambiguity: object literals and code blocks have the same syntax. We use the parentheses to tell JavaScript that the body is an expression (an object literal) and not a statement (a block).
The special variable this in methods, ordinary functions and arrow functions
The special variable this is an object-oriented feature
We are taking a quick look at the special variable this here, in order to understand why arrow functions are better real functions than ordinary functions.
But this feature only matters in object-oriented programming and is covered in more depth in §28.5 “Methods and the special variable this”. Therefore, don’t worry if you don’t fully understand it yet.
Inside methods, the special variable this lets us access the receiver – the object which received the method call:
const obj = {
myMethod() {
assert.equal(this, obj);
}
};
obj.myMethod();
Ordinary functions can be methods and therefore also have the implicit parameter this:
const obj = {
myMethod: function () {
assert.equal(this, obj);
}
};
obj.myMethod();
this is even an implicit parameter when we use an ordinary function as a real function. Then its value is undefined (if strict mode is active, which it almost always is):
function ordinaryFunc() {
assert.equal(this, undefined);
}
ordinaryFunc();
That means that an ordinary function, used as a real function, can’t access the this of a surrounding method (line A). In contrast, arrow functions don’t have this as an implicit parameter. They treat it like any other variable and can therefore access the this of a surrounding method (line B):
const jill = {
name: 'Jill',
someMethod() {
function ordinaryFunc() {
assert.throws(
() => this.name, // (A)
/^TypeError: Cannot read properties of undefined \(reading 'name'\)$/);
}
ordinaryFunc();
const arrowFunc = () => {
assert.equal(this.name, 'Jill'); // (B)
};
arrowFunc();
},
};
jill.someMethod();
In this code, we can observe two ways of handling this:
Dynamic this: In line A, we try to access the this of .someMethod() from an ordinary function. There, it is shadowed by the function’s own this, which is undefined (as filled in by the function call). Given that ordinary functions receive their this via (dynamic) function or method calls, their this is called dynamic.
Lexical this: In line B, we again try to access the this of .someMethod(). This time, we succeed because the arrow function does not have its own this. this is resolved lexically, just like any other variable. That’s why the this of arrow functions is called lexical.
Recommendation: prefer specialized functions over ordinary functions
Normally, you should prefer specialized functions over ordinary functions, especially classes and methods.
When it comes to real functions, the choice between an arrow function and an ordinary function is less clear-cut, though:
For anonymous inline function expressions, arrow functions are clear winners, due to their compact syntax and them not having this as an implicit parameter:
const twiceOrdinary = [1, 2, 3].map(function (x) {return x * 2});
const twiceArrow = [1, 2, 3].map(x => x * 2);
For stand-alone named function declarations, arrow functions still benefit from lexical this. But function declarations (which produce ordinary functions) have nice syntax and early activation is also occasionally useful (see §11.8 “Declarations: scope and activation”). If this doesn’t appear in the body of an ordinary function, there is no downside to using it as a real function. The static checking tool ESLint can warn us during development when we do this wrong via a built-in rule.
function timesOrdinary(x, y) {
return x * y;
}
const timesArrow = (x, y) => {
return x * y;
};
Summary: kinds of callable values
This section refers to upcoming content
This section mainly serves as a reference for the current and upcoming chapters. Don’t worry if you don’t understand everything.
So far, all (real) functions and methods, that we have seen, were:
Later chapters will cover other modes of programming:
These modes can be combined – for example, there are synchronous iterables and asynchronous iterables.
Several new kinds of functions and methods help with some of the mode combinations:
That leaves us with 4 kinds (2 × 2) of functions and methods:
Tbl. 17 gives an overview of the syntax for creating these 4 kinds of functions and methods.
Result | # | ||
---|---|---|---|
Sync function | Sync method | ||
function f() {} | { m() {} } | value | 1 |
f = function () {} | |||
f = () => {} | |||
Sync generator function | Sync gen. method | ||
function* f() {} | { * m() {} } | iterable | 0+ |
f = function* () {} | |||
Async function | Async method | ||
async function f() {} | { async m() {} } | Promise | 1 |
f = async function () {} | |||
f = async () => {} | |||
Async generator function | Async gen. method | ||
async function* f() {} | { async * m() {} } | async iterable | 0+ |
f = async function* () {} |
Returning values from functions and methods
(Everything mentioned in this section applies to both functions and methods.)
The return statement explicitly returns a value from a function:
function func() {
return 123;
}
assert.equal(func(), 123);
Another example:
function boolToYesNo(bool) {
if (bool) {
return 'Yes';
} else {
return 'No';
}
}
assert.equal(boolToYesNo(true), 'Yes');
assert.equal(boolToYesNo(false), 'No');
If, at the end of a function, you haven’t returned anything explicitly, JavaScript returns undefined for you:
function noReturn() {
// No explicit return
}
assert.equal(noReturn(), undefined);
Parameter handling
Once again, I am only mentioning functions in this section, but everything also applies to methods.
Terminology: parameters vs. arguments
The term parameter and the term argument basically mean the same thing. If you want to, you can make the following distinction:
Parameters are part of a function definition. They are also called formal parameters and formal arguments.
Arguments are part of a function call. They are also called actual parameters and actual arguments.
Terminology: callback
A callback or callback function is a function that is an argument of a function or method call.
The following is an example of a callback:
const myArray = ['a', 'b'];
const callback = (x) => console.log(x);
myArray.forEach(callback);
// Output:
// 'a'
// 'b'
Too many or not enough arguments
JavaScript does not complain if a function call provides a different number of arguments than expected by the function definition:
For example:
function foo(x, y) {
return [x, y];
}
// Too many arguments:
assert.deepEqual(foo('a', 'b', 'c'), ['a', 'b']);
// The expected number of arguments:
assert.deepEqual(foo('a', 'b'), ['a', 'b']);
// Not enough arguments:
assert.deepEqual(foo('a'), ['a', undefined]);
Parameter default values
Parameter default values specify the value to use if a parameter has not been provided – for example:
function f(x, y=0) {
return [x, y];
}
assert.deepEqual(f(1), [1, 0]);
assert.deepEqual(f(), [undefined, 0]);
undefined also triggers the default value:
assert.deepEqual(
f(undefined, undefined),
[undefined, 0]);
Rest parameters
A rest parameter is declared by prefixing an identifier with three dots (...). During a function or method call, it receives an Array with all remaining arguments. If there are no extra arguments at the end, it is an empty Array – for example:
function f(x, ...y) {
return [x, y];
}
assert.deepEqual(
f('a', 'b', 'c'), ['a', ['b', 'c']]
);
assert.deepEqual(
f(), [undefined, []]
);
There are two restrictions related to how we can use rest parameters:
We cannot use more than one rest parameter per function definition.
assert.throws(
() => eval('function f(...x, ...y) {}'),
/^SyntaxError: Rest parameter must be last formal parameter$/
);
A rest parameter must always come last. As a consequence, we can’t access the last parameter like this:
assert.throws(
() => eval('function f(...restParams, lastParam) {}'),
/^SyntaxError: Rest parameter must be last formal parameter$/
);
Enforcing a certain number of arguments via a rest parameter
You can use a rest parameter to enforce a certain number of arguments. Take, for example, the following function:
function createPoint(x, y) {
return {x, y};
// same as {x: x, y: y}
}
This is how we force callers to always provide two arguments:
function createPoint(...args) {
if (args.length !== 2) {
throw new Error('Please provide exactly 2 arguments!');
}
const [x, y] = args; // (A)
return {x, y};
}
In line A, we access the elements of args via destructuring.
Named parameters
When someone calls a function, the arguments provided by the caller are assigned to the parameters received by the callee. Two common ways of performing the mapping are:
Positional parameters: An argument is assigned to a parameter if they have the same position. A function call with only positional arguments looks as follows.
selectEntries(3, 20, 2)
Named parameters: An argument is assigned to a parameter if they have the same name. JavaScript doesn’t have named parameters, but you can simulate them. For example, this is a function call with only (simulated) named arguments:
selectEntries({start: 3, end: 20, step: 2})
Named parameters have several benefits:
They lead to more self-explanatory code because each argument has a descriptive label. Just compare the two versions of selectEntries(): with the second one, it is much easier to see what happens.
The order of the arguments doesn’t matter (as long as the names are correct).
Handling more than one optional parameter is more convenient: callers can easily provide any subset of all optional parameters and don’t have to be aware of the ones they omit (with positional parameters, you have to fill in preceding optional parameters, with undefined).
Simulating named parameters
JavaScript doesn’t have real named parameters. The official way of simulating them is via object literals:
function selectEntries({start=0, end=-1, step=1}) {
return {start, end, step};
}
This function uses destructuring to access the properties of its single parameter. The pattern it uses is an abbreviation for the following pattern:
{start: start=0, end: end=-1, step: step=1}
This destructuring pattern works for empty object literals:
> selectEntries({})
{ start: 0, end: -1, step: 1 }
But it does not work if you call the function without any parameters:
> selectEntries()
TypeError: Cannot read properties of undefined (reading 'start')
You can fix this by providing a default value for the whole pattern. This default value works the same as default values for simpler parameter definitions: if the parameter is missing, the default is used.
function selectEntries({start=0, end=-1, step=1} = {}) {
return {start, end, step};
}
assert.deepEqual(
selectEntries(),
{ start: 0, end: -1, step: 1 });
Spreading (...) into function calls
If you put three dots (...) in front of the argument of a function call, then you spread it. That means that the argument must be an iterable object and the iterated values all become arguments. In other words, a single argument is expanded into multiple arguments – for example:
function func(x, y) {
console.log(x);
console.log(y);
}
const someIterable = ['a', 'b'];
func(...someIterable);
// same as func('a', 'b')
// Output:
// 'a'
// 'b'
Spreading and rest parameters use the same syntax (...), but they serve opposite purposes:
Example: spreading into Math.max()
Math.max() returns the largest one of its zero or more arguments. Alas, it can’t be used for Arrays, but spreading gives us a way out:
> Math.max(-1, 5, 11, 3)
11
> Math.max(...[-1, 5, 11, 3])
11
> Math.max(-1, ...[-5, 11], 3)
11
Example: spreading into Array.prototype.push()
Similarly, the Array method .push() destructively adds its zero or more parameters to the end of its Array. JavaScript has no method for destructively appending an Array to another one. Once again, we are saved by spreading:
const arr1 = ['a', 'b'];
const arr2 = ['c', 'd'];
arr1.push(...arr2);
assert.deepEqual(arr1, ['a', 'b', 'c', 'd']);
Exercises: Parameter handling
Methods of functions: .call(), .apply(), .bind()
Functions are objects and have methods. In this section, we look at three of those methods: .call(), .apply(), and .bind().
The function method .call()
Each function someFunc has the following method:
someFunc.call(thisValue, arg1, arg2, arg3);
This method invocation is loosely equivalent to the following function call:
someFunc(arg1, arg2, arg3);
However, with .call(), we can also specify a value for the implicit parameter this. In other words: .call() makes the implicit parameter this explicit.
The following code demonstrates the use of .call():
function func(x, y) {
return [this, x, y];
}
assert.deepEqual(
func.call('hello', 'a', 'b'),
['hello', 'a', 'b']);
As we have seen before, if we function-call an ordinary function, its this is undefined:
assert.deepEqual(
func('a', 'b'),
[undefined, 'a', 'b']);
Therefore, the previous function call is equivalent to:
assert.deepEqual(
func.call(undefined, 'a', 'b'),
[undefined, 'a', 'b']);
In arrow functions, the value for this provided via .call() (or other means) is ignored.
The function method .apply()
Each function someFunc has the following method:
someFunc.apply(thisValue, [arg1, arg2, arg3]);
This method invocation is loosely equivalent to the following function call (which uses spreading):
someFunc(...[arg1, arg2, arg3]);
However, with .apply(), we can also specify a value for the implicit parameter this.
The following code demonstrates the use of .apply():
function func(x, y) {
return [this, x, y];
}
const args = ['a', 'b'];
assert.deepEqual(
func.apply('hello', args),
['hello', 'a', 'b']);
The function method .bind()
.bind() is another method of function objects. This method is invoked as follows:
const boundFunc = someFunc.bind(thisValue, arg1, arg2);
.bind() returns a new function boundFunc(). Calling that function invokes someFunc() with this set to thisValue and these parameters: arg1, arg2, followed by the parameters of boundFunc().
That is, the following two function calls are equivalent:
boundFunc('a', 'b')
someFunc.call(thisValue, arg1, arg2, 'a', 'b')
An alternative to .bind()
Another way of pre-filling this and parameters is via an arrow function:
const boundFunc2 = (...args) =>
someFunc.call(thisValue, arg1, arg2, ...args);
An implementation of .bind()
Considering the previous section, .bind() can be implemented as a real function as follows:
function bind(func, thisValue, ...boundArgs) {
return (...args) =>
func.call(thisValue, ...boundArgs, ...args);
}
Example: binding a real function
Using .bind() for real functions is somewhat unintuitive because we have to provide a value for this. Given that it is undefined during function calls, it is usually set to undefined or null.
In the following example, we create add8(), a function that has one parameter, by binding the first parameter of add() to 8.
function add(x, y) {
return x + y;
}
const add8 = add.bind(undefined, 8);
assert.equal(add8(1), 9);
Quiz
See quiz app.
Evaluating code dynamically: eval(), new Function() (advanced)
In this chapter, we’ll look at two ways of evaluating code dynamically: eval() and new Function().
eval()
Given a string str with JavaScript code, eval(str) evaluates that code and returns the result:
> eval('2 ** 4')
16
There are two ways of invoking eval():
“Not via a function call” means “anything that looks different than eval(···)”:
The following code illustrates the difference:
globalThis.myVariable = 'global';
function func() {
const myVariable = 'local';
// Direct eval
assert.equal(eval('myVariable'), 'local');
// Indirect eval
assert.equal(eval.call(undefined, 'myVariable'), 'global');
}
Evaluating code in global context is safer because the code has access to fewer internals.
new Function()
new Function() creates a function object and is invoked as follows:
const func = new Function('«param_1»', ···, '«param_n»', '«func_body»');
The previous statement is equivalent to the next statement. Note that «param_1», etc., are not inside string literals, anymore.
const func = function («param_1», ···, «param_n») {
«func_body»
};
In the next example, we create the same function twice, first via new Function(), then via a function expression:
const times1 = new Function('a', 'b', 'return a * b');
const times2 = function (a, b) { return a * b };
new Function() creates non-strict mode functions
By default, functions created via new Function() are sloppy. If we want the function body to be in strict mode, we have to switch it on manually.
Recommendations
Avoid dynamic evaluation of code as much as you can:
Very often, JavaScript is dynamic enough so that you don’t need eval() or similar. In the following example, what we are doing with eval() (line A) can be achieved just as well without it (line B).
const obj = {a: 1, b: 2};
const propKey = 'b';
assert.equal(eval('obj.' + propKey), 2); // (A)
assert.equal(obj[propKey], 2); // (B)
If you have to dynamically evaluate code:
Modules
Cheat sheet: modules
Exporting
// Named exports
export function f() {}
export const one = 1;
export {foo, b as bar};
// Default exports
export default function f() {} // declaration with optional name
// Replacement for `const` (there must be exactly one value)
export default 123;
// Re-exporting from another module
export {foo, b as bar} from './some-module.mjs';
export * from './some-module.mjs';
export * as ns from './some-module.mjs'; // ES2020
Importing
// Named imports
import {foo, bar as b} from './some-module.mjs';
// Namespace import
import * as someModule from './some-module.mjs';
// Default import
import someModule from './some-module.mjs';
// Combinations:
import someModule, * as someModule from './some-module.mjs';
import someModule, {foo, bar as b} from './some-module.mjs';
// Empty import (for modules with side effects)
import './some-module.mjs';
JavaScript source code formats
The current landscape of JavaScript modules is quite diverse: ES6 brought built-in modules, but the source code formats that came before them, are still around, too. Understanding the latter helps understand the former, so let’s investigate. The next sections describe the following ways of delivering JavaScript source code:
Tbl. 18 gives an overview of these code formats. Note that for CommonJS modules and ECMAScript modules, two filename extensions are commonly used. Which one is appropriate depends on how we want to use a file. Details are given later in this chapter.
Runs on | Loaded | Filename ext. | |
---|---|---|---|
Script | browsers | async | .js |
CommonJS module | servers | sync | .js .cjs |
AMD module | browsers | async | .js |
ECMAScript module | browsers and servers | async | .js .mjs |
Code before built-in modules was written in ECMAScript 5
Before we get to built-in modules (which were introduced with ES6), all code that we’ll see, will be written in ES5. Among other things:
Before we had modules, we had scripts
Initially, browsers only had scripts – pieces of code that were executed in global scope. As an example, consider an HTML file that loads script files via the following HTML:
<script src="other-module1.js"></script>
<script src="other-module2.js"></script>
<script src="my-module.js"></script>
The main file is my-module.js, where we simulate a module:
var myModule = (function () { // Open IIFE
// Imports (via global variables)
var importedFunc1 = otherModule1.importedFunc1;
var importedFunc2 = otherModule2.importedFunc2;
// Body
function internalFunc() {
// ···
}
function exportedFunc() {
importedFunc1();
importedFunc2();
internalFunc();
}
// Exports (assigned to global variable `myModule`)
return {
exportedFunc: exportedFunc,
};
})(); // Close IIFE
myModule is a global variable that is assigned the result of immediately invoking a function expression. The function expression starts in the first line. It is invoked in the last line.
This way of wrapping a code fragment is called immediately invoked function expression (IIFE, coined by Ben Alman). What do we gain from an IIFE? var is not block-scoped (like const and let), it is function-scoped: the only way to create new scopes for var-declared variables is via functions or methods (with const and let, we can use either functions, methods, or blocks {}). Therefore, the IIFE in the example hides all of the following variables from global scope and minimizes name clashes: importedFunc1, importedFunc2, internalFunc, exportedFunc.
Note that we are using an IIFE in a particular manner: at the end, we pick what we want to export and return it via an object literal. That is called the revealing module pattern (coined by Christian Heilmann).
This way of simulating modules, has several issues:
Module systems created prior to ES6
Prior to ECMAScript 6, JavaScript did not have built-in modules. Therefore, the flexible syntax of the language was used to implement custom module systems within the language. Two popular ones are:
Server side: CommonJS modules
The original CommonJS standard for modules was created for server and desktop platforms. It was the foundation of the original Node.js module system, where it achieved enormous popularity. Contributing to that popularity were the npm package manager for Node and tools that enabled using Node modules on the client side (browserify, webpack, and others).
From now on, CommonJS module means the Node.js version of this standard (which has a few additional features). This is an example of a CommonJS module:
// Imports
var importedFunc1 = require('./other-module1.js').importedFunc1;
var importedFunc2 = require('./other-module2.js').importedFunc2;
// Body
function internalFunc() {
// ···
}
function exportedFunc() {
importedFunc1();
importedFunc2();
internalFunc();
}
// Exports
module.exports = {
exportedFunc: exportedFunc,
};
CommonJS can be characterized as follows:
Client side: AMD (Asynchronous Module Definition) modules
The AMD module format was created to be easier to use in browsers than the CommonJS format. Its most popular implementation is RequireJS. The following is an example of an AMD module.
define(['./other-module1.js', './other-module2.js'],
function (otherModule1, otherModule2) {
var importedFunc1 = otherModule1.importedFunc1;
var importedFunc2 = otherModule2.importedFunc2;
function internalFunc() {
// ···
}
function exportedFunc() {
importedFunc1();
importedFunc2();
internalFunc();
}
return {
exportedFunc: exportedFunc,
};
});
AMD can be characterized as follows:
On the plus side, AMD modules can be executed directly. In contrast, CommonJS modules must either be compiled before deployment or custom source code must be generated and evaluated dynamically (think eval()). That isn’t always permitted on the web.
Characteristics of JavaScript modules
Looking at CommonJS and AMD, similarities between JavaScript module systems emerge:
ECMAScript modules
ECMAScript modules (ES modules or ESM) were introduced with ES6. They continue the tradition of JavaScript modules and have all of their aforementioned characteristics. Additionally:
ES modules also have new benefits:
This is an example of ES module syntax:
import {importedFunc1} from './other-module1.mjs';
import {importedFunc2} from './other-module2.mjs';
function internalFunc() {
···
}
export function exportedFunc() {
importedFunc1();
importedFunc2();
internalFunc();
}
From now on, “module” means “ECMAScript module”.
ES modules: syntax, semantics, loader API
The full standard of ES modules comprises the following parts:
Parts 1 and 2 were introduced with ES6. Work on part 3 is ongoing.
Named exports and imports
Named exports
Each module can have zero or more named exports.
As an example, consider the following two files:
lib/my-math.mjs
main.mjs
Module my-math.mjs has two named exports: square and LIGHTSPEED.
// Not exported, private to module
function times(a, b) {
return a * b;
}
export function square(x) {
return times(x, x);
}
export const LIGHTSPEED = 299792458;
To export something, we put the keyword export in front of a declaration. Entities that are not exported are private to a module and can’t be accessed from outside.
Named imports
Module main.mjs has a single named import, square:
import {square} from './lib/my-math.mjs';
assert.equal(square(3), 9);
It can also rename its import:
import {square as sq} from './lib/my-math.mjs';
assert.equal(sq(3), 9);
Syntactic pitfall: named importing is not destructuring
Both named importing and destructuring look similar:
import {foo} from './bar.mjs'; // import
const {foo} = require('./bar.mjs'); // destructuring
But they are quite different:
Imports remain connected with their exports.
We can destructure again inside a destructuring pattern, but the {} in an import statement can’t be nested.
The syntax for renaming is different:
import {foo as f} from './bar.mjs'; // importing
const {foo: f} = require('./bar.mjs'); // destructuring
Rationale: Destructuring is reminiscent of an object literal (including nesting), while importing evokes the idea of renaming.
Exercise: Named exports
exercises/modules/export_named_test.mjs
Namespace imports
Namespace imports are an alternative to named imports. If we namespace-import a module, it becomes an object whose properties are the named exports. This is what main.mjs looks like if we use a namespace import:
import * as myMath from './lib/my-math.mjs';
assert.equal(myMath.square(3), 9);
assert.deepEqual(
Object.keys(myMath), ['LIGHTSPEED', 'square']);
Named exporting styles: inline versus clause (advanced)
The named export style we have seen so far was inline: We exported entities by prefixing them with the keyword export.
But we can also use separate export clauses. For example, this is what lib/my-math.mjs looks like with an export clause:
function times(a, b) {
return a * b;
}
function square(x) {
return times(x, x);
}
const LIGHTSPEED = 299792458;
export { square, LIGHTSPEED }; // semicolon!
With an export clause, we can rename before exporting and use different names internally:
function times(a, b) {
return a * b;
}
function sq(x) {
return times(x, x);
}
const LS = 299792458;
export {
sq as square,
LS as LIGHTSPEED, // trailing comma is optional
};
Default exports and imports
Each module can have at most one default export. The idea is that the module is the default-exported value.
Avoid mixing named exports and default exports
A module can have both named exports and a default export, but it’s usually better to stick to one export style per module.
As an example for default exports, consider the following two files:
my-func.mjs
main.mjs
Module my-func.mjs has a default export:
const GREETING = 'Hello!';
export default function () {
return GREETING;
}
Module main.mjs default-imports the exported function:
import myFunc from './my-func.mjs';
assert.equal(myFunc(), 'Hello!');
Note the syntactic difference: the curly braces around named imports indicate that we are reaching into the module, while a default import is the module.
What are use cases for default exports?
The most common use case for a default export is a module that contains a single function or a single class.
The two styles of default-exporting
There are two styles of doing default exports.
First, we can label existing declarations with export default:
export default function myFunc() {} // no semicolon!
export default class MyClass {} // no semicolon!
Second, we can directly default-export values. This style of export default is much like a declaration.
export default myFunc; // defined elsewhere
export default MyClass; // defined previously
export default Math.sqrt(2); // result of invocation is default-exported
export default 'abc' + 'def';
export default { no: false, yes: true };
Why are there two default export styles?
The reason is that export default can’t be used to label const: const may define multiple values, but export default needs exactly one value. Consider the following hypothetical code:
// Not legal JavaScript!
export default const foo = 1, bar = 2, baz = 3;
With this code, we don’t know which one of the three values is the default export.
Exercise: Default exports
exercises/modules/export_default_test.mjs
The default export as a named export (advanced)
Internally, a default export is simply a named export whose name is default. As an example, consider the previous module my-func.mjs with a default export:
const GREETING = 'Hello!';
export default function () {
return GREETING;
}
The following module my-func2.mjs is equivalent to that module:
const GREETING = 'Hello!';
function greet() {
return GREETING;
}
export {
greet as default,
};
For importing, we can use a normal default import:
import myFunc from './my-func2.mjs';
assert.equal(myFunc(), 'Hello!');
Or we can use a named import:
import {default as myFunc} from './my-func2.mjs';
assert.equal(myFunc(), 'Hello!');
The default export is also available via property .default of namespace imports:
import * as mf from './my-func2.mjs';
assert.equal(mf.default(), 'Hello!');
Isn’t default illegal as a variable name?
default can’t be a variable name, but it can be an export name and it can be a property name:
const obj = {
default: 123,
};
assert.equal(obj.default, 123);
More details on exporting and importing
Imports are read-only views on exports
So far, we have used imports and exports intuitively, and everything seems to have worked as expected. But now it is time to take a closer look at how imports and exports are really related.
Consider the following two modules:
counter.mjs
main.mjs
counter.mjs exports a (mutable!) variable and a function:
export let counter = 3;
export function incCounter() {
counter++;
}
main.mjs name-imports both exports. When we use incCounter(), we discover that the connection to counter is live – we can always access the live state of that variable:
import { counter, incCounter } from './counter.mjs';
// The imported value `counter` is live
assert.equal(counter, 3);
incCounter();
assert.equal(counter, 4);
Note that while the connection is live and we can read counter, we cannot change this variable (e.g., via counter++).
There are two benefits to handling imports this way:
ESM’s transparent support for cyclic imports (advanced)
ESM supports cyclic imports transparently. To understand how that is achieved, consider the following example: fig. 7 shows a directed graph of modules importing other modules. P importing M is the cycle in this case.
Figure 7: A directed graph of modules importing modules: M imports N and O, N imports P and Q, etc.
After parsing, these modules are set up in two phases:
This approach handles cyclic imports correctly, due to two features of ES modules:
Due to the static structure of ES modules, the exports are already known after parsing. That makes it possible to instantiate P before its child M: P can already look up M’s exports.
When P is evaluated, M hasn’t been evaluated, yet. However, entities in P can already mention imports from M. They just can’t use them, yet, because the imported values are filled in later. For example, a function in P can access an import from M. The only limitation is that we must wait until after the evaluation of M, before calling that function.
Imports being filled in later is enabled by them being “live immutable views” on exports.
npm packages
The npm software registry is the dominant way of distributing JavaScript libraries and apps for Node.js and web browsers. It is managed via the npm package manager (short: npm). Software is distributed as so-called packages. A package is a directory containing arbitrary files and a file package.json at the top level that describes the package. For example, when npm creates an empty package inside a directory my-package/, we get this package.json:
{
"name": "my-package",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"keywords": [],
"author": "",
"license": "ISC"
}
Some of these properties contain simple metadata:
Other properties enable advanced configuration:
For more information on package.json, consult the npm documentation.
Packages are installed inside a directory node_modules/
npm always installs packages inside a directory node_modules. There are usually many of these directories. Which one npm uses, depends on the directory where one currently is. For example, if we are inside a directory /tmp/a/b/, npm tries to find a node_modules in the current directory, its parent directory, the parent directory of the parent, etc. In other words, it searches the following chain of locations:
When installing a package some-pkg, npm uses the closest node_modules. If, for example, we are inside /tmp/a/b/ and there is a node_modules in that directory, then npm puts the package inside the directory:
/tmp/a/b/node_modules/some-pkg/
When importing a module, we can use a special module specifier to tell Node.js that we want to import it from an installed package. How exactly that works, is explained later. For now, consider the following example:
// /home/jane/proj/main.mjs
import * as theModule from 'the-package/the-module.mjs';
To find the-module.mjs (Node.js prefers the filename extension .mjs for ES modules), Node.js walks up the node_module chain and searches the following locations:
Why can npm be used to install frontend libraries?
Finding installed modules in node_modules directories is only supported on Node.js. So why can we also use npm to install libraries for browsers?
That is enabled via bundling tools, such as webpack, that compile and optimize code before it is deployed online. During this compilation process, the code in npm packages is adapted so that it works in browsers.
Naming modules
There are no established best practices for naming module files and the variables they are imported into.
In this chapter, I’m using the following naming style:
The names of module files are dash-cased and start with lowercase letters:
./my-module.mjs
./some-func.mjs
The names of namespace imports are lowercased and camel-cased:
import * as myModule from './my-module.mjs';
The names of default imports are lowercased and camel-cased:
import someFunc from './some-func.mjs';
What are the rationales behind this style?
npm doesn’t allow uppercase letters in package names (source). Thus, we avoid camel case, so that “local” files have names that are consistent with those of npm packages. Using only lowercase letters also minimizes conflicts between file systems that are case-sensitive and file systems that aren’t: the former distinguish files whose names have the same letters, but with different cases; the latter don’t.
There are clear rules for translating dash-cased file names to camel-cased JavaScript variable names. Due to how we name namespace imports, these rules work for both namespace imports and default imports.
I also like underscore-cased module file names because we can directly use these names for namespace imports (without any translation):
import * as my_module from './my_module.mjs';
But that style does not work for default imports: I like underscore-casing for namespace objects, but it is not a good choice for functions, etc.
Module specifiers
Module specifiers are the strings that identify modules. They work slightly differently in browsers and Node.js. Before we can look at the differences, we need to learn about the different categories of module specifiers.
Categories of module specifiers
In ES modules, we distinguish the following categories of specifiers. These categories originated with CommonJS modules.
Relative path: starts with a dot. Examples:
'./some/other/module.mjs'
'../../lib/counter.mjs'
Absolute path: starts with a slash. Example:
'/home/jane/file-tools.mjs'
URL: includes a protocol (technically, paths are URLs, too). Examples:
'https://example.com/some-module.mjs'
'file:///home/john/tmp/main.mjs'
Bare path: does not start with a dot, a slash or a protocol, and consists of a single filename without an extension. Examples:
'lodash'
'the-package'
Deep import path: starts with a bare path and has at least one slash. Example:
'the-package/dist/the-module.mjs'
ES module specifiers in browsers
Browsers handle module specifiers as follows:
Note that bundling tools such as webpack, which combine modules into fewer files, are often less strict with specifiers than browsers. That’s because they operate at build/compile time (not at runtime) and can search for files by traversing the file system.
ES module specifiers on Node.js
Node.js handles module specifiers as follows:
Relative paths are resolved as they are in web browsers – relative to the path of the current module.
Absolute paths are currently not supported. As a workaround, we can use URLs that start with file:///. We can create such URLs via url.pathToFileURL().
Only file: is supported as a protocol for URL specifiers.
A bare path is interpreted as a package name and resolved relative to the closest node_modules directory. What module should be loaded, is determined by looking at property "main" of the package’s package.json (similarly to CommonJS).
Deep import paths are also resolved relatively to the closest node_modules directory. They contain file names, so it is always clear which module is meant.
All specifiers, except bare paths, must refer to actual files. That is, ESM does not support the following CommonJS features:
CommonJS automatically adds missing filename extensions.
CommonJS can import a directory dir if there is a dir/package.json with a "main" property.
CommonJS can import a directory dir if there is a module dir/index.js.
All built-in Node.js modules are available via bare paths and have named ESM exports – for example:
import * as assert from 'assert/strict';
import * as path from 'path';
assert.equal(
path.join('a/b/c', '../d'), 'a/b/d');
Filename extensions on Node.js
Node.js supports the following default filename extensions:
The filename extension .js stands for either ESM or CommonJS. Which one it is is configured via the “closest” package.json (in the current directory, the parent directory, etc.). Using package.json in this manner is independent of packages.
In that package.json, there is a property "type", which has two settings:
"commonjs" (the default): files with the extension .js or without an extension are interpreted as CommonJS modules.
"module": files with the extension .js or without an extension are interpreted as ESM modules.
Interpreting non-file source code as either CommonJS or ESM
Not all source code executed by Node.js comes from files. We can also send it code via stdin, --eval, and --print. The command line option --input-type lets us specify how such code is interpreted:
import.meta – metadata for the current module [ES2020]
The object import.meta holds metadata for the current module.
import.meta.url
The most important property of import.meta is .url which contains a string with the URL of the current module’s file – for example:
'https://example.com/code/main.mjs'
import.meta.url and class URL
Class URL is available via a global variable in browsers and on Node.js. We can look up its full functionality in the Node.js documentation. When working with import.meta.url, its constructor is especially useful:
new URL(input: string, base?: string|URL)
Parameter input contains the URL to be parsed. It can be relative if the second parameter, base, is provided.
In other words, this constructor lets us resolve a relative path against a base URL:
> new URL('other.mjs', 'https://example.com/code/main.mjs').href
'https://example.com/code/other.mjs'
> new URL('../other.mjs', 'https://example.com/code/main.mjs').href
'https://example.com/other.mjs'
This is how we get a URL instance that points to a file data.txt that sits next to the current module:
const urlOfData = new URL('data.txt', import.meta.url);
import.meta.url on Node.js
On Node.js, import.meta.url is always a string with a file: URL – for example:
'file:///Users/rauschma/my-module.mjs'
Example: reading a sibling file of a module
Many Node.js file system operations accept either strings with paths or instances of URL. That enables us to read a sibling file data.txt of the current module:
import * as fs from 'fs';
function readData() {
// data.txt sits next to current module
const urlOfData = new URL('data.txt', import.meta.url);
return fs.readFileSync(urlOfData, {encoding: 'UTF-8'});
}
Module fs and URLs
For most functions of the module fs, we can refer to files via:
For more information on this topic, see the Node.js API documentation.
Converting between file: URLs and paths
The Node.js module url has two functions for converting between file: URLs and paths:
If we need a path that can be used in the local file system, then property .pathname of URL instances does not always work:
assert.equal(
new URL('file:///tmp/with%20space.txt').pathname,
'/tmp/with%20space.txt');
Therefore, it is better to use fileURLToPath():
import * as url from 'url';
assert.equal(
url.fileURLToPath('file:///tmp/with%20space.txt'),
'/tmp/with space.txt'); // result on Unix
Similarly, pathToFileURL() does more than just prepend 'file://' to an absolute path.
Loading modules dynamically via import() [ES2020] (advanced)
The import() operator uses Promises
Promises are a technique for handling results that are computed asynchronously (i.e., not immediately). They are explained in [content not included]. It may make sense to postpone reading this section until you understand them.
The limitations of static import statements
So far, the only way to import a module has been via an import statement. That statement has several limitations:
Dynamic imports via the import() operator
The import() operator doesn’t have the limitations of import statements. It looks like this:
import(moduleSpecifierStr)
.then((namespaceObject) => {
console.log(namespaceObject.namedExport);
});
This operator is used like a function, receives a string with a module specifier and returns a Promise that resolves to a namespace object. The properties of that object are the exports of the imported module.
import() is even more convenient to use via await:
const namespaceObject = await import(moduleSpecifierStr);
console.log(namespaceObject.namedExport);
Note that await can be used at the top levels of modules (see next section).
Let’s look at an example of using import().
Example: loading a module dynamically
Consider the following files:
lib/my-math.mjs
main1.mjs
main2.mjs
We have already seen module my-math.mjs:
// Not exported, private to module
function times(a, b) {
return a * b;
}
export function square(x) {
return times(x, x);
}
export const LIGHTSPEED = 299792458;
We can use import() to load this module on demand:
// main1.mjs
const moduleSpecifier = './lib/my-math.mjs';
function mathOnDemand() {
return import(moduleSpecifier)
.then(myMath => {
const result = myMath.LIGHTSPEED;
assert.equal(result, 299792458);
return result;
});
}
mathOnDemand()
.then((result) => {
assert.equal(result, 299792458);
});
Two things in this code can’t be done with import statements:
Next, we’ll implement the same functionality as in main1.mjs but via a feature called async function or async/await which provides nicer syntax for Promises.
// main2.mjs
const moduleSpecifier = './lib/my-math.mjs';
async function mathOnDemand() {
const myMath = await import(moduleSpecifier);
const result = myMath.LIGHTSPEED;
assert.equal(result, 299792458);
return result;
}
Why is import() an operator and not a function?
import() looks like a function but couldn’t be implemented as a function:
Use cases for import()
Loading code on demand
Some functionality of web apps doesn’t have to be present when they start, it can be loaded on demand. Then import() helps because we can put such functionality into modules – for example:
button.addEventListener('click', event => {
import('./dialogBox.mjs')
.then(dialogBox => {
dialogBox.open();
})
.catch(error => {
/* Error handling */
})
});
Conditional loading of modules
We may want to load a module depending on whether a condition is true. For example, a module with a polyfill that makes a new feature available on legacy platforms:
if (isLegacyPlatform()) {
import('./my-polyfill.mjs')
.then(···);
}
Computed module specifiers
For applications such as internationalization, it helps if we can dynamically compute module specifiers:
import(`messages_${getLocale()}.mjs`)
.then(···);
Top-level await in modules [ES2022] (advanced)
await is a feature of async functions
await is explained in [content not included]. It may make sense to postpone reading this section until you understand async functions.
We can use the await operator at the top level of a module. If we do that, the module becomes asynchronous and works differently. Thankfully, we don’t usually see that as programmers because it is handled transparently by the language.
Use cases for top-level await
Why would we want to use the await operator at the top level of a module? It lets us initialize a module with asynchronously loaded data. The next three subsections show three examples of where that is useful.
Loading modules dynamically
const params = new URLSearchParams(location.search);
const language = params.get('lang');
const messages = await import(`./messages-${language}.mjs`); // (A)
console.log(messages.welcome);
In line A, we dynamically import a module. Thanks to top-level await, that is almost as convenient as using a normal, static import.
Using a fallback if module loading fails
let lodash;
try {
lodash = await import('https://primary.example.com/lodash');
} catch {
lodash = await import('https://secondary.example.com/lodash');
}
Using whichever resource loads fastest
const resource = await Promise.any([
fetch('http://example.com/first.txt')
.then(response => response.text()),
fetch('http://example.com/second.txt')
.then(response => response.text()),
]);
Due to Promise.any(), variable resource is initialized via whichever download finishes first.
How does top-level await work under the hood?
Consider the following two files.
first.mjs:
const response = await fetch('http://example.com/first.txt');
export const first = await response.text();
main.mjs:
import {first} from './first.mjs';
import {second} from './second.mjs';
assert.equal(first, 'First!');
assert.equal(second, 'Second!');
Both are roughly equivalent to the following code:
first.mjs:
export let first;
export const promise = (async () => { // (A)
const response = await fetch('http://example.com/first.txt');
first = await response.text();
})();
main.mjs:
import {promise as firstPromise, first} from './first.mjs';
import {promise as secondPromise, second} from './second.mjs';
export const promise = (async () => { // (B)
await Promise.all([firstPromise, secondPromise]); // (C)
assert.equal(first, 'First content!');
assert.equal(second, 'Second content!');
})();
A module becomes asynchronous if:
Each asynchronous module exports a Promise (line A and line B) that is fulfilled after its body was executed. At that point, it is safe to access the exports of that module.
In case (2), the importing module waits until the Promises of all imported asynchronous modules are fulfilled, before it enters its body (line C). Synchronous modules are handled as usually.
Awaited rejections and synchronous exceptions are managed as in async functions.
The pros and cons of top-level await
The two most important benefits of top-level await are:
On the downside, top-level await delays the initialization of importing modules. Therefore, it‘s best used sparingly. Asynchronous tasks that take longer are better performed later, on demand.
However, even modules without top-level await can block importers (e.g. via an infinite loop at the top level), so blocking per se is not an argument against it.
Polyfills: emulating native web platform features (advanced)
Backends have polyfills, too
This section is about frontend development and web browsers, but similar ideas apply to backend development.
Polyfills help with a conflict that we are facing when developing a web application in JavaScript:
Given a web platform feature X:
Every time our web applications starts, it must first execute all polyfills for features that may not be available everywhere. Afterwards, we can be sure that those features are available natively.
Sources of this section
Quiz
See quiz app.
Objects
In this book, JavaScript’s style of object-oriented programming (OOP) is introduced in four steps. This chapter covers step 1 and 2; the next chapter covers step 3 and 4. The steps are (fig. 8):
Figure 8: This book introduces object-oriented programming in JavaScript in four steps.
Cheat sheet: objects
Single objects
Creating an object via an object literal (starts and ends with a curly brace):
const myObject = { // object literal
myProperty: 1,
myMethod() {
return 2;
}, // comma!
get myAccessor() {
return this.myProperty;
}, // comma!
set myAccessor(value) {
this.myProperty = value;
}, // last comma is optional
};
assert.equal(
myObject.myProperty, 1
);
assert.equal(
myObject.myMethod(), 2
);
assert.equal(
myObject.myAccessor, 1
);
myObject.myAccessor = 3;
assert.equal(
myObject.myProperty, 3
);
Being able to create objects directly (without classes) is one of the highlights of JavaScript.
Spreading into objects:
const original = {
a: 1,
b: {
c: 3,
},
};
// Spreading (...) copies one object “into” another one:
const modifiedCopy = {
...original, // spreading
d: 4,
};
assert.deepEqual(
modifiedCopy,
{
a: 1,
b: {
c: 3,
},
d: 4,
}
);
// Caveat: spreading copies shallowly (property values are shared)
modifiedCopy.a = 5; // does not affect `original`
modifiedCopy.b.c = 6; // affects `original`
assert.deepEqual(
original,
{
a: 1, // unchanged
b: {
c: 6, // changed
},
},
);
We can also use spreading to make an unmodified (shallow) copy of an object:
const exactCopy = {...obj};
Prototype chains
Prototypes are JavaScript’s fundamental inheritance mechanism. Even classes are based on it. Each object has null or an object as its prototype. The latter object can also have a prototype, etc. In general, we get chains of prototypes.
Prototypes are managed like this:
// `obj1` has no prototype (its prototype is `null`)
const obj1 = Object.create(null); // (A)
assert.equal(
Object.getPrototypeOf(obj1), null // (B)
);
// `obj2` has the prototype `proto`
const proto = {
protoProp: 'protoProp',
};
const obj2 = {
__proto__: proto, // (C)
objProp: 'objProp',
}
assert.equal(
Object.getPrototypeOf(obj2), proto
);
Notes:
Each object inherits all the properties of its prototype:
// `obj2` inherits .protoProp from `proto`
assert.equal(
obj2.protoProp, 'protoProp'
);
assert.deepEqual(
Reflect.ownKeys(obj2),
['objProp'] // own properties of `obj2`
);
The non-inherited properties of an object are called its own properties.
The most important use case for prototypes is that several objects can share methods by inheriting them from a common prototype.
What is an object?
Objects in JavaScript:
The two ways of using objects
There are two ways of using objects in JavaScript:
Fixed-layout objects: Used this way, objects work like records in databases. They have a fixed number of properties, whose keys are known at development time. Their values generally have different types.
const fixedLayoutObject = {
product: 'carrot',
quantity: 4,
};
Dictionary objects: Used this way, objects work like lookup tables or maps. They have a variable number of properties, whose keys are not known at development time. All of their values have the same type.
const dictionaryObject = {
['one']: 1,
['two']: 2,
};
Note that the two ways can also be mixed: Some objects are both fixed-layout objects and dictionary objects.
The ways of using objects influence how they are explained in this chapter:
Fixed-layout objects
Let’s first explore fixed-layout objects.
Object literals: properties
Object literals are one way of creating fixed-layout objects. They are a stand-out feature of JavaScript: we can directly create objects – no need for classes! This is an example:
const jane = {
first: 'Jane',
last: 'Doe', // optional trailing comma
};
In the example, we created an object via an object literal, which starts and ends with curly braces {}. Inside it, we defined two properties (key-value entries):
Since ES5, trailing commas are allowed in object literals.
We will later see other ways of specifying property keys, but with this way of specifying them, they must follow the rules of JavaScript variable names. For example, we can use first_name as a property key, but not first-name). However, reserved words are allowed:
const obj = {
if: true,
const: true,
};
In order to check the effects of various operations on objects, we’ll occasionally use Object.keys() in this part of the chapter. It lists property keys:
> Object.keys({a:1, b:2})
[ 'a', 'b' ]
Object literals: property value shorthands
Whenever the value of a property is defined via a variable that has the same name as the key, we can omit the key.
function createPoint(x, y) {
return {x, y}; // Same as: {x: x, y: y}
}
assert.deepEqual(
createPoint(9, 2),
{ x: 9, y: 2 }
);
Getting properties
This is how we get (read) a property (line A):
const jane = {
first: 'Jane',
last: 'Doe',
};
// Get property .first
assert.equal(jane.first, 'Jane'); // (A)
Getting an unknown property produces undefined:
assert.equal(jane.unknownProperty, undefined);
Setting properties
This is how we set (write to) a property (line A):
const obj = {
prop: 1,
};
assert.equal(obj.prop, 1);
obj.prop = 2; // (A)
assert.equal(obj.prop, 2);
We just changed an existing property via setting. If we set an unknown property, we create a new entry:
const obj = {}; // empty object
assert.deepEqual(
Object.keys(obj), []);
obj.unknownProperty = 'abc';
assert.deepEqual(
Object.keys(obj), ['unknownProperty']);
Object literals: methods
The following code shows how to create the method .says() via an object literal:
const jane = {
first: 'Jane', // value property
says(text) { // method
return `${this.first} says “${text}”`; // (A)
}, // comma as separator (optional at end)
};
assert.equal(jane.says('hello'), 'Jane says “hello”');
During the method call jane.says('hello'), jane is called the receiver of the method call and assigned to the special variable this (more on this in §28.5 “Methods and the special variable this”). That enables method .says() to access the sibling property .first in line A.
Object literals: accessors
An accessor is defined via syntax inside an object literal that looks like methods: a getter and/or a setter (i.e., each accessor has one or both of them).
Invoking an accessor looks like accessing a value property:
Getters
A getter is created by prefixing a method definition with the modifier get:
const jane = {
first: 'Jane',
last: 'Doe',
get full() {
return `${this.first} ${this.last}`;
},
};
assert.equal(jane.full, 'Jane Doe');
jane.first = 'John';
assert.equal(jane.full, 'John Doe');
Setters
A setter is created by prefixing a method definition with the modifier set:
const jane = {
first: 'Jane',
last: 'Doe',
set full(fullName) {
const parts = fullName.split(' ');
this.first = parts[0];
this.last = parts[1];
},
};
jane.full = 'Richard Roe';
assert.equal(jane.first, 'Richard');
assert.equal(jane.last, 'Roe');
Exercise: Creating an object via an object literal
exercises/objects/color_point_object_test.mjs
Spreading into object literals (...) [ES2018]
Inside an object literal, a spread property adds the properties of another object to the current one:
> const obj = {one: 1, two: 2};
> {...obj, three: 3}
{ one: 1, two: 2, three: 3 }
const obj1 = {one: 1, two: 2};
const obj2 = {three: 3};
assert.deepEqual(
{...obj1, ...obj2, four: 4},
{one: 1, two: 2, three: 3, four: 4}
);
If property keys clash, the property that is mentioned last “wins”:
> const obj = {one: 1, two: 2, three: 3};
> {...obj, one: true}
{ one: true, two: 2, three: 3 }
> {one: true, ...obj}
{ one: 1, two: 2, three: 3 }
All values are spreadable, even undefined and null:
> {...undefined}
{}
> {...null}
{}
> {...123}
{}
> {...'abc'}
{ '0': 'a', '1': 'b', '2': 'c' }
> {...['a', 'b']}
{ '0': 'a', '1': 'b' }
Property .length of strings and Arrays is hidden from this kind of operation (it is not enumerable; see §28.8.1 “Property attributes and property descriptors [ES5]” for more information).
Spreading includes properties whose keys are symbols (which are ignored by Object.keys(), Object.values() and Object.entries()):
const symbolKey = Symbol('symbolKey');
const obj = {
stringKey: 1,
[symbolKey]: 2,
};
assert.deepEqual(
{...obj, anotherStringKey: 3},
{
stringKey: 1,
[symbolKey]: 2,
anotherStringKey: 3,
}
);
Use case for spreading: copying objects
We can use spreading to create a copy of an object original:
const copy = {...original};
Caveat – copying is shallow: copy is a fresh object with duplicates of all properties (key-value entries) of original. But if property values are objects, then those are not copied themselves; they are shared between original and copy. Let’s look at an example:
const original = { a: 1, b: {prop: true} };
const copy = {...original};
The first level of copy is really a copy: If we change any properties at that level, it does not affect the original:
copy.a = 2;
assert.deepEqual(
original, { a: 1, b: {prop: true} }); // no change
However, deeper levels are not copied. For example, the value of .b is shared between original and copy. Changing .b in the copy also changes it in the original.
copy.b.prop = false;
assert.deepEqual(
original, { a: 1, b: {prop: false} });
JavaScript doesn’t have built-in support for deep copying
Deep copies of objects (where all levels are copied) are notoriously difficult to do generically. Therefore, JavaScript does not have a built-in operation for them (for now). If we need such an operation, we have to implement it ourselves.
Use case for spreading: default values for missing properties
If one of the inputs of our code is an object with data, we can make properties optional by specifying default values that are used if those properties are missing. One technique for doing so is via an object whose properties contain the default values. In the following example, that object is DEFAULTS:
const DEFAULTS = {alpha: 'a', beta: 'b'};
const providedData = {alpha: 1};
const allData = {...DEFAULTS, ...providedData};
assert.deepEqual(allData, {alpha: 1, beta: 'b'});
The result, the object allData, is created by copying DEFAULTS and overriding its properties with those of providedData.
But we don’t need an object to specify the default values; we can also specify them inside the object literal, individually:
const providedData = {alpha: 1};
const allData = {alpha: 'a', beta: 'b', ...providedData};
assert.deepEqual(allData, {alpha: 1, beta: 'b'});
Use case for spreading: non-destructively changing properties
So far, we have encountered one way of changing a property .alpha of an object: We set it (line A) and mutate the object. That is, this way of changing a property is destructive.
const obj = {alpha: 'a', beta: 'b'};
obj.alpha = 1; // (A)
assert.deepEqual(obj, {alpha: 1, beta: 'b'});
With spreading, we can change .alpha non-destructively – we make a copy of obj where .alpha has a different value:
const obj = {alpha: 'a', beta: 'b'};
const updatedObj = {...obj, alpha: 1};
assert.deepEqual(updatedObj, {alpha: 1, beta: 'b'});
Exercise: Non-destructively updating a property via spreading (fixed key)
exercises/objects/update_name_test.mjs
“Destructive spreading”: Object.assign() [ES6]
Object.assign() is a tool method:
Object.assign(target, source_1, source_2, ···)
This expression assigns all properties of source_1 to target, then all properties of source_2, etc. At the end, it returns target – for example:
const target = { a: 1 };
const result = Object.assign(
target,
{b: 2},
{c: 3, b: true});
assert.deepEqual(
result, { a: 1, b: true, c: 3 });
// target was modified and returned:
assert.equal(result, target);
The use cases for Object.assign() are similar to those for spread properties. In a way, it spreads destructively.
Methods and the special variable this
Methods are properties whose values are functions
Let’s revisit the example that was used to introduce methods:
const jane = {
first: 'Jane',
says(text) {
return `${this.first} says “${text}”`;
},
};
Somewhat surprisingly, methods are functions:
assert.equal(typeof jane.says, 'function');
Why is that? We learned in the chapter on callable values that ordinary functions play several roles. Method is one of those roles. Therefore, internally, jane roughly looks as follows.
const jane = {
first: 'Jane',
says: function (text) {
return `${this.first} says “${text}”`;
},
};
The special variable this
Consider the following code:
const obj = {
someMethod(x, y) {
assert.equal(this, obj); // (A)
assert.equal(x, 'a');
assert.equal(y, 'b');
}
};
obj.someMethod('a', 'b'); // (B)
In line B, obj is the receiver of a method call. It is passed to the function stored in obj.someMethod via an implicit (hidden) parameter whose name is this (line A).
How to understand this
The best way to understand this is as an implicit parameter of ordinary functions (and therefore methods, too).
Methods and .call()
Methods are functions and functions have methods themselves. One of those methods is .call(). Let’s look at an example to understand how this method works.
In the previous section, there was this method invocation:
obj.someMethod('a', 'b')
This invocation is equivalent to:
obj.someMethod.call(obj, 'a', 'b');
Which is also equivalent to:
const func = obj.someMethod;
func.call(obj, 'a', 'b');
.call() makes the normally implicit parameter this explicit: When invoking a function via .call(), the first parameter is this, followed by the regular (explicit) function parameters.
As an aside, this means that there are actually two different dot operators:
They are different in that (2) is not just (1) followed by the function call operator (). Instead, (2) additionally provides a value for this.
Methods and .bind()
.bind() is another method of function objects. In the following code, we use .bind() to turn method .says() into the stand-alone function func():
const jane = {
first: 'Jane',
says(text) {
return `${this.first} says “${text}”`; // (A)
},
};
const func = jane.says.bind(jane, 'hello');
assert.equal(func(), 'Jane says “hello”');
Setting this to jane via .bind() is crucial here. Otherwise, func() wouldn’t work properly because this is used in line A. In the next section, we’ll explore why that is.
this pitfall: extracting methods
We now know quite a bit about functions and methods and are ready to take a look at the biggest pitfall involving methods and this: function-calling a method extracted from an object can fail if we are not careful.
In the following example, we fail when we extract method jane.says(), store it in the variable func, and function-call func.
const jane = {
first: 'Jane',
says(text) {
return `${this.first} says “${text}”`;
},
};
const func = jane.says; // extract the method
assert.throws(
() => func('hello'), // (A)
{
name: 'TypeError',
message: "Cannot read properties of undefined (reading 'first')",
});
In line A, we are making a normal function call. And in normal function calls, this is undefined (if strict mode is active, which it almost always is). Line A is therefore equivalent to:
assert.throws(
() => jane.says.call(undefined, 'hello'), // `this` is undefined!
{
name: 'TypeError',
message: "Cannot read properties of undefined (reading 'first')",
}
);
How do we fix this? We need to use .bind() to extract method .says():
const func2 = jane.says.bind(jane);
assert.equal(func2('hello'), 'Jane says “hello”');
The .bind() ensures that this is always jane when we call func().
We can also use arrow functions to extract methods:
const func3 = text => jane.says(text);
assert.equal(func3('hello'), 'Jane says “hello”');
Example: extracting a method
The following is a simplified version of code that we may see in actual web development:
class ClickHandler {
constructor(id, elem) {
this.id = id;
elem.addEventListener('click', this.handleClick); // (A)
}
handleClick(event) {
alert('Clicked ' + this.id);
}
}
In line A, we don’t extract the method .handleClick() properly. Instead, we should do:
const listener = this.handleClick.bind(this);
elem.addEventListener('click', listener);
// Later, possibly:
elem.removeEventListener('click', listener);
Each invocation of .bind() creates a new function. That’s why we need to store the result somewhere if we want to remove it later on.
How to avoid the pitfall of extracting methods
Alas, there is no simple way around the pitfall of extracting methods: Whenever we extract a method, we have to be careful and do it properly – for example, by binding this or by using an arrow function.
Exercise: Extracting a method
exercises/objects/method_extraction_exrc.mjs
this pitfall: accidentally shadowing this
Accidentally shadowing this is only an issue with ordinary functions
Arrow functions don’t shadow this.
Consider the following problem: when we are inside an ordinary function, we can’t access the this of the surrounding scope because the ordinary function has its own this. In other words, a variable in an inner scope hides a variable in an outer scope. That is called shadowing. The following code is an example:
const prefixer = {
prefix: '==> ',
prefixStringArray(stringArray) {
return stringArray.map(
function (x) {
return this.prefix + x; // (A)
});
},
};
assert.throws(
() => prefixer.prefixStringArray(['a', 'b']),
{
name: 'TypeError',
message: "Cannot read properties of undefined (reading 'prefix')",
}
);
In line A, we want to access the this of .prefixStringArray(). But we can’t since the surrounding ordinary function has its own this that shadows (and blocks access to) the this of the method. The value of the former this is undefined due to the callback being function-called. That explains the error message.
The simplest way to fix this problem is via an arrow function, which doesn’t have its own this and therefore doesn’t shadow anything:
const prefixer = {
prefix: '==> ',
prefixStringArray(stringArray) {
return stringArray.map(
(x) => {
return this.prefix + x;
});
},
};
assert.deepEqual(
prefixer.prefixStringArray(['a', 'b']),
['==> a', '==> b']);
We can also store this in a different variable (line A), so that it doesn’t get shadowed:
prefixStringArray(stringArray) {
const that = this; // (A)
return stringArray.map(
function (x) {
return that.prefix + x;
});
},
Another option is to specify a fixed this for the callback via .bind() (line A):
prefixStringArray(stringArray) {
return stringArray.map(
function (x) {
return this.prefix + x;
}.bind(this)); // (A)
},
Lastly, .map() lets us specify a value for this (line A) that it uses when invoking the callback:
prefixStringArray(stringArray) {
return stringArray.map(
function (x) {
return this.prefix + x;
},
this); // (A)
},
Avoiding the pitfall of accidentally shadowing this
If we follow the advice in §25.3.4 “Recommendation: prefer specialized functions over ordinary functions”, we can avoid the pitfall of accidentally shadowing this. This is a summary:
Use arrow functions as anonymous inline functions. They don’t have this as an implicit parameter and don’t shadow it.
For named stand-alone function declarations we can either use arrow functions or function declarations. If we do the latter, we have to make sure this isn’t mentioned in their bodies.
The value of this in various contexts (advanced)
What is the value of this in various contexts?
Inside a callable entity, the value of this depends on how the callable entity is invoked and what kind of callable entity it is:
We can also access this in all common top-level scopes:
Tip: pretend that this doesn’t exist in top-level scopes
I like to do that because top-level this is confusing and there are better alternatives for its (few) use cases.
Optional chaining for property getting and method calls [ES2020] (advanced)
The following kinds of optional chaining operations exist:
obj?.prop // optional fixed property getting
obj?.[«expr»] // optional dynamic property getting
func?.(«arg0», «arg1») // optional function or method call
The rough idea is:
Each of the three syntaxes is covered in more detail later. These are a few first examples:
> null?.prop
undefined
> {prop: 1}?.prop
1
> null?.(123)
undefined
> String?.(123)
'123'
Example: optional fixed property getting
Consider the following data:
const persons = [
{
surname: 'Zoe',
address: {
street: {
name: 'Sesame Street',
number: '123',
},
},
},
{
surname: 'Mariner',
},
{
surname: 'Carmen',
address: {
},
},
];
We can use optional chaining to safely extract street names:
const streetNames = persons.map(
p => p.address?.street?.name);
assert.deepEqual(
streetNames, ['Sesame Street', undefined, undefined]
);
Handling defaults via nullish coalescing
The nullish coalescing operator allows us to use the default value '(no name)' instead of undefined:
const streetNames = persons.map(
p => p.address?.street?.name ?? '(no name)');
assert.deepEqual(
streetNames, ['Sesame Street', '(no name)', '(no name)']
);
The operators in more detail (advanced)
Optional fixed property getting
The following two expressions are equivalent:
o?.prop
(o !== undefined && o !== null) ? o.prop : undefined
Examples:
assert.equal(undefined?.prop, undefined);
assert.equal(null?.prop, undefined);
assert.equal({prop:1}?.prop, 1);
Optional dynamic property getting
The following two expressions are equivalent:
o?.[«expr»]
(o !== undefined && o !== null) ? o[«expr»] : undefined
Examples:
const key = 'prop';
assert.equal(undefined?.[key], undefined);
assert.equal(null?.[key], undefined);
assert.equal({prop:1}?.[key], 1);
Optional function or method call
The following two expressions are equivalent:
f?.(arg0, arg1)
(f !== undefined && f !== null) ? f(arg0, arg1) : undefined
Examples:
assert.equal(undefined?.(123), undefined);
assert.equal(null?.(123), undefined);
assert.equal(String?.(123), '123');
Note that this operator produces an error if its left-hand side is not callable:
assert.throws(
() => true?.(123),
TypeError);
Why? The idea is that the operator only tolerates deliberate omissions. An uncallable value (other than undefined and null) is probably an error and should be reported, rather than worked around.
Short-circuiting with optional property getting
In a chain of property gettings and method invocations, evaluation stops once the first optional operator encounters undefined or null at its left-hand side:
function invokeM(value) {
return value?.a.b.m(); // (A)
}
const obj = {
a: {
b: {
m() { return 'result' }
}
}
};
assert.equal(
invokeM(obj), 'result'
);
assert.equal(
invokeM(undefined), undefined // (B)
);
Consider invokeM(undefined) in line B: undefined?.a is undefined. Therefore we’d expect .b to fail in line A. But it doesn’t: The ?. operator encounters the value undefined and the evaluation of the whole expression immediately returns undefined.
This behavior differs from a normal operator where JavaScript always evaluates all operands before evaluating the operator. It is called short-circuiting. Other short-circuiting operators are:
Optional chaining: downsides and alternatives
Optional chaining also has downsides:
An alternative to optional chaining is to extract the information once, in a single location:
With either approach, it is possible to perform checks and to fail early if there are problems.
Further reading:
Frequently asked questions
What is a good mnemonic for the optional chaining operator (?.)?
Are you occasionally unsure if the optional chaining operator starts with a dot (.?) or a question mark (?.)? Then this mnemonic may help you:
Why are there dots in o?.[x] and f?.()?
The syntaxes of the following two optional operator are not ideal:
obj?.[«expr»] // better: obj?[«expr»]
func?.(«arg0», «arg1») // better: func?(«arg0», «arg1»)
Alas, the less elegant syntax is necessary because distinguishing the ideal syntax (first expression) from the conditional operator (second expression) is too complicated:
obj?['a', 'b', 'c'].map(x => x+x)
obj ? ['a', 'b', 'c'].map(x => x+x) : []
Why does null?.prop evaluate to undefined and not null?
The operator ?. is mainly about its right-hand side: Does property .prop exist? If not, stop early. Therefore, keeping information about its left-hand side is rarely useful. However, only having a single “early termination” value does simplify things.
Dictionary objects (advanced)
Objects work best as fixed-layout objects. But before ES6, JavaScript did not have a data structure for dictionaries (ES6 brought Maps). Therefore, objects had to be used as dictionaries, which imposed a signficant constraint: Dictionary keys had to be strings (symbols were also introduced with ES6).
We first look at features of objects that are related to dictionaries but also useful for fixed-layout objects. This section concludes with tips for actually using objects as dictionaries. (Spoiler: If possible, it’s better to use Maps.)
Quoted keys in object literals
So far, we have always used fixed-layout objects. Property keys were fixed tokens that had to be valid identifiers and internally became strings:
const obj = {
mustBeAnIdentifier: 123,
};
// Get property
assert.equal(obj.mustBeAnIdentifier, 123);
// Set property
obj.mustBeAnIdentifier = 'abc';
assert.equal(obj.mustBeAnIdentifier, 'abc');
As a next step, we’ll go beyond this limitation for property keys: In this subsection, we’ll use arbitrary fixed strings as keys. In the next subsection, we’ll dynamically compute keys.
Two syntaxes enable us to use arbitrary strings as property keys.
First, when creating property keys via object literals, we can quote property keys (with single or double quotes):
const obj = {
'Can be any string!': 123,
};
Second, when getting or setting properties, we can use square brackets with strings inside them:
// Get property
assert.equal(obj['Can be any string!'], 123);
// Set property
obj['Can be any string!'] = 'abc';
assert.equal(obj['Can be any string!'], 'abc');
We can also use these syntaxes for methods:
const obj = {
'A nice method'() {
return 'Yes!';
},
};
assert.equal(obj['A nice method'](), 'Yes!');
Computed keys in object literals
In the previous subsection, property keys were specified via fixed strings inside object literals. In this section we learn how to dynamically compute property keys. That enables us to use either arbitrary strings or symbols.
The syntax of dynamically computed property keys in object literals is inspired by dynamically accessing properties. That is, we can use square brackets to wrap expressions:
const obj = {
['Hello world!']: true,
['p'+'r'+'o'+'p']: 123,
[Symbol.toStringTag]: 'Goodbye', // (A)
};
assert.equal(obj['Hello world!'], true);
assert.equal(obj.prop, 123);
assert.equal(obj[Symbol.toStringTag], 'Goodbye');
The main use case for computed keys is having symbols as property keys (line A).
Note that the square brackets operator for getting and setting properties works with arbitrary expressions:
assert.equal(obj['p'+'r'+'o'+'p'], 123);
assert.equal(obj['==> prop'.slice(4)], 123);
Methods can have computed property keys, too:
const methodKey = Symbol();
const obj = {
[methodKey]() {
return 'Yes!';
},
};
assert.equal(obj[methodKey](), 'Yes!');
For the remainder of this chapter, we’ll mostly use fixed property keys again (because they are syntactically more convenient). But all features are also available for arbitrary strings and symbols.
Exercise: Non-destructively updating a property via spreading (computed key)
exercises/objects/update_property_test.mjs
The in operator: is there a property with a given key?
The in operator checks if an object has a property with a given key:
const obj = {
alpha: 'abc',
beta: false,
};
assert.equal('alpha' in obj, true);
assert.equal('beta' in obj, true);
assert.equal('unknownKey' in obj, false);
Checking if a property exists via truthiness
We can also use a truthiness check to determine if a property exists:
assert.equal(
obj.alpha ? 'exists' : 'does not exist',
'exists');
assert.equal(
obj.unknownKey ? 'exists' : 'does not exist',
'does not exist');
The previous checks work because obj.alpha is truthy and because reading a missing property returns undefined (which is falsy).
There is, however, one important caveat: truthiness checks fail if the property exists, but has a falsy value (undefined, null, false, 0, "", etc.):
assert.equal(
obj.beta ? 'exists' : 'does not exist',
'does not exist'); // should be: 'exists'
Deleting properties
We can delete properties via the delete operator:
const obj = {
myProp: 123,
};
assert.deepEqual(Object.keys(obj), ['myProp']);
delete obj.myProp;
assert.deepEqual(Object.keys(obj), []);
Enumerability
Enumerability is an attribute of a property. Non-enumerable properties are ignored by some operations – for example, by Object.keys() and when spreading properties. By default, most properties are enumerable. The next example shows how to change that and how it affects spreading.
const enumerableSymbolKey = Symbol('enumerableSymbolKey');
const nonEnumSymbolKey = Symbol('nonEnumSymbolKey');
// We create enumerable properties via an object literal
const obj = {
enumerableStringKey: 1,
[enumerableSymbolKey]: 2,
}
// For non-enumerable properties, we need a more powerful tool
Object.defineProperties(obj, {
nonEnumStringKey: {
value: 3,
enumerable: false,
},
[nonEnumSymbolKey]: {
value: 4,
enumerable: false,
},
});
// Non-enumerable properties are ignored by spreading:
assert.deepEqual(
{...obj},
{
enumerableStringKey: 1,
[enumerableSymbolKey]: 2,
}
);
Object.defineProperties() is explained later in this chapter. The next subsection shows how these operations are affected by enumerability:
Listing property keys via Object.keys() etc.
enumerable | non-e. | string | symbol | |
---|---|---|---|---|
Object.keys() | ✔ | ✔ | ||
Object.getOwnPropertyNames() | ✔ | ✔ | ✔ | |
Object.getOwnPropertySymbols() | ✔ | ✔ | ✔ | |
Reflect.ownKeys() | ✔ | ✔ | ✔ | ✔ |
Each of the methods in tbl. 19 returns an Array with the own property keys of the parameter. In the names of the methods, we can see that the following distinction is made:
To demonstrate the four operations, we revisit the example from the previous subsection:
const enumerableSymbolKey = Symbol('enumerableSymbolKey');
const nonEnumSymbolKey = Symbol('nonEnumSymbolKey');
const obj = {
enumerableStringKey: 1,
[enumerableSymbolKey]: 2,
}
Object.defineProperties(obj, {
nonEnumStringKey: {
value: 3,
enumerable: false,
},
[nonEnumSymbolKey]: {
value: 4,
enumerable: false,
},
});
assert.deepEqual(
Object.keys(obj),
['enumerableStringKey']
);
assert.deepEqual(
Object.getOwnPropertyNames(obj),
['enumerableStringKey', 'nonEnumStringKey']
);
assert.deepEqual(
Object.getOwnPropertySymbols(obj),
[enumerableSymbolKey, nonEnumSymbolKey]
);
assert.deepEqual(
Reflect.ownKeys(obj),
[
'enumerableStringKey', 'nonEnumStringKey',
enumerableSymbolKey, nonEnumSymbolKey,
]
);
Listing property values via Object.values()
Object.values() lists the values of all enumerable string-keyed properties of an object:
const firstName = Symbol('firstName');
const obj = {
[firstName]: 'Jane',
lastName: 'Doe',
};
assert.deepEqual(
Object.values(obj),
['Doe']);
Listing property entries via Object.entries() [ES2017]
Object.entries() lists all enumerable string-keyed properties as key-value pairs. Each pair is encoded as a two-element Array:
const firstName = Symbol('firstName');
const obj = {
[firstName]: 'Jane',
lastName: 'Doe',
};
assert.deepEqual(
Object.entries(obj),
[
['lastName', 'Doe'],
]);
A simple implementation of Object.entries()
The following function is a simplified version of Object.entries():
function entries(obj) {
return Object.keys(obj)
.map(key => [key, obj[key]]);
}
Exercise: Object.entries()
exercises/objects/find_key_test.mjs
Properties are listed deterministically
Own (non-inherited) properties of objects are always listed in the following order:
The following example demonstrates how property keys are sorted according to these rules:
> Object.keys({b:0,a:0, 10:0,2:0})
[ '2', '10', 'b', 'a' ]
The order of properties
The ECMAScript specification describes in more detail how properties are ordered.
Assembling objects via Object.fromEntries() [ES2019]
Given an iterable over [key, value] pairs, Object.fromEntries() creates an object:
const symbolKey = Symbol('symbolKey');
assert.deepEqual(
Object.fromEntries(
[
['stringKey', 1],
[symbolKey, 2],
]
),
{
stringKey: 1,
[symbolKey]: 2,
}
);
Object.fromEntries() does the opposite of Object.entries(). However, while Object.entries() ignores symbol-keyed properties, Object.fromEntries() doesn’t (see previous example).
To demonstrate both, we’ll use them to implement two tool functions from the library Underscore in the next subsubsections.
Example: pick()
The Underscore function pick() has the following signature:
pick(object, ...keys)
It returns a copy of object that has only those properties whose keys are mentioned in the trailing arguments:
const address = {
street: 'Evergreen Terrace',
number: '742',
city: 'Springfield',
state: 'NT',
zip: '49007',
};
assert.deepEqual(
pick(address, 'street', 'number'),
{
street: 'Evergreen Terrace',
number: '742',
}
);
We can implement pick() as follows:
function pick(object, ...keys) {
const filteredEntries = Object.entries(object)
.filter(([key, _value]) => keys.includes(key));
return Object.fromEntries(filteredEntries);
}
Example: invert()
The Underscore function invert() has the following signature:
invert(object)
It returns a copy of object where the keys and values of all properties are swapped:
assert.deepEqual(
invert({a: 1, b: 2, c: 3}),
{1: 'a', 2: 'b', 3: 'c'}
);
We can implement invert() like this:
function invert(object) {
const reversedEntries = Object.entries(object)
.map(([key, value]) => [value, key]);
return Object.fromEntries(reversedEntries);
}
A simple implementation of Object.fromEntries()
The following function is a simplified version of Object.fromEntries():
function fromEntries(iterable) {
const result = {};
for (const [key, value] of iterable) {
let coercedKey;
if (typeof key === 'string' || typeof key === 'symbol') {
coercedKey = key;
} else {
coercedKey = String(key);
}
result[coercedKey] = value;
}
return result;
}
Exercise: Using Object.entries() and Object.fromEntries()
exercises/objects/omit_properties_test.mjs
The pitfalls of using an object as a dictionary
If we use plain objects (created via object literals) as dictionaries, we have to look out for two pitfalls.
The first pitfall is that the in operator also finds inherited properties:
const dict = {};
assert.equal('toString' in dict, true);
We want dict to be treated as empty, but the in operator detects the properties it inherits from its prototype, Object.prototype.
The second pitfall is that we can’t use the property key __proto__ because it has special powers (it sets the prototype of the object):
const dict = {};
dict['__proto__'] = 123;
// No property was added to dict:
assert.deepEqual(Object.keys(dict), []);
Safely using objects as dictionaries
So how do we avoid the two pitfalls?
The following code demonstrates using prototype-less objects as dictionaries:
const dict = Object.create(null); // prototype is `null`
assert.equal('toString' in dict, false); // (A)
dict['__proto__'] = 123;
assert.deepEqual(Object.keys(dict), ['__proto__']);
We avoided both pitfalls:
Exercise: Using an object as a dictionary
exercises/objects/simple_dict_test.mjs
Property attributes and freezing objects (advanced)
Property attributes and property descriptors [ES5]
Just as objects are composed of properties, properties are composed of attributes. The value of a property is only one of several attributes. Others include:
When we are using one of the operations for handling property attributes, attributes are specified via property descriptors: objects where each property represents one attribute. For example, this is how we read the attributes of a property obj.myProp:
const obj = { myProp: 123 };
assert.deepEqual(
Object.getOwnPropertyDescriptor(obj, 'myProp'),
{
value: 123,
writable: true,
enumerable: true,
configurable: true,
});
And this is how we change the attributes of obj.myProp:
assert.deepEqual(Object.keys(obj), ['myProp']);
// Hide property `myProp` from Object.keys()
// by making it non-enumerable
Object.defineProperty(obj, 'myProp', {
enumerable: false,
});
assert.deepEqual(Object.keys(obj), []);
Further reading:
Freezing objects [ES5]
Object.freeze(obj) makes obj completely immutable: We can’t change properties, add properties, or change its prototype – for example:
const frozen = Object.freeze({ x: 2, y: 5 });
assert.throws(
() => { frozen.x = 7 },
{
name: 'TypeError',
message: /^Cannot assign to read only property 'x'/,
});
Under the hood, Object.freeze() changes the attributes of properties (e.g., it makes them non-writable) and objects (e.g., it makes them non-extensible, meaning that no properties can be added anymore).
There is one caveat: Object.freeze(obj) freezes shallowly. That is, only the properties of obj are frozen but not objects stored in properties.
More information
For more information on freezing and other ways of locking down objects, see Deep JavaScript.
Prototype chains
Prototypes are JavaScript’s only inheritance mechanism: Each object has a prototype that is either null or an object. In the latter case, the object inherits all of the prototype’s properties.
In an object literal, we can set the prototype via the special property __proto__:
const proto = {
protoProp: 'a',
};
const obj = {
__proto__: proto,
objProp: 'b',
};
// obj inherits .protoProp:
assert.equal(obj.protoProp, 'a');
assert.equal('protoProp' in obj, true);
Given that a prototype object can have a prototype itself, we get a chain of objects – the so-called prototype chain. Inheritance gives us the impression that we are dealing with single objects, but we are actually dealing with chains of objects.
Fig. 9 shows what the prototype chain of obj looks like.
Figure 9: obj starts a chain of objects that continues with proto and other objects.
Non-inherited properties are called own properties. obj has one own property, .objProp.
JavaScript’s operations: all properties vs. own properties
Some operations consider all properties (own and inherited) – for example, getting properties:
> const obj = { one: 1 };
> typeof obj.one // own
'number'
> typeof obj.toString // inherited
'function'
Other operations only consider own properties – for example, Object.keys():
> Object.keys(obj)
[ 'one' ]
Read on for another operation that also only considers own properties: setting properties.
Pitfall: only the first member of a prototype chain is mutated
Given an object obj with a chain of prototype objects, it makes sense that setting an own property of obj only changes obj. However, setting an inherited property via obj also only changes obj. It creates a new own property in obj that overrides the inherited property. Let’s explore how that works with the following object:
const proto = {
protoProp: 'a',
};
const obj = {
__proto__: proto,
objProp: 'b',
};
In the next code snippet, we set the inherited property obj.protoProp (line A). That “changes” it by creating an own property: When reading obj.protoProp, the own property is found first and its value overrides the value of the inherited property.
// In the beginning, obj has one own property
assert.deepEqual(Object.keys(obj), ['objProp']);
obj.protoProp = 'x'; // (A)
// We created a new own property:
assert.deepEqual(Object.keys(obj), ['objProp', 'protoProp']);
// The inherited property itself is unchanged:
assert.equal(proto.protoProp, 'a');
// The own property overrides the inherited property:
assert.equal(obj.protoProp, 'x');
The prototype chain of obj is depicted in fig. 10.
Figure 10: The own property .protoProp of obj overrides the property inherited from proto.
Tips for working with prototypes (advanced)
Getting and setting prototypes
Recommendations for __proto__:
Don’t use __proto__ as a pseudo-property (a setter of all instances of Object):
For more information on this feature see §29.8.7 “Object.prototype.__proto__ (accessor)”.
Using __proto__ in object literals to set prototypes is different: It’s a feature of object literals that has no pitfalls.
The recommended ways of getting and setting prototypes are:
Getting the prototype of an object:
Object.getPrototypeOf(obj: Object) : Object
The best time to set the prototype of an object is when we are creating it. We can do so via __proto__ in an object literal or via:
Object.create(proto: Object) : Object
If we have to, we can use Object.setPrototypeOf() to change the prototype of an existing object. But that may affect performance negatively.
This is how these features are used:
const proto1 = {};
const proto2a = {};
const proto2b = {};
const obj1 = {
__proto__: proto1,
a: 1,
b: 2,
};
assert.equal(Object.getPrototypeOf(obj1), proto1);
const obj2 = Object.create(
proto2a,
{
a: {
value: 1,
writable: true,
enumerable: true,
configurable: true,
},
b: {
value: 2,
writable: true,
enumerable: true,
configurable: true,
},
}
);
assert.equal(Object.getPrototypeOf(obj2), proto2a);
Object.setPrototypeOf(obj2, proto2b);
assert.equal(Object.getPrototypeOf(obj2), proto2b);
Checking if an object is in the prototype chain of another object
So far, “proto is a prototype of obj” always meant “proto is a direct prototype of obj”. But it can also be used more loosely and mean that proto is in the prototype chain of obj. That looser relationship can be checked via .isPrototypeOf():
For example:
const a = {};
const b = {__proto__: a};
const c = {__proto__: b};
assert.equal(a.isPrototypeOf(b), true);
assert.equal(a.isPrototypeOf(c), true);
assert.equal(c.isPrototypeOf(a), false);
assert.equal(a.isPrototypeOf(a), false);
For more information on this method see §29.8.5 “Object.prototype.isPrototypeOf()”.
Object.hasOwn(): Is a given property own (non-inherited)? [ES2022]
The in operator (line A) checks if an object has a given property. In contrast, Object.hasOwn() (lines B and C) checks if a property is own.
const proto = {
protoProp: 'protoProp',
};
const obj = {
__proto__: proto,
objProp: 'objProp',
}
assert.equal('protoProp' in obj, true); // (A)
assert.equal(Object.hasOwn(obj, 'protoProp'), false); // (B)
assert.equal(Object.hasOwn(proto, 'protoProp'), true); // (C)
Alternative before ES2022: .hasOwnProperty()
Before ES2022, we can use another feature: §29.8.8 “Object.prototype.hasOwnProperty()”. This feature has pitfalls, but the referenced section explains how to work around them.
Sharing data via prototypes
Consider the following code:
const jane = {
firstName: 'Jane',
describe() {
return 'Person named '+this.firstName;
},
};
const tarzan = {
firstName: 'Tarzan',
describe() {
return 'Person named '+this.firstName;
},
};
assert.equal(jane.describe(), 'Person named Jane');
assert.equal(tarzan.describe(), 'Person named Tarzan');
We have two objects that are very similar. Both have two properties whose names are .firstName and .describe. Additionally, method .describe() is the same. How can we avoid duplicating that method?
We can move it to an object PersonProto and make that object a prototype of both jane and tarzan:
const PersonProto = {
describe() {
return 'Person named ' + this.firstName;
},
};
const jane = {
__proto__: PersonProto,
firstName: 'Jane',
};
const tarzan = {
__proto__: PersonProto,
firstName: 'Tarzan',
};
The name of the prototype reflects that both jane and tarzan are persons.
Figure 11: Objects jane and tarzan share method .describe(), via their common prototype PersonProto.
Fig. 11 illustrates how the three objects are connected: The objects at the bottom now contain the properties that are specific to jane and tarzan. The object at the top contains the properties that are shared between them.
When we make the method call jane.describe(), this points to the receiver of that method call, jane (in the bottom-left corner of the diagram). That’s why the method still works. tarzan.describe() works similarly.
assert.equal(jane.describe(), 'Person named Jane');
assert.equal(tarzan.describe(), 'Person named Tarzan');
Looking ahead to the next chapter on classes – this is how classes are organized internally:
§29.3 “The internals of classes” explains this in more detail.
FAQ: objects
Why do objects preserve the insertion order of properties?
In principle, objects are unordered. The main reason for ordering properties is so that operations that list entries, keys, or values are deterministic. That helps, e.g., with testing.
Quiz
See quiz app.
Classes [ES6]
In this book, JavaScript’s style of object-oriented programming (OOP) is introduced in four steps. This chapter covers step 3 and 4, the previous chapter covers step 1 and 2. The steps are (fig. 12):
Figure 12: This book introduces object-oriented programming in JavaScript in four steps.
Cheat sheet: classes
Superclass:
class Person {
#firstName; // (A)
constructor(firstName) {
this.#firstName = firstName; // (B)
}
describe() {
return `Person named ${this.#firstName}`;
}
static extractNames(persons) {
return persons.map(person => person.#firstName);
}
}
const tarzan = new Person('Tarzan');
assert.equal(
tarzan.describe(),
'Person named Tarzan'
);
assert.deepEqual(
Person.extractNames([tarzan, new Person('Cheeta')]),
['Tarzan', 'Cheeta']
);
Subclass:
class Employee extends Person {
constructor(firstName, title) {
super(firstName);
this.title = title; // (C)
}
describe() {
return super.describe() +
` (${this.title})`;
}
}
const jane = new Employee('Jane', 'CTO');
assert.equal(
jane.title,
'CTO'
);
assert.equal(
jane.describe(),
'Person named Jane (CTO)'
);
Notes:
The essentials of classes
Classes are basically a compact syntax for setting up prototype chains (which are explained in the previous chapter). Under the hood, JavaScript’s classes are unconventional. But that is something we rarely see when working with them. They should normally feel familiar to people who have used other object-oriented programming languages.
Note that we don’t need classes to create objects. We can also do so via object literals. That’s why the singleton pattern isn’t needed in JavaScript and classes are used less than in many other languages that have them.
A class for persons
We have previously worked with jane and tarzan, single objects representing persons. Let’s use a class declaration to implement a factory for such objects:
class Person {
#firstName; // (A)
constructor(firstName) {
this.#firstName = firstName; // (B)
}
describe() {
return `Person named ${this.#firstName}`;
}
static extractNames(persons) {
return persons.map(person => person.#firstName);
}
}
jane and tarzan can now be created via new Person():
const jane = new Person('Jane');
const tarzan = new Person('Tarzan');
Let’s examine what’s inside the body of class Person.
.constructor() is a special method that is called after the creation of a new instance. Inside it, this refers to that instance.
[ES2022] .#firstName is an instance private field: Such fields are stored in instances. They are accessed similarly to properties, but their names are separate – they always start with hash symbols (#). And they are invisible to the world outside the class:
assert.deepEqual(
Reflect.ownKeys(jane),
[]
);
Before we can initialize .#firstName in the constructor (line B), we need to declare it by mentioning it in the class body (line A).
.describe() is a method. If we invoke it via obj.describe() then this refers to obj inside the body of .describe().
assert.equal(
jane.describe(), 'Person named Jane'
);
assert.equal(
tarzan.describe(), 'Person named Tarzan'
);
.extractName() is a static method. “Static” means that it belongs to the class, not to instances:
assert.deepEqual(
Person.extractNames([jane, tarzan]),
['Jane', 'Tarzan']
);
We can also create instance properties (public fields) in constructors:
class Container {
constructor(value) {
this.value = value;
}
}
const abcContainer = new Container('abc');
assert.equal(
abcContainer.value, 'abc'
);
In contrast to instance private fields, instance properties don’t have to be declared in class bodies.
Class expressions
There are two kinds of class definitions (ways of defining classes):
Class expressions can be anonymous and named:
// Anonymous class expression
const Person = class { ··· };
// Named class expression
const Person = class MyClass { ··· };
The name of a named class expression works similarly to the name of a named function expression: It can only be accessed inside the body of a class and stays the same, regardless of what the class is assigned to.
The instanceof operator
The instanceof operator tells us if a value is an instance of a given class:
> new Person('Jane') instanceof Person
true
> {} instanceof Person
false
> {} instanceof Object
true
> [] instanceof Array
true
We’ll explore the instanceof operator in more detail later, after we have looked at subclassing.
Public slots (properties) vs. private slots
In the JavaScript language, objects can have two kinds of “slots”.
These are the most important rules we need to know about properties and private slots:
More information on properties and private slots
This chapter doesn’t cover all details of properties and private slots (just the essentials). If you want to dig deeper, you can do so here:
The following class demonstrates the two kinds of slots. Each of its instances has one private field and one property:
class MyClass {
#instancePrivateField = 1;
instanceProperty = 2;
getInstanceValues() {
return [
this.#instancePrivateField,
this.instanceProperty,
];
}
}
const inst = new MyClass();
assert.deepEqual(
inst.getInstanceValues(), [1, 2]
);
As expected, outside MyClass, we can only see the property:
assert.deepEqual(
Reflect.ownKeys(inst),
['instanceProperty']
);
Next, we’ll look at some of the details of private slots.
Private slots in more detail [ES2022] (advanced)
Private slots can’t be accessed in subclasses
A private slot really can only be accessed inside the body of its class. We can’t even access it from a subclass:
class SuperClass {
#superProp = 'superProp';
}
class SubClass extends SuperClass {
getSuperProp() {
return this.#superProp;
}
}
// SyntaxError: Private field '#superProp'
// must be declared in an enclosing class
Subclassing via extends is explained later in this chapter. How to work around this limitation is explained in §29.5.4 “Simulating protected visibility and friend visibility via WeakMaps”.
Each private slot has a unique key (a private name)
Private slots have unique keys that are similar to symbols. Consider the following class from earlier:
class MyClass {
#instancePrivateField = 1;
instanceProperty = 2;
getInstanceValues() {
return [
this.#instancePrivateField,
this.instanceProperty,
];
}
}
Internally, the private field of MyClass is handled roughly like this:
let MyClass;
{ // Scope of the body of the class
const instancePrivateFieldKey = Symbol();
MyClass = class {
// Very loose approximation of how this
// works in the language specification
__PrivateElements__ = new Map([
[instancePrivateFieldKey, 1],
]);
instanceProperty = 2;
getInstanceValues() {
return [
this.__PrivateElements__.get(instancePrivateFieldKey),
this.instanceProperty,
];
}
}
}
The value of instancePrivateFieldKey is called a private name. We can’t use private names directly in JavaScript, we can only use them indirectly, via the fixed identifiers of private fields, private methods, and private accessors. Where the fixed identifiers of public slots (such as getInstanceValues) are interpreted as string keys, the fixed identifiers of private slots (such as #instancePrivateField) refer to private names (similarly to how variable names refer to values).
The same private identifier refers to different private names in different classes
Because the identifiers of private slots aren’t used as keys, using the same identifier in different classes produces different slots (line A and line C):
class Color {
#name; // (A)
constructor(name) {
this.#name = name; // (B)
}
static getName(obj) {
return obj.#name;
}
}
class Person {
#name; // (C)
constructor(name) {
this.#name = name;
}
}
assert.equal(
Color.getName(new Color('green')), 'green'
);
// We can’t access the private slot #name of a Person in line B:
assert.throws(
() => Color.getName(new Person('Jane')),
{
name: 'TypeError',
message: 'Cannot read private member #name from'
+ ' an object whose class did not declare it',
}
);
The names of private fields never clash
Even if a subclass uses the same name for a private field, the two names never clash because they refer to private names (which are always unique). In the following example, .#privateField in SuperClass does not clash with .#privateField in SubClass, even though both slots are stored directly in inst:
class SuperClass {
#privateField = 'super';
getSuperPrivateField() {
return this.#privateField;
}
}
class SubClass extends SuperClass {
#privateField = 'sub';
getSubPrivateField() {
return this.#privateField;
}
}
const inst = new SubClass();
assert.equal(
inst.getSuperPrivateField(), 'super'
);
assert.equal(
inst.getSubPrivateField(), 'sub'
);
Subclassing via extends is explained later in this chapter.
Using in to check if an object has a given private slot
The in operator can be used to check if a private slot exists (line A):
class Color {
#name;
constructor(name) {
this.#name = name;
}
static check(obj) {
return #name in obj; // (A)
}
}
Let’s look at more examples of in applied to private slots.
Private methods. The following code shows that private methods create private slots in instances:
class C1 {
#priv() {}
static check(obj) {
return #priv in obj;
}
}
assert.equal(C1.check(new C1()), true);
Static private fields. We can also use in for a static private field:
class C2 {
static #priv = 1;
static check(obj) {
return #priv in obj;
}
}
assert.equal(C2.check(C2), true);
assert.equal(C2.check(new C2()), false);
Static private methods. And we can check for the slot of a static private method:
class C3 {
static #priv() {}
static check(obj) {
return #priv in obj;
}
}
assert.equal(C3.check(C3), true);
Using the same private identifier in different classes. In the next example, the two classes Color and Person both have a slot whose identifier is #name. The in operator distinguishes them correctly:
class Color {
#name;
constructor(name) {
this.#name = name;
}
static check(obj) {
return #name in obj;
}
}
class Person {
#name;
constructor(name) {
this.#name = name;
}
static check(obj) {
return #name in obj;
}
}
// Detecting Color’s #name
assert.equal(
Color.check(new Color()), true
);
assert.equal(
Color.check(new Person()), false
);
// Detecting Person’s #name
assert.equal(
Person.check(new Person()), true
);
assert.equal(
Person.check(new Color()), false
);
The pros and cons of classes in JavaScript
I recommend using classes for the following reasons:
Classes are a common standard for object creation and inheritance that is now widely supported across libraries and frameworks. This is an improvement compared to how things were before, when almost every framework had its own inheritance library.
They help tools such as IDEs and type checkers with their work and enable new features there.
If you come from another language to JavaScript and are used to classes, then you can get started more quickly.
JavaScript engines optimize them. That is, code that uses classes is almost always faster than code that uses a custom inheritance library.
We can subclass built-in constructor functions such as Error.
That doesn’t mean that classes are perfect:
There is a risk of overdoing inheritance.
There is a risk of putting too much functionality in classes (when some of it is often better put in functions).
Classes look familiar to programmers coming from other languages, but they work differently and are used differently (see next subsection). Therefore, there is a risk of those programmers writing code that doesn’t feel like JavaScript.
How classes seem to work superficially is quite different from how they actually work. In other words, there is a disconnect between syntax and semantics. Two examples are:
The motivation for the disconnect is backward compatibility. Thankfully, the disconnect causes few problems in practice; we are usually OK if we go along with what classes pretend to be.
This was a first look at classes. We’ll explore more features soon.
Exercise: Writing a class
exercises/classes/point_class_test.mjs
Tips for using classes
The internals of classes
A class is actually two connected objects
Under the hood, a class becomes two connected objects. Let’s revisit class Person to see how that works:
class Person {
#firstName;
constructor(firstName) {
this.#firstName = firstName;
}
describe() {
return `Person named ${this.#firstName}`;
}
static extractNames(persons) {
return persons.map(person => person.#firstName);
}
}
The first object created by the class is stored in Person. It has four properties:
assert.deepEqual(
Reflect.ownKeys(Person),
['length', 'name', 'prototype', 'extractNames']
);
// The number of parameters of the constructor
assert.equal(
Person.length, 1
);
// The name of the class
assert.equal(
Person.name, 'Person'
);
The two remaining properties are:
These are the contents of Person.prototype:
assert.deepEqual(
Reflect.ownKeys(Person.prototype),
['constructor', 'describe']
);
There are two properties:
Classes set up the prototype chains of their instances
The object Person.prototype is the prototype of all instances:
const jane = new Person('Jane');
assert.equal(
Object.getPrototypeOf(jane), Person.prototype
);
const tarzan = new Person('Tarzan');
assert.equal(
Object.getPrototypeOf(tarzan), Person.prototype
);
That explains how the instances get their methods: They inherit them from the object Person.prototype.
Fig. 13 visualizes how everything is connected.
Figure 13: The class Person has the property .prototype that points to an object that is the prototype of all instances of Person. The objects jane and tarzan are two such instances.
.__proto__ vs. .prototype
It is easy to confuse .__proto__ and .prototype. Hopefully, fig. 13 makes it clear how they differ:
.__proto__ is an accessor of class Object that lets us get and set the prototypes of its instances.
.prototype is a normal property like any other. It is only special because the new operator uses its value as the prototype of instances. Its name is not ideal. A different name such as .instancePrototype would be more fitting.
Person.prototype.constructor (advanced)
There is one detail in fig. 13 that we haven’t looked at, yet: Person.prototype.constructor points back to Person:
> Person.prototype.constructor === Person
true
This setup exists due to backward compatibility. But it has two additional benefits.
First, each instance of a class inherits property .constructor. Therefore, given an instance, we can make “similar” objects via it:
const jane = new Person('Jane');
const cheeta = new jane.constructor('Cheeta');
// cheeta is also an instance of Person
assert.equal(cheeta instanceof Person, true);
Second, we can get the name of the class that created a given instance:
const tarzan = new Person('Tarzan');
assert.equal(tarzan.constructor.name, 'Person');
Dispatched vs. direct method calls (advanced)
In this subsection, we learn about two different ways of invoking methods:
Understanding both of them will give us important insights into how methods work.
We’ll also need the second way later in this chapter: It will allow us to borrow useful methods from Object.prototype.
Dispatched method calls
Let’s examine how method calls work with classes. We are revisiting jane from earlier:
class Person {
#firstName;
constructor(firstName) {
this.#firstName = firstName;
}
describe() {
return 'Person named '+this.#firstName;
}
}
const jane = new Person('Jane');
Fig. 14 has a diagram with jane’s prototype chain.
Figure 14: The prototype chain of jane starts with jane and continues with Person.prototype.
Normal method calls are dispatched – the method call
jane.describe()
happens in two steps:
Dispatch: JavaScript traverses the prototype chain starting with jane to find the first object that has an own property with the key 'describe': It first looks at jane and doesn’t find an own property .describe. It continues with jane’s prototype, Person.prototype and finds an own property describe whose value it returns.
const func = jane.describe;
Invocation: Method-invoking a value is different from function-invoking a value in that it not only calls what comes before the parentheses with the arguments inside the parentheses but also sets this to the receiver of the method call (in this case, jane):
func.call(jane);
This way of dynamically looking for a method and invoking it is called dynamic dispatch.
Direct method calls
We can also make method calls directly, without dispatching:
Person.prototype.describe.call(jane)
This time, we directly point to the method via Person.prototype.describe and don’t search for it in the prototype chain. We also specify this differently – via .call().
this always points to the instance
No matter where in the prototype chain of an instance a method is located, this always points to the instance (the beginning of the prototype chain). That enables .describe() to access .#firstName in the example.
When are direct method calls useful? Whenever we want to borrow a method from elsewhere that a given object doesn’t have – for example:
const obj = Object.create(null);
// `obj` is not an instance of Object and doesn’t inherit
// its prototype method .toString()
assert.throws(
() => obj.toString(),
/^TypeError: obj.toString is not a function$/
);
assert.equal(
Object.prototype.toString.call(obj),
'[object Object]'
);
Classes evolved from ordinary functions (advanced)
Before ECMAScript 6, JavaScript didn’t have classes. Instead, ordinary functions were used as constructor functions:
function StringBuilderConstr(initialString) {
this.string = initialString;
}
StringBuilderConstr.prototype.add = function (str) {
this.string += str;
return this;
};
const sb = new StringBuilderConstr('¡');
sb.add('Hola').add('!');
assert.equal(
sb.string, '¡Hola!'
);
Classes provide better syntax for this approach:
class StringBuilderClass {
constructor(initialString) {
this.string = initialString;
}
add(str) {
this.string += str;
return this;
}
}
const sb = new StringBuilderClass('¡');
sb.add('Hola').add('!');
assert.equal(
sb.string, '¡Hola!'
);
Subclassing is especially tricky with constructor functions. Classes also offer benefits that go beyond more convenient syntax:
Classes are so compatible with constructor functions that they can even extend them:
function SuperConstructor() {}
class SubClass extends SuperConstructor {}
assert.equal(
new SubClass() instanceof SuperConstructor, true
);
extends and subclassing are explained later in this chapter.
A class is the constructor
This brings us to an interesting insight. On one hand, StringBuilderClass refers to its constructor via StringBuilderClass.prototype.constructor.
On the other hand, the class is the constructor (a function):
> StringBuilderClass.prototype.constructor === StringBuilderClass
true
> typeof StringBuilderClass
'function'
Constructor (functions) vs. classes
Due to how similar they are, I use the terms constructor (function) and class interchangeably.
Prototype members of classes
Public prototype methods and accessors
All members in the body of the following class declaration create properties of PublicProtoClass.prototype.
class PublicProtoClass {
constructor(args) {
// (Do something with `args` here.)
}
publicProtoMethod() {
return 'publicProtoMethod';
}
get publicProtoAccessor() {
return 'publicProtoGetter';
}
set publicProtoAccessor(value) {
assert.equal(value, 'publicProtoSetter');
}
}
assert.deepEqual(
Reflect.ownKeys(PublicProtoClass.prototype),
['constructor', 'publicProtoMethod', 'publicProtoAccessor']
);
const inst = new PublicProtoClass('arg1', 'arg2');
assert.equal(
inst.publicProtoMethod(), 'publicProtoMethod'
);
assert.equal(
inst.publicProtoAccessor, 'publicProtoGetter'
);
inst.publicProtoAccessor = 'publicProtoSetter';
All kinds of public prototype methods and accessors (advanced)
const accessorKey = Symbol('accessorKey');
const syncMethodKey = Symbol('syncMethodKey');
const syncGenMethodKey = Symbol('syncGenMethodKey');
const asyncMethodKey = Symbol('asyncMethodKey');
const asyncGenMethodKey = Symbol('asyncGenMethodKey');
class PublicProtoClass2 {
// Identifier keys
get accessor() {}
set accessor(value) {}
syncMethod() {}
* syncGeneratorMethod() {}
async asyncMethod() {}
async * asyncGeneratorMethod() {}
// Quoted keys
get 'an accessor'() {}
set 'an accessor'(value) {}
'sync method'() {}
* 'sync generator method'() {}
async 'async method'() {}
async * 'async generator method'() {}
// Computed keys
get [accessorKey]() {}
set [accessorKey](value) {}
[syncMethodKey]() {}
* [syncGenMethodKey]() {}
async [asyncMethodKey]() {}
async * [asyncGenMethodKey]() {}
}
// Quoted and computed keys are accessed via square brackets:
const inst = new PublicProtoClass2();
inst['sync method']();
inst[syncMethodKey]();
Quoted and computed keys can also be used in object literals:
More information on accessors (defined via getters and/or setters), generators, async methods, and async generator methods:
Private methods and accessors [ES2022]
Private methods (and accessors) are an interesting mix of prototype members and instance members.
On one hand, private methods are stored in slots in instances (line A):
class MyClass {
#privateMethod() {}
static check() {
const inst = new MyClass();
assert.equal(
#privateMethod in inst, true // (A)
);
assert.equal(
#privateMethod in MyClass.prototype, false
);
assert.equal(
#privateMethod in MyClass, false
);
}
}
MyClass.check();
Why are they not stored in .prototype objects? Private slots are not inherited, only properties are.
On the other hand, private methods are shared between instances – like prototype public methods:
class MyClass {
#privateMethod() {}
static check() {
const inst1 = new MyClass();
const inst2 = new MyClass();
assert.equal(
inst1.#privateMethod,
inst2.#privateMethod
);
}
}
Due to that and due to their syntax being similar to prototype public methods, they are covered here.
The following code demonstrates how private methods and accessors work:
class PrivateMethodClass {
#privateMethod() {
return 'privateMethod';
}
get #privateAccessor() {
return 'privateGetter';
}
set #privateAccessor(value) {
assert.equal(value, 'privateSetter');
}
callPrivateMembers() {
assert.equal(this.#privateMethod(), 'privateMethod');
assert.equal(this.#privateAccessor, 'privateGetter');
this.#privateAccessor = 'privateSetter';
}
}
assert.deepEqual(
Reflect.ownKeys(new PrivateMethodClass()), []
);
All kinds of private methods and accessors (advanced)
With private slots, the keys are always identifiers:
class PrivateMethodClass2 {
get #accessor() {}
set #accessor(value) {}
#syncMethod() {}
* #syncGeneratorMethod() {}
async #asyncMethod() {}
async * #asyncGeneratorMethod() {}
}
More information on accessors (defined via getters and/or setters), generators, async methods, and async generator methods:
Instance members of classes [ES2022]
Instance public fields
Instances of the following class have two instance properties (created in line A and line B):
class InstPublicClass {
// Instance public field
instancePublicField = 0; // (A)
constructor(value) {
// We don’t need to mention .property elsewhere!
this.property = value; // (B)
}
}
const inst = new InstPublicClass('constrArg');
assert.deepEqual(
Reflect.ownKeys(inst),
['instancePublicField', 'property']
);
assert.equal(
inst.instancePublicField, 0
);
assert.equal(
inst.property, 'constrArg'
);
If we create an instance property inside the constructor (line B), we don’t need to “declare” it elsewhere. As we have already seen, that is different for instance private fields.
Note that instance properties are relatively common in JavaScript; much more so than in, e.g., Java, where most instance state is private.
Instance public fields with quoted and computed keys (advanced)
const computedFieldKey = Symbol('computedFieldKey');
class InstPublicClass2 {
'quoted field key' = 1;
[computedFieldKey] = 2;
}
const inst = new InstPublicClass2();
assert.equal(inst['quoted field key'], 1);
assert.equal(inst[computedFieldKey], 2);
What is the value of this in instance public fields? (advanced)
In the initializer of a instance public field, this refers to the newly created instance:
class MyClass {
instancePublicField = this;
}
const inst = new MyClass();
assert.equal(
inst.instancePublicField, inst
);
When are instance public fields executed? (advanced)
The execution of instance public fields roughly follows these two rules:
The following example demonstrates these rules:
class SuperClass {
superProp = console.log('superProp');
constructor() {
console.log('super-constructor');
}
}
class SubClass extends SuperClass {
subProp = console.log('subProp');
constructor() {
console.log('BEFORE super()');
super();
console.log('AFTER super()');
}
}
new SubClass();
// Output:
// 'BEFORE super()'
// 'superProp'
// 'super-constructor'
// 'subProp'
// 'AFTER super()'
extends and subclassing are explained later in this chapter.
Instance private fields
The following class contains two instance private fields (line A and line B):
class InstPrivateClass {
#privateField1 = 'private field 1'; // (A)
#privateField2; // (B) required!
constructor(value) {
this.#privateField2 = value; // (C)
}
/**
* Private fields are not accessible outside the class body.
*/
checkPrivateValues() {
assert.equal(
this.#privateField1, 'private field 1'
);
assert.equal(
this.#privateField2, 'constructor argument'
);
}
}
const inst = new InstPrivateClass('constructor argument');
inst.checkPrivateValues();
// No instance properties were created
assert.deepEqual(
Reflect.ownKeys(inst),
[]
);
Note that we can only use .#privateField2 in line C if we declare it in the class body.
Private instance data before ES2022 (advanced)
In this section, we look at two techniques for keeping instance data private. Because they don’t rely on classes, we can also use them for objects that were created in other ways – e.g., via object literals.
Before ES6: private members via naming conventions
The first technique makes a property private by prefixing its name with an underscore. This doesn’t protect the property in any way; it merely signals to the outside: “You don’t need to know about this property.”
In the following code, the properties ._counter and ._action are private.
class Countdown {
constructor(counter, action) {
this._counter = counter;
this._action = action;
}
dec() {
this._counter--;
if (this._counter === 0) {
this._action();
}
}
}
// The two properties aren’t really private:
assert.deepEqual(
Object.keys(new Countdown()),
['_counter', '_action']);
With this technique, we don’t get any protection and private names can clash. On the plus side, it is easy to use.
Private methods work similarly: They are normal methods whose names start with underscores.
ES6 and later: private instance data via WeakMaps
We can also manage private instance data via WeakMaps:
const _counter = new WeakMap();
const _action = new WeakMap();
class Countdown {
constructor(counter, action) {
_counter.set(this, counter);
_action.set(this, action);
}
dec() {
let counter = _counter.get(this);
counter--;
_counter.set(this, counter);
if (counter === 0) {
_action.get(this)();
}
}
}
// The two pseudo-properties are truly private:
assert.deepEqual(
Object.keys(new Countdown()),
[]);
How exactly that works is explained in the chapter on WeakMaps.
This technique offers us considerable protection from outside access and there can’t be any name clashes. But it is also more complicated to use.
We control the visibility of the pseudo-property _superProp by controlling who has access to it – for example: If the variable exists inside a module and isn’t exported, everyone inside the module and no one outside the module can access it. In other words: The scope of privacy isn’t the class in this case, it’s the module. We could narrow the scope, though:
let Countdown;
{ // class scope
const _counter = new WeakMap();
const _action = new WeakMap();
Countdown = class {
// ···
}
}
This technique doesn’t really support private methods. But module-local functions that have access to _superProp are the next best thing:
const _counter = new WeakMap();
const _action = new WeakMap();
class Countdown {
constructor(counter, action) {
_counter.set(this, counter);
_action.set(this, action);
}
dec() {
privateDec(this);
}
}
function privateDec(_this) { // (A)
let counter = _counter.get(_this);
counter--;
_counter.set(_this, counter);
if (counter === 0) {
_action.get(_this)();
}
}
Note that this becomes the explicit function parameter _this (line A).
Simulating protected visibility and friend visibility via WeakMaps (advanced)
As previously discussed, instance private fields are only visible inside their classes and not even in subclasses. Thus, there is no built-in way to get:
In the previous subsection, we simulated “module visibility” (everyone inside a module has access to a piece of instance data) via WeakMaps. Therefore:
The next example demonstrates protected visibility:
const _superProp = new WeakMap();
class SuperClass {
constructor() {
_superProp.set(this, 'superProp');
}
}
class SubClass extends SuperClass {
getSuperProp() {
return _superProp.get(this);
}
}
assert.equal(
new SubClass().getSuperProp(),
'superProp'
);
Subclassing via extends is explained later in this chapter.
Static members of classes
Static public methods and accessors
All members in the body of the following class declaration create so-called static properties – properties of StaticClass itself.
class StaticPublicMethodsClass {
static staticMethod() {
return 'staticMethod';
}
static get staticAccessor() {
return 'staticGetter';
}
static set staticAccessor(value) {
assert.equal(value, 'staticSetter');
}
}
assert.equal(
StaticPublicMethodsClass.staticMethod(), 'staticMethod'
);
assert.equal(
StaticPublicMethodsClass.staticAccessor, 'staticGetter'
);
StaticPublicMethodsClass.staticAccessor = 'staticSetter';
All kinds of static public methods and accessors (advanced)
const accessorKey = Symbol('accessorKey');
const syncMethodKey = Symbol('syncMethodKey');
const syncGenMethodKey = Symbol('syncGenMethodKey');
const asyncMethodKey = Symbol('asyncMethodKey');
const asyncGenMethodKey = Symbol('asyncGenMethodKey');
class StaticPublicMethodsClass2 {
// Identifier keys
static get accessor() {}
static set accessor(value) {}
static syncMethod() {}
static * syncGeneratorMethod() {}
static async asyncMethod() {}
static async * asyncGeneratorMethod() {}
// Quoted keys
static get 'an accessor'() {}
static set 'an accessor'(value) {}
static 'sync method'() {}
static * 'sync generator method'() {}
static async 'async method'() {}
static async * 'async generator method'() {}
// Computed keys
static get [accessorKey]() {}
static set [accessorKey](value) {}
static [syncMethodKey]() {}
static * [syncGenMethodKey]() {}
static async [asyncMethodKey]() {}
static async * [asyncGenMethodKey]() {}
}
// Quoted and computed keys are accessed via square brackets:
StaticPublicMethodsClass2['sync method']();
StaticPublicMethodsClass2[syncMethodKey]();
Quoted and computed keys can also be used in object literals:
More information on accessors (defined via getters and/or setters), generators, async methods, and async generator methods:
Static public fields [ES2022]
The following code demonstrates static public fields. StaticPublicFieldClass has three of them:
const computedFieldKey = Symbol('computedFieldKey');
class StaticPublicFieldClass {
static identifierFieldKey = 1;
static 'quoted field key' = 2;
static [computedFieldKey] = 3;
}
assert.deepEqual(
Reflect.ownKeys(StaticPublicFieldClass),
[
'length', // number of constructor parameters
'name', // 'StaticPublicFieldClass'
'prototype',
'identifierFieldKey',
'quoted field key',
computedFieldKey,
],
);
assert.equal(StaticPublicFieldClass.identifierFieldKey, 1);
assert.equal(StaticPublicFieldClass['quoted field key'], 2);
assert.equal(StaticPublicFieldClass[computedFieldKey], 3);
Static private methods, accessors, and fields [ES2022]
The following class has two static private slots (line A and line B):
class StaticPrivateClass {
// Declare and initialize
static #staticPrivateField = 'hello'; // (A)
static #twice() { // (B)
const str = StaticPrivateClass.#staticPrivateField;
return str + ' ' + str;
}
static getResultOfTwice() {
return StaticPrivateClass.#twice();
}
}
assert.deepEqual(
Reflect.ownKeys(StaticPrivateClass),
[
'length', // number of constructor parameters
'name', // 'StaticPublicFieldClass'
'prototype',
'getResultOfTwice',
],
);
assert.equal(
StaticPrivateClass.getResultOfTwice(),
'hello hello'
);
This is a complete list of all kinds of static private slots:
class MyClass {
static #staticPrivateMethod() {}
static * #staticPrivateGeneratorMethod() {}
static async #staticPrivateAsyncMethod() {}
static async * #staticPrivateAsyncGeneratorMethod() {}
static get #staticPrivateAccessor() {}
static set #staticPrivateAccessor(value) {}
}
Static initialization blocks in classes [ES2022]
To set up instance data via classes, we have two constructs:
For static data, we have:
The following code demonstrates static blocks (line A):
class Translator {
static translations = {
yes: 'ja',
no: 'nein',
maybe: 'vielleicht',
};
static englishWords = [];
static germanWords = [];
static { // (A)
for (const [english, german] of Object.entries(this.translations)) {
this.englishWords.push(english);
this.germanWords.push(german);
}
}
}
We could also execute the code inside the static block after the class (at the top level). However, using a static block has two benefits:
Rules for static initialization blocks
The rules for how static initialization blocks work, are relatively simple:
The following code demonstrates these rules:
class SuperClass {
static superField1 = console.log('superField1');
static {
assert.equal(this, SuperClass);
console.log('static block 1 SuperClass');
}
static superField2 = console.log('superField2');
static {
console.log('static block 2 SuperClass');
}
}
class SubClass extends SuperClass {
static subField1 = console.log('subField1');
static {
assert.equal(this, SubClass);
console.log('static block 1 SubClass');
}
static subField2 = console.log('subField2');
static {
console.log('static block 2 SubClass');
}
}
// Output:
// 'superField1'
// 'static block 1 SuperClass'
// 'superField2'
// 'static block 2 SuperClass'
// 'subField1'
// 'static block 1 SubClass'
// 'subField2'
// 'static block 2 SubClass'
Subclassing via extends is explained later in this chapter.
Pitfall: Using this to access static private fields
In static public members, we can access static public slots via this. Alas, we should not use it to access static private slots.
this and static public fields
Consider the following code:
class SuperClass {
static publicData = 1;
static getPublicViaThis() {
return this.publicData;
}
}
class SubClass extends SuperClass {
}
Subclassing via extends is explained later in this chapter.
Static public fields are properties. If we make the method call
assert.equal(SuperClass.getPublicViaThis(), 1);
then this points to SuperClass and everything works as expected. We can also invoke .getPublicViaThis() via the subclass:
assert.equal(SubClass.getPublicViaThis(), 1);
SubClass inherits .getPublicViaThis() from its prototype SuperClass. this points to SubClass and things continue to work, because SubClass also inherits the property .publicData.
As an aside, if we assigned to this.publicData in getPublicViaThis() and invoked it via SubClass.getPublicViaThis(), then we would create a new own poperty of SubClass that (non-destructively) overrides the property inherited from SuperClass.
this and static private fields
Consider the following code:
class SuperClass {
static #privateData = 2;
static getPrivateDataViaThis() {
return this.#privateData;
}
static getPrivateDataViaClassName() {
return SuperClass.#privateData;
}
}
class SubClass extends SuperClass {
}
Invoking .getPrivateDataViaThis() via SuperClass works, because this points to SuperClass:
assert.equal(SuperClass.getPrivateDataViaThis(), 2);
However, invoking .getPrivateDataViaThis() via SubClass does not work, because this now points to SubClass and SubClass has no static private field .#privateData (private slots in prototype chains are not inherited):
assert.throws(
() => SubClass.getPrivateDataViaThis(),
{
name: 'TypeError',
message: 'Cannot read private member #privateData from'
+ ' an object whose class did not declare it',
}
);
The workaround is to accesss .#privateData directly, via SuperClass:
assert.equal(SubClass.getPrivateDataViaClassName(), 2);
With static private methods, we are facing the same issue.
All members (static, prototype, instance) can access all private members
Every member inside a class can access all other members inside that class – both public and private ones:
class DemoClass {
static #staticPrivateField = 1;
#instPrivField = 2;
static staticMethod(inst) {
// A static method can access static private fields
// and instance private fields
assert.equal(DemoClass.#staticPrivateField, 1);
assert.equal(inst.#instPrivField, 2);
}
protoMethod() {
// A prototype method can access instance private fields
// and static private fields
assert.equal(this.#instPrivField, 2);
assert.equal(DemoClass.#staticPrivateField, 1);
}
}
In contrast, no one outside can access the private members:
// Accessing private fields outside their classes triggers
// syntax errors (before the code is even executed).
assert.throws(
() => eval('DemoClass.#staticPrivateField'),
{
name: 'SyntaxError',
message: "Private field '#staticPrivateField' must"
+ " be declared in an enclosing class",
}
);
// Accessing private fields outside their classes triggers
// syntax errors (before the code is even executed).
assert.throws(
() => eval('new DemoClass().#instPrivField'),
{
name: 'SyntaxError',
message: "Private field '#instPrivField' must"
+ " be declared in an enclosing class",
}
);
Static private methods and data before ES2022
The following code only works in ES2022 – due to every line that has a hash symbol (#) in it:
class StaticClass {
static #secret = 'Rumpelstiltskin';
static #getSecretInParens() {
return `(${StaticClass.#secret})`;
}
static callStaticPrivateMethod() {
return StaticClass.#getSecretInParens();
}
}
Since private slots only exist once per class, we can move #secret and #getSecretInParens to the scope surrounding the class and use a module to hide them from the world outside the module.
const secret = 'Rumpelstiltskin';
function getSecretInParens() {
return `(${secret})`;
}
// Only the class is accessible outside the module
export class StaticClass {
static callStaticPrivateMethod() {
return getSecretInParens();
}
}
Static factory methods
Sometimes there are multiple ways in which a class can be instantiated. Then we can implement static factory methods such as Point.fromPolar():
class Point {
static fromPolar(radius, angle) {
const x = radius * Math.cos(angle);
const y = radius * Math.sin(angle);
return new Point(x, y);
}
constructor(x=0, y=0) {
this.x = x;
this.y = y;
}
}
assert.deepEqual(
Point.fromPolar(13, 0.39479111969976155),
new Point(12, 5)
);
I like how descriptive static factory methods are: fromPolar describes how an instance is created. JavaScript’s standard library also has such factory methods – for example:
I prefer to either have no static factory methods or only static factory methods. Things to consider in the latter case:
In the following code, we use a secret token (line A) to prevent the constructor being called from outside the current module.
// Only accessible inside the current module
const secretToken = Symbol('secretToken'); // (A)
export class Point {
static create(x=0, y=0) {
return new Point(secretToken, x, y);
}
static fromPolar(radius, angle) {
const x = radius * Math.cos(angle);
const y = radius * Math.sin(angle);
return new Point(secretToken, x, y);
}
constructor(token, x, y) {
if (token !== secretToken) {
throw new TypeError('Must use static factory method');
}
this.x = x;
this.y = y;
}
}
Point.create(3, 4); // OK
assert.throws(
() => new Point(3, 4),
TypeError
);
Subclassing
Classes can also extend existing classes. For example, the following class Employee extends Person:
class Person {
#firstName;
constructor(firstName) {
this.#firstName = firstName;
}
describe() {
return `Person named ${this.#firstName}`;
}
static extractNames(persons) {
return persons.map(person => person.#firstName);
}
}
class Employee extends Person {
constructor(firstName, title) {
super(firstName);
this.title = title;
}
describe() {
return super.describe() +
` (${this.title})`;
}
}
const jane = new Employee('Jane', 'CTO');
assert.equal(
jane.title,
'CTO'
);
assert.equal(
jane.describe(),
'Person named Jane (CTO)'
);
Terminology related to extending:
Inside the .constructor() of a derived class, we must call the super-constructor via super() before we can access this. Why is that?
Let’s consider a chain of classes:
If we invoke new C(), C’s constructor super-calls B’s constructor which super-calls A’s constructor. Instances are always created in base classes, before the constructors of subclasses add their slots. Therefore, the instance doesn’t exist before we call super() and we can’t access it via this, yet.
Note that static public slots are inherited. For example, Employee inherits the static method .extractNames():
> 'extractNames' in Employee
true
Exercise: Subclassing
exercises/classes/color_point_class_test.mjs
The internals of subclassing (advanced)
Figure 15: These are the objects that make up class Person and its subclass, Employee. The left column is about classes. The right column is about the Employee instance jane and its prototype chain.
The classes Person and Employee from the previous section are made up of several objects (fig. 15). One key insight for understanding how these objects are related is that there are two prototype chains:
The instance prototype chain (right column)
The instance prototype chain starts with jane and continues with Employee.prototype and Person.prototype. In principle, the prototype chain ends at this point, but we get one more object: Object.prototype. This prototype provides services to virtually all objects, which is why it is included here, too:
> Object.getPrototypeOf(Person.prototype) === Object.prototype
true
The class prototype chain (left column)
In the class prototype chain, Employee comes first, Person next. Afterward, the chain continues with Function.prototype, which is only there because Person is a function and functions need the services of Function.prototype.
> Object.getPrototypeOf(Person) === Function.prototype
true
instanceof and subclassing (advanced)
We have not yet learned how instanceof really works. How does instanceof determine if a value x is an instance of a class C (it can be a direct instance of C or a direct instance of a subclass of C)? It checks if C.prototype is in the prototype chain of x. That is, the following two expressions are equivalent:
x instanceof C
C.prototype.isPrototypeOf(x)
If we go back to fig. 15, we can confirm that the prototype chain does lead us to the following correct answers:
> jane instanceof Employee
true
> jane instanceof Person
true
> jane instanceof Object
true
Note that instanceof always returns false if its self-hand side is a primitive value:
> 'abc' instanceof String
false
> 123 instanceof Number
false
Not all objects are instances of Object (advanced)
An object (a non-primitive value) is only an instance of Object if Object.prototype is in its prototype chain (see previous subsection). Virtually all objects are instances of Object – for example:
assert.equal(
{a: 1} instanceof Object, true
);
assert.equal(
['a'] instanceof Object, true
);
assert.equal(
/abc/g instanceof Object, true
);
assert.equal(
new Map() instanceof Object, true
);
class C {}
assert.equal(
new C() instanceof Object, true
);
In the next example, obj1 and obj2 are both objects (line A and line C), but they are not instances of Object (line B and line D): Object.prototype is not in their prototype chains because they don’t have any prototypes.
const obj1 = {__proto__: null};
assert.equal(
typeof obj1, 'object' // (A)
);
assert.equal(
obj1 instanceof Object, false // (B)
);
const obj2 = Object.create(null);
assert.equal(
typeof obj2, 'object' // (C)
);
assert.equal(
obj2 instanceof Object, false // (D)
);
Object.prototype is the object that ends most prototype chains. Its prototype is null, which means it isn’t an instance of Object either:
> typeof Object.prototype
'object'
> Object.getPrototypeOf(Object.prototype)
null
> Object.prototype instanceof Object
false
Prototype chains of built-in objects (advanced)
Next, we’ll use our knowledge of subclassing to understand the prototype chains of a few built-in objects. The following tool function p() helps us with our explorations.
const p = Object.getPrototypeOf.bind(Object);
We extracted method .getPrototypeOf() of Object and assigned it to p.
The prototype chain of {}
Let’s start by examining plain objects:
> p({}) === Object.prototype
true
> p(p({})) === null
true
Figure 16: The prototype chain of an object created via an object literal starts with that object, continues with Object.prototype, and ends with null.
Fig. 16 shows a diagram for this prototype chain. We can see that {} really is an instance of Object – Object.prototype is in its prototype chain.
The prototype chain of []
What does the prototype chain of an Array look like?
> p([]) === Array.prototype
true
> p(p([])) === Object.prototype
true
> p(p(p([]))) === null
true
Figure 17: The prototype chain of an Array has these members: the Array instance, Array.prototype, Object.prototype, null.
This prototype chain (visualized in fig. 17) tells us that an Array object is an instance of Array and of Object.
The prototype chain of function () {}
Lastly, the prototype chain of an ordinary function tells us that all functions are objects:
> p(function () {}) === Function.prototype
true
> p(p(function () {})) === Object.prototype
true
The prototype chains of built-in classes
The prototype of a base class is Function.prototype which means that it is a function (an instance of Function):
class A {}
assert.equal(
Object.getPrototypeOf(A),
Function.prototype
);
assert.equal(
Object.getPrototypeOf(class {}),
Function.prototype
);
The prototype of a derived class is its superclass:
class B extends A {}
assert.equal(
Object.getPrototypeOf(B),
A
);
assert.equal(
Object.getPrototypeOf(class extends Object {}),
Object
);
Interestingly, Object, Array, and Function are all base classes:
> Object.getPrototypeOf(Object) === Function.prototype
true
> Object.getPrototypeOf(Array) === Function.prototype
true
> Object.getPrototypeOf(Function) === Function.prototype
true
However, as we have seen, even the instances of base classes have Object.prototype in their prototype chains because it provides services that all objects need.
Why are Array and Function base classes?
Base classes are where instances are actually created. Both Array and Function need to create their own instances because they have so-called “internal slots” which can’t be added later to instances created by Object.
Mixin classes (advanced)
JavaScript’s class system only supports single inheritance. That is, each class can have at most one superclass. One way around this limitation is via a technique called mixin classes (short: mixins).
The idea is as follows: Let’s say we want a class C to inherit from two superclasses S1 and S2. That would be multiple inheritance, which JavaScript doesn’t support.
Our workaround is to turn S1 and S2 into mixins, factories for subclasses:
const S1 = (Sup) => class extends Sup { /*···*/ };
const S2 = (Sup) => class extends Sup { /*···*/ };
Each of these two functions returns a class that extends a given superclass Sup. We create class C as follows:
class C extends S2(S1(Object)) {
/*···*/
}
We now have a class C that extends the class returned by S2() which extends the class returned by S1() which extends Object.
Example: a mixin for brand management
We implement a mixin Branded that has helper methods for setting and getting the brand of an object:
const Named = (Sup) => class extends Sup {
name = '(Unnamed)';
toString() {
const className = this.constructor.name;
return `${className} named ${this.name}`;
}
};
We use this mixin to implement a class City that has a name:
class City extends Named(Object) {
constructor(name) {
super();
this.name = name;
}
}
The following code confirms that the mixin works:
const paris = new City('Paris');
assert.equal(
paris.name, 'Paris'
);
assert.equal(
paris.toString(), 'City named Paris'
);
The benefits of mixins
Mixins free us from the constraints of single inheritance:
The methods and accessors of Object.prototype (advanced)
As we have seen in §29.7.3 “Not all objects are instances of Object”, almost all objects are instances of Object. This class provides several useful methods and an accessor to its instances:
Before we take a closer look at each of these features, we’ll learn about an important pitfall (and how to work around it): We can’t use the features of Object.prototype with all objects.
Using Object.prototype methods safely
Invoking one of the methods of Object.prototype on an arbitrary object doesn’t always work. To illustrate why, we use method Object.prototype.hasOwnProperty, which returns true if an object has an own property with a given key:
> {ownProp: true}.hasOwnProperty('ownProp')
true
> {ownProp: true}.hasOwnProperty('abc')
false
Invoking .hasOwnProperty() on an arbitrary object can fail in two ways. On one hand, this method isn’t available if an object is not an instance of Object (see §29.7.3 “Not all objects are instances of Object”):
const obj = Object.create(null);
assert.equal(obj instanceof Object, false);
assert.throws(
() => obj.hasOwnProperty('prop'),
{
name: 'TypeError',
message: 'obj.hasOwnProperty is not a function',
}
);
On the other hand, we can’t use .hasOwnProperty() if an object overrides it with an own property (line A):
const obj = {
hasOwnProperty: 'yes' // (A)
};
assert.throws(
() => obj.hasOwnProperty('prop'),
{
name: 'TypeError',
message: 'obj.hasOwnProperty is not a function',
}
);
There is, however, a safe way to use .hasOwnProperty():
function hasOwnProp(obj, propName) {
return Object.prototype.hasOwnProperty.call(obj, propName); // (A)
}
assert.equal(
hasOwnProp(Object.create(null), 'prop'), false
);
assert.equal(
hasOwnProp({hasOwnProperty: 'yes'}, 'prop'), false
);
assert.equal(
hasOwnProp({hasOwnProperty: 'yes'}, 'hasOwnProperty'), true
);
The method invocation in line A is explained in §29.3.5 “Dispatched vs. direct method calls”.
We can also use .bind() to implement hasOwnProp():
const hasOwnProp = Object.prototype.hasOwnProperty.call
.bind(Object.prototype.hasOwnProperty);
How does this work? When we invoke .call() like in line A in the previous example, it does exactly what hasOwnProp() should do, including avoiding the pitfalls. However, if we want to function-call it, we can’t simply extract it, we must also ensure that its this always has the right value. That’s what .bind() does.
Is it never OK to use Object.prototype methods via dynamic dispatch?
In some cases we can be lazy and call Object.prototype methods like normal methods (without .call() or .bind()): If we know the receivers and they are fixed-layout objects.
If, on the other hand, we don’t know their receivers and/or they are dictionary objects, then we need to take precautions.
Object.prototype.toString()
By overriding .toString() (in a subclass or an instance), we can configure how objects are converted to strings:
> String({toString() { return 'Hello!' }})
'Hello!'
> String({})
'[object Object]'
For converting objects to strings it’s better to use String() because that also works with undefined and null:
> undefined.toString()
TypeError: Cannot read properties of undefined (reading 'toString')
> null.toString()
TypeError: Cannot read properties of null (reading 'toString')
> String(undefined)
'undefined'
> String(null)
'null'
Object.prototype.toLocaleString()
.toLocaleString() is a version of .toString() that can be configured via a locale and often additional options. Any class or instance can implement this method. In the standard library, the following classes do:
As an example, this is how numbers with decimal fractions are converted to string differently, depending on locale ('fr' is French, 'en' is English):
> 123.45.toLocaleString('fr')
'123,45'
> 123.45.toLocaleString('en')
'123.45'
Object.prototype.valueOf()
By overriding .valueOf() (in a subclass or an instance), we can configure how objects are converted to non-string values (often numbers):
> Number({valueOf() { return 123 }})
123
> Number({})
NaN
Object.prototype.isPrototypeOf()
proto.isPrototypeOf(obj) returns true if proto is in the prototype chain of obj and false otherwise.
const a = {};
const b = {__proto__: a};
const c = {__proto__: b};
assert.equal(a.isPrototypeOf(b), true);
assert.equal(a.isPrototypeOf(c), true);
assert.equal(a.isPrototypeOf(a), false);
assert.equal(c.isPrototypeOf(a), false);
This is how to use this method safely (for details see §29.8.1 “Using Object.prototype methods safely”):
const obj = {
// Overrides Object.prototype.isPrototypeOf
isPrototypeOf: true,
};
// Doesn’t work in this case:
assert.throws(
() => obj.isPrototypeOf(Object.prototype),
{
name: 'TypeError',
message: 'obj.isPrototypeOf is not a function',
}
);
// Safe way of using .isPrototypeOf():
assert.equal(
Object.prototype.isPrototypeOf.call(obj, Object.prototype), false
);
Object.prototype.propertyIsEnumerable()
obj.propertyIsEnumerable(propKey) returns true if obj has an own enumerable property whose key is propKey and false otherwise.
const proto = {
enumerableProtoProp: true,
};
const obj = {
__proto__: proto,
enumerableObjProp: true,
nonEnumObjProp: true,
};
Object.defineProperty(
obj, 'nonEnumObjProp',
{
enumerable: false,
}
);
assert.equal(
obj.propertyIsEnumerable('enumerableProtoProp'),
false // not an own property
);
assert.equal(
obj.propertyIsEnumerable('enumerableObjProp'),
true
);
assert.equal(
obj.propertyIsEnumerable('nonEnumObjProp'),
false // not enumerable
);
assert.equal(
obj.propertyIsEnumerable('unknownProp'),
false // not a property
);
This is how to use this method safely (for details see §29.8.1 “Using Object.prototype methods safely”):
const obj = {
// Overrides Object.prototype.propertyIsEnumerable
propertyIsEnumerable: true,
enumerableProp: 'yes',
};
// Doesn’t work in this case:
assert.throws(
() => obj.propertyIsEnumerable('enumerableProp'),
{
name: 'TypeError',
message: 'obj.propertyIsEnumerable is not a function',
}
);
// Safe way of using .propertyIsEnumerable():
assert.equal(
Object.prototype.propertyIsEnumerable.call(obj, 'enumerableProp'),
true
);
Another safe alternative is to use property descriptors:
assert.deepEqual(
Object.getOwnPropertyDescriptor(obj, 'enumerableProp'),
{
value: 'yes',
writable: true,
enumerable: true,
configurable: true,
}
);
Object.prototype.__proto__ (accessor)
Property __proto__ exists in two versions:
I recommend to avoid the former feature:
In contrast, __proto__ in object literals always works and is not deprecated.
Read on if you are interested in how the accessor __proto__ works.
__proto__ is an accessor of Object.prototype that is inherited by all instances of Object. Implementing it via a class would look like this:
class Object {
get __proto__() {
return Object.getPrototypeOf(this);
}
set __proto__(other) {
Object.setPrototypeOf(this, other);
}
// ···
}
Since __proto__ is inherited from Object.prototype, we can remove this feature by creating an object that doesn’t have Object.prototype in its prototype chain (see §29.7.3 “Not all objects are instances of Object”):
> '__proto__' in {}
true
> '__proto__' in Object.create(null)
false
Object.prototype.hasOwnProperty()
Better alternative to .hasOwnProperty(): Object.hasOwn() [ES2022]
See §28.9.4 “Object.hasOwn(): Is a given property own (non-inherited)? [ES2022]”.
obj.hasOwnProperty(propKey) returns true if obj has an own (non-inherited) property whose key is propKey and false otherwise.
const obj = { ownProp: true };
assert.equal(
obj.hasOwnProperty('ownProp'), true // own
);
assert.equal(
'toString' in obj, true // inherited
);
assert.equal(
obj.hasOwnProperty('toString'), false
);
This is how to use this method safely (for details see §29.8.1 “Using Object.prototype methods safely”):
const obj = {
// Overrides Object.prototype.hasOwnProperty
hasOwnProperty: true,
};
// Doesn’t work in this case:
assert.throws(
() => obj.hasOwnProperty('anyPropKey'),
{
name: 'TypeError',
message: 'obj.hasOwnProperty is not a function',
}
);
// Safe way of using .hasOwnProperty():
assert.equal(
Object.prototype.hasOwnProperty.call(obj, 'anyPropKey'), false
);
FAQ: classes
Why are they called “instance private fields” in this book and not “private instance fields”?
That is done to highlight how different properties (public slots) and private slots are: By changing the order of the adjectives, the words “public” and “field” and the words “private” and “field” are always mentioned together.
Why the identifier prefix #? Why not declare private fields via private?
Could private fields be declared via private and use normal identifiers? Let’s examine what would happen if that were possible:
class MyClass {
private value; // (A)
compare(other) {
return this.value === other.value;
}
}
Whenever an expression such as other.value appears in the body of MyClass, JavaScript has to decide:
At compile time, JavaScript doesn’t know if the declaration in line A applies to other (due to it being an instance of MyClass) or not. That leaves two options for making the decision:
Both options have downsides:
That’s why the name prefix # was introduced. The decision is now easy: If we use #, we want to access a private field. If we don’t, we want to access a property.
private works for statically typed languages (such as TypeScript) because they know at compile time if other is an instance of MyClass and can then treat .value as private or public.
Quiz
See quiz app.
Where are the remaining chapters?
You are reading a preview version of this book. You can either read all essential chapters online or you can buy the full version.
You can take a look at the full table of contents, which is also linked to from the book’s homepage.